首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
DmmA is a haloalkane dehalogenase (HLD) identified and characterized from the metagenomic DNA of a marine microbial consortium. Dehalogenase activity was detected with 1,3-dibromopropane as substrate, with steady-state kinetic parameters typical of HLDs (Km = 0.24 ± 0.05 mM, kcat = 2.4 ± 0.1 s−1). The 2.2-Å crystal structure of DmmA revealed a fold and active site similar to other HLDs, but with a substantially larger active site binding pocket, suggestive of an ability to act on bulky substrates. This enhanced cavity was shown to accept a range of linear and cyclic substrates, suggesting that DmmA will contribute to the expanding industrial applications of HLDs.  相似文献   

2.
Haloalkane dehalogenases (HLDs) have recently been discovered in a number of bacteria, including symbionts and pathogens of both plants and humans. However, the biological roles of HLDs in these organisms are unclear. The development of efficient HLD inhibitors serving as molecular probes to explore their function would represent an important step toward a better understanding of these interesting enzymes. Here we report the identification of inhibitors for this enzyme family using two different approaches. The first builds on the structures of the enzymes'' known substrates and led to the discovery of less potent nonspecific HLD inhibitors. The second approach involved the virtual screening of 150,000 potential inhibitors against the crystal structure of an HLD from the human pathogen Mycobacterium tuberculosis H37Rv. The best inhibitor exhibited high specificity for the target structure, with an inhibition constant of 3 μM and a molecular architecture that clearly differs from those of all known HLD substrates. The new inhibitors will be used to study the natural functions of HLDs in bacteria, to probe their mechanisms, and to achieve their stabilization.  相似文献   

3.
Two putative haloalkane dehalogenases (HLDs) of the HLD‐I subfamily, DccA from Caulobacter crescentus and DsaA from Saccharomonospora azurea, have been identified based on sequence comparisons with functionally characterized HLD enzymes. The two genes were synthesized, functionally expressed in E. coli and shown to have activity toward a panel of haloalkane substrates. DsaA has a moderate activity level and a preference for long (greater than 3 carbons) brominated substrates, but little activity toward chlorinated alkanes. DccA shows high activity with both long brominated and chlorinated alkanes. The structure of DccA was determined by X‐ray crystallography and was refined to 1.5 Å resolution. The enzyme has a large and open binding pocket with two well‐defined access tunnels. A structural alignment of HLD‐I subfamily members suggests a possible basis for substrate specificity is due to access tunnel size.  相似文献   

4.
Haloalkane dehalogenases (HLDs) are enzymes that catalyze the cleavage of carbon-halogen bonds by a hydrolytic mechanism. Although comparative biochemical analyses have been published, no classification system has been proposed for HLDs, to date, that reconciles their phylogenetic and functional relationships. In the study presented here, we have analyzed all sequences and structures of genuine HLDs and their homologs detectable by database searches. Phylogenetic analyses revealed that the HLD family can be divided into three subfamilies denoted HLD-I, HLD-II, and HLD-III, of which HLD-I and HLD-III are predicted to be sister-groups. A mismatch between the HLD protein tree and the tree of species, as well as the presence of more than one HLD gene in a few genomes, suggest that horizontal gene transfers, and perhaps also multiple gene duplications and losses have been involved in the evolution of this family. Most of the biochemically characterized HLDs are found in the HLD-II subfamily. The dehalogenating activity of two members of the newly identified HLD-III subfamily has only recently been confirmed, in a study motivated by this phylogenetic analysis. A novel type of the catalytic pentad (Asp-His-Asp+Asn-Trp) was predicted for members of the HLD-III subfamily. Calculation of the evolutionary rates and lineage-specific innovations revealed a common conserved core as well as a set of residues that characterizes each HLD subfamily. The N-terminal part of the cap domain is one of the most variable regions within the whole family as well as within individual subfamilies, and serves as a preferential site for the location of relatively long insertions. The highest variability of discrete sites was observed among residues that are structural components of the access channels. Mutations at these sites modify the anatomy of the channels, which are important for the exchange of ligands between the buried active site and the bulk solvent, thus creating a structural basis for the molecular evolution of new substrate specificities. Our analysis sheds light on the evolutionary history of HLDs and provides a structural framework for designing enzymes with new specificities.  相似文献   

5.
Bacteriocins have been identified in many strains of lactic acid bacteria (LAB) which are a source of natural food preservatives and microbial inhibitors. Our objectives were to use a PCR array of primers to identify bacteriocin structural genes in Bac+ LAB. DNA sequence homology at the 5′- and 3′-ends of the various structural genes indicated that non-specific priming may allow PCR amplification of heterologous bacteriocin genes. Successful amplification was obtained by real-time PCR and confirmed by melting curve and agarose gel analysis. Sequence information specific to targeted bacteriocin structural genes from the intra-primer regions of amplimers was compared to sequences residing in GenBank. The bacteriocin PCR array allowed the successful amplification of bacteriocin structural genes from strains of Lactobacillus, Lactococcus, and Pediococcus including one whose amino acid sequence was unable to be determined by Edman degradation analysis. DNA sequence analysis identified as many as 3 bacteriocin structural genes within a given strain, identifying ten unique bacteriocin sequences that were previously uncharacterized (partial homology) and one that was 100% identical to sequences in GenBank. This study provides a rapid approach to sequence and identify bacteriocin structural genes among Bac+ LAB using a microplate bacteriocin PCR array.  相似文献   

6.
Small RNAs are a group of non-coding RNAs that downregulate gene expression in a sequence-specific manner to control plant growth and development. The objective of the present study was to clone and characterize several small RNAs in cotton. To identify small RNAs that are involved in the development of cotton bolls and fibers, we generated cDNA libraries from cotton bolls at 13?days post-anthesis from two cotton cultivars, Pima Phy 76 (Gossypium bardadense) and Acala 1517?C99 (Gossypium hirsutum). Screening of these libraries identified eight small RNAs, seven of which have not been reported in other plant species and appear to be absent in the known sequences of other plant species. Their predicted target genes are known to be involved in cotton fiber development. The cloned small RNAs displayed lower and differential expression in the examined boll developmental stages using RT-PCR and quantitative RT-PCR. The genetic polymorphism of the small RNAs at the DNA level was evaluated by miRNA-amplified fragment length polymorphism (AFLP) analysis using primers designed from the small miRNA genes in combination with AFLP primers. Homologous small RNA gene sequences were further isolated using this homology-based genotyping approach, and potential hairpin structures were identified. The results represent a novel method to isolate small including miRNA genes at the RNA and DNA levels in many plant species where genome sequences are not available or expressed sequence tags are limited.  相似文献   

7.
Miniprimer PCR, a New Lens for Viewing the Microbial World   总被引:1,自引:0,他引:1       下载免费PDF全文
Molecular methods based on the 16S rRNA gene sequence are used widely in microbial ecology to reveal the diversity of microbial populations in environmental samples. Here we show that a new PCR method using an engineered polymerase and 10-nucleotide “miniprimers” expands the scope of detectable sequences beyond those detected by standard methods using longer primers and Taq polymerase. After testing the method in silico to identify divergent ribosomal genes in previously cloned environmental sequences, we applied the method to soil and microbial mat samples, which revealed novel 16S rRNA gene sequences that would not have been detected with standard primers. Deeply divergent sequences were discovered with high frequency and included representatives that define two new division-level taxa, designated CR1 and CR2, suggesting that miniprimer PCR may reveal new dimensions of microbial diversity.  相似文献   

8.
Repetitive DNA sequences near immunoglobulin genes in the mouse genome (Steinmetz et al., 1980a,b) were characterized by restriction mapping and hybridization. Six sequences were determined that turned out to belong to a new family of dispersed repetitive DNA. From the sequences, which are called R1 to R6, a 475 base-pair consensus sequence was derived. The R family is clearly distinct from the mouse B1 family (Krayev et al., 1980). According to saturation hybridization experiments, there are about 100,000 R sequences per haploid genome, and they are probably distributed throughout the genome. The individual R sequences have an average divergence from the consensus sequence of 12.5%, which is largely due to point mutations and, among those, to transitions. Some R sequences are severly truncated. The R sequences extend into A-rich sequences and are flanked by short direct repeats. Also, two large insertions in the R2 sequence are flanked by direct repeats. In the neighbourhood of and within R sequences, stretches of DNA have been identified that are homologous to parts of small nuclear RNA sequences. Mouse satellite DNA-like sequences and members of the B1 family were also found in close proximity to the R sequences. The dispersion of R sequences within the mouse genome may be a consequence of transposition events. The possible role of the R sequences in recombination and/or gene conversion processes is discussed.  相似文献   

9.
Amplification of a particular DNA fragment from a mixture of organisms by PCR is a common first step in methods of examining microbial community structure. The use of group-specific primers in community DNA profiling applications can provide enhanced sensitivity and phylogenetic detail compared to domain-specific primers. Other uses for group-specific primers include quantitative PCR and library screening. The purpose of the present study was to develop several primer sets targeting commonly occurring and important groups. Primers specific for the 16S ribosomal sequences of Alphaproteobacteria, Betaproteobacteria, Bacilli, Actinobacteria, and Planctomycetes and for parts of both the 18S ribosomal sequence and the internal transcribed spacer region of Basidiomycota were examined. Primers were tested by comparison to sequences in the ARB 2003 database, and chosen primers were further tested by cloning and sequencing from soil community DNA. Eighty-five to 100% of the sequences obtained from clone libraries were found to be placed with the groups intended as targets, demonstrating the specificity of the primers under field conditions. It will be important to reevaluate primers over time because of the continual growth of sequence databases and revision of microbial taxonomy.  相似文献   

10.
We determined the complete mitochondrial DNA (mtDNA) sequence of a fluke, Paramphistomum cervi (Digenea: Paramphistomidae). This genome (14,014 bp) is slightly larger than that of Clonorchis sinensis (13,875 bp), but smaller than those of other digenean species. The mt genome of P. cervi contains 12 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes and 2 non-coding regions (NCRs), a complement consistent with those of other digeneans. The arrangement of protein-coding and ribosomal RNA genes in the P. cervi mitochondrial genome is identical to that of other digeneans except for a group of Schistosoma species that exhibit a derived arrangement. The positions of some transfer RNA genes differ. Bayesian phylogenetic analyses, based on concatenated nucleotide sequences and amino-acid sequences of the 12 protein-coding genes, placed P. cervi within the Order Plagiorchiida, but relationships depicted within that order were not quite as expected from previous studies. The complete mtDNA sequence of P. cervi provides important genetic markers for diagnostics, ecological and evolutionary studies of digeneans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号