首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Bao WB  Ye L  Zi C  Liu L  Zhu J  Pan ZY  Zhu GQ  Huang XG  Wu SL 《Gene》2012,494(1):140-144
The expression of SLA-DQA was assayed by Real-time PCR to analyze the differential expression between ETEC F18-resistant and -sensitive post-weaning piglets, and then to compare the expression levels of SLA-DQA in 11 different tissues from 8-, 18-, 30- and 35-day-old ETEC F18-resistant piglets, which aimed at discussing the role of SLA-DQA in resistance to ETEC F18. The results showed that SLA-DQA is broadly expressed in 11 tissues with the highest expression level in lymph nodes, and a relatively higher expression level in lung, spleen, jejunum, and duodenum. In tissues of lymph node, lung, spleen, jejunum, and duodenum, the mRNA expression of SLA-DQA in resistant individuals was significantly higher than that in sensitive ones (P < 0.05). In most tissues, the expression of SLA-DQA increased from 8 to 18 and 30 days (weaning day), and increased persistently to 35 days of post-weaning. Expression levels of SLA-DQA on 35 days in most tissues were significant higher than that on 8, 18 and 30 days (P < 0.05). The results demonstrated that the resistance to ETEC F18 in post-weaning piglets is related to up-regulation of mRNA expression of SLA-DQA to a certain extent. The analysis suggested that SLA-DQA may be not the direct immune factor that resisted the Escherichia coli F18, but perhaps enhanced humoral immunity and cell immunity to reduce the transmembrane signal transduction of ETEC F18 bacterial LPS and then led to the resistance to ETEC F18 in piglets.  相似文献   

2.
Enterotoxigenic Escherichia coli (ETEC) is the most common cause of food and water-borne E. coli-mediated human diarrhoea worldwide. The incidence in developing countries is estimated at 650 million cases per year, resulting in 800 000 deaths, primarily in children under the age of five. ETEC is also the most common cause of diarrhoea among travellers, including the military, from industrialized nations to less developed countries. In addition, ETEC is a major pathogen of animals, being responsible for scours in cattle and neonatal and postweaning diarrhoea in pigs and resulting in significant financial losses. Studies on the pathogenesis of ETEC infections have concentrated on the plasmid-encoded heat-stable and heat-labile enterotoxins and on the plasmid-encoded antigenically variable colonization factors. Relatively little work has been carried out on chromosomally encoded virulence factors. Here, we review the known virulence factors of ETEC and highlight the future for combating this major disease.  相似文献   

3.

Background

Enterotoxigenic Escherichia coli (ETEC) are a major economic threat to pig production globally, with serogroups O8, O9, O45, O101, O138, O139, O141, O149 and O157 implicated as the leading diarrhoeal pathogens affecting pigs below four weeks of age. A multiple antimicrobial resistant ETEC O157 (O157 SvETEC) representative of O157 isolates from a pig farm in New South Wales, Australia that experienced repeated bouts of pre- and post-weaning diarrhoea resulting in multiple fatalities was characterized here. Enterohaemorrhagic E. coli (EHEC) O157:H7 cause both sporadic and widespread outbreaks of foodborne disease, predominantly have a ruminant origin and belong to the ST11 clonal complex. Here, for the first time, we conducted comparative genomic analyses of two epidemiologically-unrelated porcine, disease-causing ETEC O157; E. coli O157 SvETEC and E. coli O157:K88 734/3, and examined their phylogenetic relationship with EHEC O157:H7.

Results

O157 SvETEC and O157:K88 734/3 belong to a novel sequence type (ST4245) that comprises part of the ST23 complex and are genetically distinct from EHEC O157. Comparative phylogenetic analysis using PhyloSift shows that E. coli O157 SvETEC and E. coli O157:K88 734/3 group into a single clade and are most similar to the extraintestinal avian pathogenic Escherichia coli (APEC) isolate O78 that clusters within the ST23 complex. Genome content was highly similar between E. coli O157 SvETEC, O157:K88 734/3 and APEC O78, with variability predominantly limited to laterally acquired elements, including prophages, plasmids and antimicrobial resistance gene loci. Putative ETEC virulence factors, including the toxins STb and LT and the K88 (F4) adhesin, were conserved between O157 SvETEC and O157:K88 734/3. The O157 SvETEC isolate also encoded the heat stable enterotoxin STa and a second allele of STb, whilst a prophage within O157:K88 734/3 encoded the serum survival gene bor. Both isolates harbor a large repertoire of antibiotic resistance genes but their association with mobile elements remains undetermined.

Conclusions

We present an analysis of the first draft genome sequences of two epidemiologically-unrelated, pathogenic ETEC O157. E. coli O157 SvETEC and E. coli O157:K88 734/3 belong to the ST23 complex and are phylogenetically distinct to EHEC O157 lineages that reside within the ST11 complex.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1382-y) contains supplementary material, which is available to authorized users.  相似文献   

4.
The enterotoxigenic Escherichia coli (ETEC) strain Ec2173, causing post weaning diarrhoea in swine, harbours six plasmids ranging from 13 to 200 kb in size. The heat stable toxin genes sta, stb and a tetracycline resistance gene were located on a self conjugative 120-kb plasmid, called pTC. In the cloned ColE1 type origin of replication of pTC a deletion was detected compared to other ColE1 replicons affecting the replication modulator gene rom. Epidemiological studies on ETEC isolates showed that pTC-like plasmids are widely distributed among porcine ETEC strains; thus representing an example of co-evolution of antibacterial resistance and virulence in pathogenic E. coli.  相似文献   

5.
Our aim was to investigate the effect of the porcine bactericidal/permeability-increasing protein (BPI) on the susceptibility to enterotoxigenic Escherichia coli F18 (ETEC F18). Specifically, we wanted to determine whether the HpaII restriction polymorphism in exon 10 of BPI mediates susceptibility to ETEC F18. Thirty verified ETEC F18-resistant and thirty susceptible Sutai (Duroc × Taihu) piglets were identified using the receptor binding assay. Exon 10 of the BPI gene produced the AA, BB, and AB genotypes after HpaII digestion. The genotype distribution among ETEC F18-resistant piglets was significantly different from that among susceptible piglets. Among piglets with the AA genotype, 90% were ETEC F18-resistant; this percentage of resistant piglets was significantly higher than the percentage of resistant piglets with the AB (57.1%) and BB genotypes (17.4%). There was high expression only in the tissues of the duodenum and jejunum, wherein the expression levels in the ETEC F18-resistant group were significantly higher than those in the susceptible group (P < 0.05). The average expression levels in individuals with the AA genotype were significantly higher than those in individuals with the AB or BB genotype (P < 0.05), while the results of Western blot show the same evidences as real time PCR. These results indicate that the upregulation of porcine BPI gene expression in the small intestines plays a direct role in resistance to ETEC F18 infection. The AA genotype for the HpaII site in exon 10 of the porcine BPI gene was demonstrated to be an anti-ETEC F18 marker and could be used for selective breeding to enhance ETEC F18 resistance.  相似文献   

6.
Aims: To investigate the distribution of the genes that encode enterotoxins and the colonization factors (CF) types as well as the antibiotic susceptibility profile of enterotoxigenic Escherichia coli (ETEC) isolated from children from the Brazilian Northeast. Methods and Results: We conducted a 3·5‐year prospective study that involved 250 children with and 150 without diarrhoea, aged 1–60 months, from low‐income families in Teresina/Brazilian Northeast. All samples were assayed for E. coli, enterotoxin and CF genes and antimicrobial susceptibility by microbiological methods and PCR. ETEC strains were isolated from 9·2% children with and 4·0% without diarrhoea. Infection was more common in children aged 6–24 months in rainy months. elt+/CFA/IV+ and elt+/CS14+ were the most frequent genotypes. Susceptibility to nalidixic acid, ciprofloxacin and gentamicin and resistance to ampicillin, cephalothin and sulfamethoxazole–trimethoprim were common. Conclusions: elt + isolates and ETEC strains harbouring genes encoding CFA/IV and CS/14 were the most common ETEC found in Brazilian Northeast. Significance and Impact of the Study: Our data, the first generated for north‐eastern Brazilian children, may be important for the development of an effective vaccine and for facilitation of an empirical choice of antibiotic treatment or prophylaxis for traveller’s diarrhoea in the area studied.  相似文献   

7.
Diarrheagenic Escherichia coli (DEC) cause acute and persistent diarrhoea worldwide, but little is known about their epidemiology in Mexico. We determined the prevalence of bacterial enteropathogens in 831 children with acute diarrhoea over a four-year period in Yucatan, Mexico. Six DEC supplementary virulence genes (SVG), mainly associated with enteroaggregative E. coli (EAEC), were sought in 3100 E. coli isolates. DEC was the most common bacterial enteropathogen (28%), surpassing Salmonella (12%) and Shigella (9%). Predominant DEC groups were diffusely adherent E. coli (DAEC) (35%), EAEC (24%), and enteropathogenic E. coli (EPEC) (19%). Among children with DEC infections, 14% had severe illness mainly caused by EPEC (26%) and DAEC (18%); 30% had moderate diarrhoea mainly caused by DAEC (36%), mixed DEC infections (33%) and EAEC (32%). DAEC was most prevalent during spring, while ETEC, EAEC and EPEC predominated in summer. EAEC was more frequent in children 6–24 months old than in those younger than 6 months of age (P = 0.008, OR = 4.2, 95% CI, 1.3–13.9). The presence of SVG dispersin, (aatA), dispersin-translocator (aatA), enteroaggregative heat-stable toxin 1 (astA), plasmid encoded toxin (pet), cytolethal distending toxin (cdt) was higher in DEC than non-DEC strains, (36% vs 26%, P <0.0001, OR = 1.5, 95% CI, 1.3–1.8). 98% of EAEC-infected children harboured strains with SVG; 85% carried the aap-aatA gene combination, and 33% of these also carried astA. 28% of both EPEC and ETEC, and 6% of DAEC patients had strains with SVG. 54% of EPEC patients carried pet-positive strains alone or in combination with astA; only this DEC group harboured cdt-positive isolates. All ETEC patients carried astA- or astA-aap-positive strains. astA and aap were the most common SVG in DAEC (3% and 2%) and non-DEC strains (21% and 13%). DEC carrying SVG are an important cause of moderate to severe bacterial diarrhoea in Mexican children.  相似文献   

8.
Shigella and enterotoxigenic Escherichia coli (ETEC) are among the top four enteric pathogens that cause diarrheal illness in young children in developing countries and are major etiologic agents of travellers' diarrhoea. A single vaccine that could target both of these pathogens would have significant public health impact. In this review, we highlight the many pivotal contributions of Phillippe Sansonetti to the identification of molecular mechanisms of pathogenesis of Shigella that paved the way for the development of rationally designed, novel vaccines candidates. The CVD developed a series of live attenuated Shigella vaccine strains based on the most prevalent serotypes associated with disease. Shigella vaccine strains were engineered to express critical ETEC antigens to form a broadly protective Shigella‐ETEC multivalent vaccine.  相似文献   

9.
Neonatal calf diarrhoea remains the most common cause of morbidity and mortality in preweaned dairy calves worldwide. This complex disease can be triggered by both infectious and non-infectious causes. The four most important enteropathogens leading to neonatal dairy calf diarrhoea are Escherichia coli, rota- and coronavirus, and Cryptosporidium parvum. Besides treating diarrhoeic neonatal dairy calves, the veterinarian is the most obvious person to advise the dairy farmer on prevention and treatment of this disease. This review deals with prevention and treatment of neonatal dairy calf diarrhoea focusing on the importance of a good colostrum management and a correct fluid therapy.  相似文献   

10.
BackgroundChildhood diarrhoea, a major cause of morbidity and mortality in low-income regions, remains scarcely studied in many countries, such as Guinea-Bissau. Stool sample drying enables later qPCR analyses of pathogens without concern about electricity shortages.MethodsDried stool samples of children under five years treated at the Bandim Health Centre in Bissau, Guinea-Bissau were screened by qPCR for nine enteric bacteria, five viruses, and four parasites. The findings of children having and not having diarrhoea were compared in age groups 0–11 and 12–59 months.ResultsOf the 429 children– 228 with and 201 without diarrhoea– 96.9% and 93.5% had bacterial, 62.7% and 44.3% viral, and 52.6% and 48.3% parasitic pathogen findings, respectively. Enteroaggregarive Escherichia coli (EAEC; 60.5% versus 66.7%), enteropathogenic E. coli (EPEC; 61.4% versus 62.7%), Campylobacter (53.2% versus 51.8%), and enterotoxigenic E. coli (ETEC; 54.4% versus 44.3%) were the most common bacterial pathogens. Diarrhoea was associated with enteroinvasive E. coli (EIEC)/Shigella (63.3%), ETEC (54.4%), astrovirus (75.0%), norovirus GII (72.6%) and Cryptosporidium (71.2%). The only pathogen associated with severe diarrhoea was EIEC/Shigella (p<0.001). EAEC was found more frequent among the infants, and EIEC/Shigella, Giardia duodenalis and Dientamoeba fragilis among the older children.ConclusionsStool pathogens proved common among all the children regardless of them having diarrhoea or not.  相似文献   

11.

Background

Enterotoxigenic Escherichia coli (ETEC) is a major cause of traveller''s and infantile diarrhoea in the developing world. ETEC produces two toxins, a heat-stable toxin (known as ST) and a heat-labile toxin (LT) and colonization factors that help the bacteria to attach to epithelial cells.

Methodology/Principal Findings

In this study, we characterized a subset of ETEC clinical isolates recovered from Bolivian children under 5 years of age using a combination of multilocus sequence typing (MLST) analysis, virulence typing, serotyping and antimicrobial resistance test patterns in order to determine the genetic background of ETEC strains circulating in Bolivia. We found that strains expressing the heat-labile (LT) enterotoxin and colonization factor CS17 were common and belonged to several MLST sequence types but mainly to sequence type-423 and sequence type-443 (Achtman scheme). To further study the LT/CS17 strains we analysed the nucleotide sequence of the CS17 operon and compared the structure to LT/CS17 ETEC isolates from Bangladesh. Sequence analysis confirmed that all sequence type-423 strains from Bolivia had a single nucleotide polymorphism; SNPbol in the CS17 operon that was also found in some other MLST sequence types from Bolivia but not in strains recovered from Bangladeshi children. The dominant ETEC clone in Bolivia (sequence type-423/SNPbol) was found to persist over multiple years and was associated with severe diarrhoea but these strains were variable with respect to antimicrobial resistance patterns.

Conclusion/Significance

The results showed that although the LT/CS17 phenotype is common among ETEC strains in Bolivia, multiple clones, as determined by unique MLST sequence types, populate this phenotype. Our data also appear to suggest that acquisition and loss of antimicrobial resistance in LT-expressing CS17 ETEC clones is more dynamic than acquisition or loss of virulence factors.  相似文献   

12.
Spirogyra is found in a wide range of habitats, including small stagnant water bodies, rivers, and streams. Spirogyra ellipsospora is common in northern Thailand. Species identification of the Spirogyra species based only on morphological characteristics can be difficult. A reliable and accurate method is required to evaluate genetic variations. This study aims to apply molecular approaches for the identification of S. ellipsospora using microsatellites and rbcL markers. Based on DNA sequencing, the rbcL gene was sequenced and the data was analyzed using the BLAST (Basic Local Alignment Search Tool) program in the NCBI (National Center for Biotechnology Information) database. The sequence of S. ellipsospora from this study revealed definitive identity matches in the range of 99% for the consensus sequences of S. ellipsospora. The 10 primers of ISSR could be amplified by 92 amplification fragments. The DNA fragments and the rbcL sequence data grouped the Spirogyra specimens into two distinct clusters.  相似文献   

13.
As a gram-positive, spore-forming anaerobic bacillus, Clostridium difficile (C. difficile) is responsible for severe and fatal pseudomembranous colitis, and poses the most urgent antibiotic resistance threat worldwide. Epidemic C. difficile is the leading cause of antibiotic-associated diarrhoea globally, especially diarrhoea due to the emergence of hypervirulent strains associated with high mortality and morbidity. TcdB, one of the key virulence factors secreted by this bacterium, enters host cells through a poorly understood mechanism to elicit its pathogenic effect. Here we report the first identification of the TcdB cellular receptor, chondroitin sulfate proteoglycan 4 (CSPG4). CSPG4 was initially isolated from a whole-genome human shRNAmir library screening, and its role was confirmed by both TALEN- and CRISPR/Cas9-mediated gene knockout in human cells. CSPG4 is critical for TcdB binding to the cell surface, inducing cytoskeleton disruption and cell death. A direct interaction between the N-terminus of CSPG4 and the C-terminus of TcdB was confirmed, and the soluble peptide of the toxin-binding domain of CSPG4 could protect cells from the action of TcdB. Notably, the complete loss of CSPG4/NG2 decreased TcdB-triggered interleukin-8 induction in mice without significantly affecting animal mortality. Based on both the in vitro and in vivo studies, we propose a dual-receptor model for TcdB endocytosis. The discovery of the first TcdB receptor reveals a previously unsuspected role for CSPG4 and provides a new therapeutic target for the treatment of C. difficile infection.  相似文献   

14.
The prevalence of diarrhoea in calves was investigated in 8 dairy farms in Mozambique at 4 occasions during 2 consecutive years. A total of 1241 calves up to 6 months of age were reared in the farms, and 63 (5%) of them had signs of diarrhoea. Two farms had an overall higher prevalence (13% and 21%) of diarrhoea. Faecal samples were collected from all diarrhoeal calves (n = 63) and from 330 healthy calves and analysed for Salmonella species, Campylobacter jejuni and enterotoxigenic Escherichia coli (ETEC). Salmonella spp. was isolated in only 2% of all calves. Campylobacter was isolated in 11% of all calves, irrespective of health condition, and was more frequent (25%) in one of the 2 diarrhoeal farms (p = 0.001). 80% of the isolates were identified as C. jejuni. No ETEC strains were detected among the 55 tested strains from diarrhoeal calves, but 22/55 (40%) strains from diarrhoeal calves and 14/88 (16%) strains from healthy calves carried the K99 adhesin (p = 0.001). 6,757 E. coli isolates were typed with a biochemical fingerprinting method (the PhenePlate?) giving the same E. coli diversity in healthy and diarrhoeal calves. Thus it was concluded: i) the overall prevalence of diarrhoea was low, but 2 farms had a higher prevalence that could be due to an outbreak situation, ii) Salmonella did not seem to be associated with diarrhoea, iii) Campylobacter jejuni was common at one of the 2 diarrhoeal farms and iv) ETEC strains were not found, but K99 antigen was more prevalent in E. coli strains from diarrhoeal calves than from healthy, as well as more prevalent in one diarrhoeal farm.  相似文献   

15.
Bacterial identification using rrs (16S rRNA) gene is widely reported. Bacteria possessing multiple copies of rrs lead to overestimation of its diversity. Staphylococcus genomes carries 5–6 copies of rrs showing high similarity in their nucleotide sequences, which lead to ambiguous results. The genomes of 31 strains of Staphylococcus representing 7 species were searched for the presence of common genes. In silico digestion of 34 common genes using 10 restriction endonucleases (REs) lead to select gene-RE combinations, which could be used as biomarkers. RE digestion of recA allowed unambiguous identification of 13 genomes representing all the 7 species. In addition, a few more genes (argH, argR, cysS, gyrB, purH, and pyrE) and RE combinations permitted further identification of 12 strains. By employing additional RE and genes unique to a particular strain, it was possible to identify the rest 6 Staphylococcus aureus strains. This approach has the potential to be utilized for rapid detection of Staphylococcus strains.

Electronic supplementary material

The online version of this article (doi:10.1007/s12088-016-0565-9) contains supplementary material, which is available to authorized users.  相似文献   

16.

Background

Haemophilus influenzae is an opportunistic bacterial pathogen that exclusively colonises humans and is associated with both acute and chronic disease. Despite its clinical significance, accurate identification of H. influenzae is a non-trivial endeavour. H. haemolyticus can be misidentified as H. influenzae from clinical specimens using selective culturing methods, reflecting both the shared environmental niche and phenotypic similarities of these species. On the molecular level, frequent genetic exchange amongst Haemophilus spp. has confounded accurate identification of H. influenzae, leading to both false-positive and false-negative results with existing speciation assays.

Results

Whole-genome single-nucleotide polymorphism data from 246 closely related global Haemophilus isolates, including 107 Australian isolate genomes generated in this study, were used to construct a whole-genome phylogeny. Based on this phylogeny, H. influenzae could be differentiated from closely related species. Next, a H. influenzae-specific locus, fucP, was identified, and a novel TaqMan real-time PCR assay targeting fucP was designed. PCR specificity screening across a panel of clinically relevant species, coupled with in silico analysis of all species within the order Pasteurellales, demonstrated that the fucP assay was 100 % specific for H. influenzae; all other examined species failed to amplify.

Conclusions

This study is the first of its kind to use large-scale comparative genomic analysis of Haemophilus spp. to accurately delineate H. influenzae and to identify a species-specific molecular signature for this species. The fucP assay outperforms existing H. influenzae targets, most of which were identified prior to the next-generation genomics era and thus lack validation across a large number of Haemophilus spp. We recommend use of the fucP assay in clinical and research laboratories for the most accurate detection and diagnosis of H. influenzae infection and colonisation.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1857-x) contains supplementary material, which is available to authorized users.  相似文献   

17.
Intestinal parasitic pathogens in HIV/AIDS patients include Cryptosporidium sp, Cystoisospora sp, microsporidia and less commonly other parasites. The two most common microsporidia causing intestinal infection are Enterocytozoon bieneusi and Encephalitozoon intestinalis. Most of the Indian studies for intestinal parasitic infections in HIV/AIDS patients have not included microsporidia, due to difficult staining and identification of the parasite. The aim of the present study was to find the prevalence of intestinal microsporidiosis and their species identification along with correlation of CD4 count with parasite positivity and diarrhoea in HIV positive individuals. Stool samples of 363 individuals including 125 HIV seropositive patients with diarrhoea, 158 HIV seropositive patients without diarrhoea, 55 HIV seronegative patients with diarrhoea and 25 healthy controls were obtained from various out-patient departments and in-patients admitted to a tertiary care hospital from August 2008 to October 2009. The stool samples were subjected to examination by wet mount, modified acid fast stain for coccidian parasites and multiplex nested PCR for microsporidia. The overall prevalence of all intestinal parasites among HIV patients in our study was 26.5%. The prevalence of intestinal parasitic pathogens in HIV positive patients with diarrhoea was 43.2%. Microsporidia were the most common parasites detected (14%) in all patients, while in HIV infected patients 15.9% patients had microsporidia infection. The most common species causing intestinal microsporidiosis in our study was E. intestinalis (10.5%). In HIV seropositive individuals with diarrhoea, E. intestinalis was 20.8% and E. bieneusi 8.0% while in HIV-seropositive individuals without diarrhoea, E. intestinalis was 3.8% and E. bieneusi 1.9%. E. intestinalis was present in 10.9% of HIV negative individuals with diarrhoea in whom E. bieneusi was not found. There was a significant association between CD4 count ≤ 200/μl and intestinal parasite positivity. Thus, it can be concluded that intestinal microsporidiosis is under reported but an important disease in India. The predominant species in our study is E. intestinalis , in contrast to other parts of the world where E. bieneusi is more common.  相似文献   

18.
Dogs can be infected by several nematodes of the Trichuridae family. Trichuridae eggs are all similar, barrel shaped with polar plugs, and misdiagnosis among different species can occur. The most common species is Trichuris vulpis, while the respiratory parasites Eucoleus boehmi (syn. Capillaria boehmi) and Eucoleus aerophilus (syn. Capillaria aerophila) are rarely observed in pets. E. boehmi is reported for the first time in this study in north-western Italy with other Trichuridae. Dog faecal samples (270) were examined by flotation. E. boehmi (2.2%), E. aerophilus (4.4%) and T. vulpis (12.2%) were found; identification was done with measurements and through observation of morphological characters already known. The specific identification of E. boehmi was confirmed using scanning electron microscopy: its egg shell shows a dense network with a fine mesh, surrounding small pits, on the contrary E. aerophilus eggs present a thick mesh with wide depressions, while T. vulpis eggs surface is smooth.  相似文献   

19.
Pathogenesis of enterotoxigenic Escherichia coli (ETEC) infections involves colonization of the small intestine mediated by cell-surface fimbriae (CS) or colonization fimbriae antigens (CFA). However, protection against reinfection of ETEC is also conferred by somatic antigens rather than by virulence factors. To discover ETEC specific somatic antigens, the surface proteome of the ETEC H10406 strain was compared with that of non-pathogenic E. coli K12 strains. In this study, we were using stable isotope labelling with amino acids in cell culture (SILAC) technology for the labelling and relative quantification of surface proteins in order to identify polypeptides that are specifically present on ETEC strains. Outer membrane proteins were isolated, separated by gel electrophoresis, and identified by mass spectrometry. Twenty-three differentially expressed cell-surface polypeptides of ETEC were identified and evaluated by bioinformatics for protein vaccine candidates. The combination of being surface-exposed and present differentially makes these polypeptides highly suitable as targets for antibodies and thus for use in passive or active immunisation/vaccination.  相似文献   

20.
Postweaning diarrhoea caused by Enterotoxigenic Escherichia coli (ETEC) is a threat to the pig industry. With an intensified focus on finding alternatives to the use of medical zinc oxide and antibiotics in newly weaned pigs, the objective of this study was to investigate the effect of early inoculation of probiotics to suckling piglets on subsequently ETEC faecal shedding and immune parameters in ETEC F18-challenged weaned piglets. Sixty pigs weaned on day 28 of age were assigned to three treatment groups: (i) Negative Control (non-challenged), (ii) Positive Control (challenged) and (iii) Probiotic (challenged and inoculated with a multi-species probiotic product during suckling). On days 1 and 2 postweaning, pigs in the Positive Control and Probiotic groups were challenged with 5 × 108 colony-forming unit ETEC F18/pig/day, whereas pigs in the Negative Control group were provided with NaCl. Growth and diarrhoea incidence were not significantly affected by ETEC challenge or probiotic administration. ETEC F18 shedding and C-reactive protein concentration in plasma were significantly lower in the Negative Control group, confirming a successful challenge model. Pigs in the Probiotic group had a significantly reduced number of pigs shedding ETEC F18 and STb toxin in faeces compared with the Positive Control group. Probiotic application did not significantly impact the concentration of C-reactive protein, haptoglobin and cytokines in plasma nor haematology numbers. In conclusion, weaned pigs administered with a multi-species probiotic product early in life had a more rapid response towards the pathogen challenge and a faster clearance of ETEC compared with the Positive Control group. Administration of a multi-species probiotic to newborn piglets may thus promote resilience in the newly weaned pig. However, further studies with pigs subjected to a more severe pathogen challenge are needed to confirm these results and to investigate the mechanism of action of the probiotic intervention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号