首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Synaptobrevin is a synaptic vesicle protein that has an essential role in exocytosis and forms the SNARE complex with syntaxin and SNAP-25. We have analyzed the structure of isolated synaptobrevin and its binary interaction with syntaxin using NMR spectroscopy. Our results demonstrate that isolated synaptobrevin is largely unfolded in solution. The entire SNARE motif of synaptobrevin is capable of interacting with the isolated C-terminal SNARE motif of syntaxin but only a few residues bind to the full-length cytoplasmic region of syntaxin. This result suggests an interaction between the N- and C-terminal regions of syntaxin that competes with core complex assembly.  相似文献   

2.
SNARE (soluble NSF acceptor protein receptor) proteins are thought to mediate membrane fusion by assembling into heterooligomeric complexes that connect the fusing membranes and initiate the fusion reaction. Here we used site-directed spin labeling to map conformational changes that occur upon homo- and heterooligomeric complex formation of neuronal SNARE proteins. We found that the soluble domains of synaptobrevin, SNAP-25, and syntaxin 1 are unstructured. At higher concentrations, the SNARE motif of syntaxin 1 forms homooligomeric helical bundles with at least some of the alpha-helices aligned in parallel. In the assembled SNARE complex, mapping of thirty side chain positions yielded spectra which are in good agreement with the recently published crystal structure. The loop region of SNAP-25 that connects the two SNARE motifs is largely unstructured. C-terminal truncation of synaptobrevin resulted in complexes that are completely folded N-terminal of the truncation but become unstructured at the C-terminal end. The binary complex of syntaxin and SNAP-25 consists of a parallel four helix-bundle with properties resembling that of the ternary complex.  相似文献   

3.
The release of hormones and neurotransmitters requires the fusion of cargo-containing vesicles with the plasma membrane. This process of exocytosis relies on three SNARE proteins, namely syntaxin and SNAP-25 on the target plasma membrane and synaptobrevin on the vesicular membrane. In this study we examined the molecular assembly pathway that leads to formation of the fusogenic SNARE complex. We now show that the plasma membrane syntaxin and SNAP-25 interact with high affinity and equimolar stoichiometry to form a stable dimer on the pathway to the ternary SNARE complex. In bovine chromaffin cells, syntaxin and SNAP-25 colocalize in defined clusters that average 700 nm in diameter and cover 10% of the plasma membrane. Removal of the C terminus of SNAP-25 by botulinum neurotoxin E, a known neuroparalytic agent, dissociates the target SNARE dimer in vitro and disrupts the SNARE clustering in vivo. Together, our data uncover formation of stable syntaxin/SNAP-25 dimers as a central principle of the SNARE assembly pathway underlying regulated exocytosis.  相似文献   

4.
Neuronal exocytosis is driven by the formation of SNARE complexes between synaptobrevin 2 on synaptic vesicles and SNAP-25/syntaxin 1 on the plasma membrane. It has remained controversial, however, whether SNAREs are constitutively active or whether they are down-regulated until fusion is triggered. We now show that synaptobrevin in proteoliposomes as well as in purified synaptic vesicles is constitutively active. Potential regulators such as calmodulin or synaptophysin do not affect SNARE activity. Substitution or deletion of residues in the linker connecting the SNARE motif and transmembrane region did not alter the kinetics of SNARE complex assembly or of SNARE-mediated fusion of liposomes. Remarkably, deletion of C-terminal residues of the SNARE motif strongly reduced fusion activity, although the overall stability of the complexes was not affected. We conclude that although complete zippering of the SNARE complex is essential for membrane fusion, the structure of the adjacent linker domain is less critical, suggesting that complete SNARE complex assembly not only connects membranes but also drives fusion.  相似文献   

5.
Three-dimensional structure of the complexin/SNARE complex   总被引:12,自引:0,他引:12  
During neurotransmitter release, the neuronal SNARE proteins synaptobrevin/VAMP, syntaxin, and SNAP-25 form a four-helix bundle, the SNARE complex, that pulls the synaptic vesicle and plasma membranes together possibly causing membrane fusion. Complexin binds tightly to the SNARE complex and is essential for efficient Ca(2+)-evoked neurotransmitter release. A combined X-ray and TROSY-based NMR study now reveals the atomic structure of the complexin/SNARE complex. Complexin binds in an antiparallel alpha-helical conformation to the groove between the synaptobrevin and syntaxin helices. This interaction stabilizes the interface between these two helices, which bears the repulsive forces between the apposed membranes. These results suggest that complexin stabilizes the fully assembled SNARE complex as a key step that enables the exquisitely high speed of Ca(2+)-evoked neurotransmitter release.  相似文献   

6.
Abstract : The synaptic plasma membrane proteins syntaxin and synaptosome-associated protein of 25 kDa (SNAP-25) are central participants in synaptic vesicle trafficking and neurotransmitter release. Together with the synaptic vesicle protein synaptobrevin/vesicle-associated membrane protein (VAMP), they serve as receptors for the general membrane trafficking factors N -ethylmaleimide-sensitive factor (NSF) and soluble NSF attachment protein (α-SNAP). Consequently, syntaxin, SNAP-25, and VAMP (and their isoforms in other membrane trafficking pathways) have been termed SNAP receptors (SNAREs). Because protein phosphorylation is a common and important mechanism for regulating a variety of cellular processes, including synaptic transmission, we have investigated the ability of syntaxin and SNAP-25 isoforms to serve as substrates for a variety of serine/threonine protein kinases. Syntaxins 1A and 4 were phosphorylated by casein kinase II, whereas syntaxin 3 and SNAP-25 were phosphorylated by Ca2+ - and calmodulin-dependent protein kinase II and cyclic AMP-dependent protein kinase, respectively. The biochemical consequences of SNARE protein phosphorylation included a reduced interaction between SNAP-25 and phosphorylated syntaxin 4 and an enhanced interaction between phosphorylated syntaxin 1A and the synaptic vesicle protein synaptotagmin I, a potential Ca2+ sensor in triggering synaptic vesicle exocytosis. No other effects on the formation of SNARE complexes (comprised of syntaxin, SNAP-25, and VAMP) or interactions involving n-Sec1 or α-SNAP were observed. These findings suggest that although phosphorylation does not directly regulate the assembly of the synaptic SNARE complex, it may serve to modulate SNARE complex function through other proteins, including synaptotagmin I.  相似文献   

7.
SNAP-25, syntaxin, and synaptobrevin are SNARE proteins that mediate fusion of synaptic vesicles with the plasma membrane. Membrane attachment of syntaxin and synaptobrevin is achieved through a C-terminal hydrophobic tail, whereas SNAP-25 association with membranes appears to depend upon palmitoylation of cysteine residues located in the center of the molecule. This process requires an intact secretory pathway and is inhibited by brefeldin A. Here we show that the minimal plasma membrane-targeting domain of SNAP-25 maps to residues 85-120. This sequence is both necessary and sufficient to target a heterologous protein to the plasma membrane. Palmitoylation of this domain is sensitive to brefeldin A, suggesting that it uses the same membrane-targeting mechanism as the full-length protein. As expected, the palmitoylated cysteine cluster is present within this domain, but surprisingly, membrane anchoring requires an additional five-amino acid sequence that is highly conserved among SNAP-25 family members. Significantly, the membrane-targeting module coincides with the protease-sensitive stretch (residues 83-120) that connects the two alpha-helices that SNAP-25 contributes to the four-helix bundle of the synaptic SNARE complex. Our results demonstrate that residues 85-120 of SNAP-25 represent a protein module that is physically and functionally separable from the SNARE complex-forming domains.  相似文献   

8.
A conformational switch in syntaxin during exocytosis: role of munc18.   总被引:21,自引:0,他引:21       下载免费PDF全文
Syntaxin 1, an essential protein in synaptic membrane fusion, contains a helical autonomously folded N-terminal domain, a C-terminal SNARE motif and a transmembrane region. The SNARE motif binds to synaptobrevin and SNAP-25 to assemble the core complex, whereas almost the entire cytoplasmic sequence participates in a complex with munc18-1, a neuronal Sec1 homolog. We now demonstrate by NMR spectroscopy that, in isolation, syntaxin adopts a 'closed' conformation. This default conformation of syntaxin is incompatible with core complex assembly which requires an 'open' syntaxin conformation. Using site-directed mutagenesis, we find that disruption of the closed conformation abolishes the ability of syntaxin to bind to munc18-1 and to inhibit secretion in PC12 cells. These results indicate that syntaxin binds to munc18-1 in a closed conformation and suggest that this conformation represents an essential intermediate in exocytosis. Our data suggest a model whereby, during exocytosis, syntaxin undergoes a large conformational switch that mediates the transition between the syntaxin-munc18-1 complex and the core complex.  相似文献   

9.
The essential membrane fusion apparatus in mammalian cells, the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex, consists of four alpha-helices formed by three proteins: SNAP-25, syntaxin 1, and synaptobrevin 2. SNAP-25 contributes two helices to the complex and is targeted to the plasma membrane by palmitoylation of four cysteines in the linker region. It is alternatively spliced into two forms, SNAP-25a and SNAP-25b, differing by nine amino acids substitutions. When expressed in chromaffin cells from SNAP-25 null mice, the isoforms support different levels of secretion. Here, we investigated the basis of that different secretory phenotype. We found that two nonconservative substitutions in the N-terminal SNARE domain and not the different localization of one palmitoylated cysteine cause the functional difference between the isoforms. Biochemical and molecular dynamic simulation experiments revealed that the two substitutions do not regulate secretion by affecting the property of SNARE complex itself, but rather make the SNAP-25b-containing SNARE complex more available for the interaction with accessory factor(s).  相似文献   

10.
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) play a key role in membrane fusion in the secretory pathway. In vitro, SNAREs spontaneously assemble into helical SNARE complexes with the transmembrane domains at the C-terminal end. During fusion, SNAREs are thought to bridge the two membranes and assemble in a zipper-like fashion, pulling the membranes together and initiating fusion. However, it is not clear to what extent SNARE assembly contributes to membrane attachment and membrane fusion. Using the neuronal SNAREs synaptobrevin (VAMP), SNAP-25, and syntaxin as examples, we show here that liposomes containing synaptobrevin firmly attach to planar surfaces containing immobilized syntaxin. Attachment requires the formation of SNARE complexes because it is dependent on the presence of SNAP-25. Binding is competed for by soluble SNARE fragments, with noncognate SNAREs such as endobrevin (VAMP8), VAMP4, and VAMP7 (Ti-VAMP) being effective but less potent in some cases. Furthermore, although SNAP-23 is unable to substitute for SNAP-25 in the attachment assay, it forms complexes of comparable stability and is capable of substituting in liposome fusion assays. Vesicle attachment is initiated by SNARE assembly at the N-terminal end of the helix bundle. We conclude that SNAREs can indeed form stable trans-complexes that result in vesicle attachment if progression to fusion is prevented, further supporting the zipper model of SNARE function.  相似文献   

11.
During exocytosis a four-helical coiled coil is formed between the three SNARE proteins syntaxin, synaptobrevin and SNAP-25, bridging vesicle and plasma membrane. We have investigated the assembly pathway of this complex by interfering with the stability of the hydrophobic interaction layers holding the complex together. Mutations in the C-terminal end affected fusion triggering in vivo and led to two-step unfolding of the SNARE complex in vitro, indicating that the C-terminal end can assemble/disassemble independently. Free energy perturbation calculations showed that assembly of the C-terminal end could liberate substantial amounts of energy that may drive fusion. In contrast, similar N-terminal mutations were without effects on exocytosis, and mutations in the middle of the complex selectively interfered with upstream maturation steps (vesicle priming), but not with fusion triggering. We conclude that the SNARE complex forms in the N- to C-terminal direction, and that a partly assembled intermediate corresponds to the primed vesicle state.  相似文献   

12.
The SNARE proteins are essential components of the intracellular fusion machinery. It is thought that they form a tight four-helix complex between membranes, in effect initiating fusion. Most SNAREs contain a single coiled-coil region, referred to as the SNARE motif, directly adjacent to a single transmembrane domain. The neuronal SNARE SNAP-25 defines a subfamily of SNARE proteins with two SNARE helices connected by a longer linker, comprising also the proteins SNAP-23 and SNAP-29. We now report the initial characterization of a novel vertebrate homologue termed SNAP-47. Northern blot and immunoblot analysis revealed ubiquitous tissue distribution, with particularly high levels in nervous tissue. In neurons, SNAP-47 shows a widespread distribution on intracellular membranes and is also enriched in synaptic vesicle fractions. In vitro, SNAP-47 substituted for SNAP-25 in SNARE complex formation with the neuronal SNAREs syntaxin 1a and synaptobrevin 2, and it also substituted for SNAP-25 in proteoliposome fusion. However, neither complex assembly nor fusion was as efficient as with SNAP-25.  相似文献   

13.
Upon Ca2+ influx synaptic vesicles fuse with the plasma membrane and release their neurotransmitter cargo into the synaptic cleft. Key players during this process are the Q-SNAREs syntaxin 1a and SNAP-25 and the R-SNARE synaptobrevin 2. It is thought that these membrane proteins gradually assemble into a tight trans-SNARE complex between vesicular and plasma membrane, ultimately leading to membrane fusion. Tomosyn is a soluble protein of 130 kDa that contains a COOH-terminal R-SNARE motif but lacks a transmembrane anchor. Its R-SNARE motif forms a stable core SNARE complex with syntaxin 1a and SNAP-25. Here we present the crystal structure of this core tomosyn SNARE complex at 2.0-A resolution. It consists of a four-helical bundle very similar to that of the SNARE complex containing synaptobrevin. Most differences are found on the surface, where they prevented tight binding of complexin. Both complexes form with similar rates as assessed by CD spectroscopy. In addition, synaptobrevin cannot displace the tomosyn helix from the tight complex and vice versa, indicating that both SNARE complexes represent end products. Moreover, data bank searches revealed that the R-SNARE motif of tomosyn is highly conserved throughout all eukaryotic kingdoms. This suggests that the formation of a tight SNARE complex is important for the function of tomosyn.  相似文献   

14.
The synaptosome-associated protein of 25 kDa (SNAP-25) interacts with syntaxin 1 and vesicle-associated membrane protein 2 (VAMP2) to form a ternary soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE) complex that is essential for synaptic vesicle exocytosis. We report a novel RING finger protein, Spring, that specifically interacts with SNAP-25. Spring is exclusively expressed in brain and is concentrated at synapses. The association of Spring with SNAP-25 abolishes the ability of SNAP-25 to interact with syntaxin 1 and VAMP2 and prevents the assembly of the SNARE complex. Overexpression of Spring or its SNAP-25-interacting domain reduces Ca(2+)-dependent exocytosis from PC12 cells. These results indicate that Spring may act as a regulator of synaptic vesicle exocytosis by controlling the availability of SNAP-25 for the SNARE complex formation.  相似文献   

15.
Tomosyn is a 130-kDa syntaxin-binding protein that contains a large N-terminal domain with WD40 repeats and a C-terminal domain homologous to R-SNAREs. Here we show that tomosyn forms genuine SNARE core complexes with the SNAREs syntaxin 1 and SNAP-25. In vitro studies with recombinant proteins revealed that complex formation proceeds from unstructured monomers to a stable four-helical bundle. The assembled complex displayed features typical for SNARE core complexes, including a profound hysteresis upon unfolding-refolding transitions. No stable complexes were formed between the SNARE motif of tomosyn and either syntaxin or SNAP-25 alone. Furthermore, both native tomosyn and its isolated C-terminal domain competed with synaptobrevin for binding to endogenous syntaxin and SNAP-25 on inside-out sheets of plasma membranes. Tomosyn-SNARE complexes were effectively disassembled by the ATPase N-ethylmaleimide-sensitive factor together with its cofactor alpha-SNAP. Moreover, the C-terminal domain of tomosyn was as effective as the cytoplasmic portion of synaptobrevin in inhibiting evoked exocytosis in a cell-free preparation derived from PC12 cells. Similarly, overexpression of tomosyn in PC12 cells resulted in a massive reduction of exocytosis, but the release parameters of individual exocytotic events remained unchanged. We conclude that tomosyn is a soluble SNARE that directly competes with synaptobrevin in the formation of SNARE complexes and thus may function in down-regulating exocytosis.  相似文献   

16.
Assembly of the SNARE proteins syntaxin1, SNAP25, and synaptobrevin into a SNARE complex is essential for exocytosis in neurons. For efficient assembly, SNAREs interact with additional proteins but neither the nature of the intermediates nor the sequence of protein assembly is known. Here, we have characterized a ternary complex between syntaxin1, SNAP25, and the SM protein Munc18‐1 as a possible acceptor complex for the R‐SNARE synaptobrevin. The ternary complex binds synaptobrevin with fast kinetics, resulting in the rapid formation of a fully zippered SNARE complex to which Munc18‐1 remains tethered by the N‐terminal domain of syntaxin1. Intriguingly, only one of the synaptobrevin truncation mutants (Syb1‐65) was able to bind to the syntaxin1:SNAP25:Munc18‐1 complex, suggesting either a cooperative zippering mechanism that proceeds bidirectionally or the progressive R‐SNARE binding via an SM template. Moreover, the complex is resistant to disassembly by NSF. Based on these findings, we consider the ternary complex as a strong candidate for a physiological intermediate in SNARE assembly.  相似文献   

17.
Assembly of the SNARE proteins synaptobrevin/VAMP, syntaxin, and SNAP-25 to binary and ternary complexes is important for docking and/or fusion of presynaptic vesicles to the neuronal plasma membrane prior to regulated neurotransmitter release. Despite the well characterized structure of their cytoplasmic assembly domains, little is known about the role of the transmembrane segments in SNARE protein assembly and function. Here, we identified conserved amino acid motifs within the transmembrane segments that are required for homodimerization of synaptobrevin II and syntaxin 1A. Minimal motifs of 6-8 residues grafted onto an otherwise monomeric oligoalanine host sequence were sufficient for self-interaction of both transmembrane segments in detergent solution or membranes. These motifs constitute contiguous areas of interfacial residues assuming alpha-helical secondary structures. Since the motifs are conserved, they also contributed to heterodimerization of synaptobrevin II and syntaxin 1A and therefore appear to constitute interaction domains independent of the cytoplasmic coiled coil regions. Interactions between the transmembrane segments may stabilize the SNARE complex, cause its multimerization to previously observed multimeric superstructures, and/or be required for the fusogenic activity of SNARE proteins.  相似文献   

18.
Synaptophysin and synaptobrevin are abundant membrane proteins of neuronal small synaptic vesicles. In mature, differentiated neurons they form the synaptophysin/synaptobrevin (Syp/Syb) complex. Synaptobrevin also interacts with the plasma membrane-associated proteins syntaxin and SNAP25, thereby forming the SNARE complex necessary for exocytotic membrane fusion. The two complexes are mutually exclusive. Synaptobrevin is a C-terminally membrane-anchored protein with one transmembrane domain. While its interaction with its SNARE partners is mediated exclusively by its N-terminal cytosolic region it has been unclear so far how binding to synaptophysin is accomplished. Here, we show that synaptobrevin can be cleaved in its synaptophysin-bound form by tetanus toxin and botulinum neurotoxin B, or by botulinum neurotoxin D, leaving shorter or longer C-terminal peptide chains bound to synaptophysin, respectively. A recombinant, C-terminally His-tagged synaptobrevin fragment bound to nickel beads specifically bound synaptophysin, syntaxin and SNAP25 from vesicular detergent extracts. After cleavage by tetanus toxin or botulinum toxin D light chain, the remaining C-terminal fragment no longer interacted with syntaxin or SNAP 25. In contrast, synaptophysin was still able to bind to the residual C-terminal synaptobrevin cleavage product. In addition, the His-tagged C-terminal synaptobrevin peptide 68-116 was also able to bind synaptophysin in detergent extracts from adult brain membranes. These data suggest that synaptophysin interacts with the C-terminal transmembrane part of synaptobrevin, thereby allowing the N-terminal cytosolic chain to interact freely with the plasma membrane-associated SNARE proteins. Thus, by binding synaptobrevin, synaptophysin may positively modulate neurotransmission.  相似文献   

19.
Clostridial neurotoxins inhibit neurotransmitter release by selective and specific intracellular proteolysis of synaptobrevin/VAMP, synaptosomal-associated protein of 25 kDa (SNAP-25) or syntaxin. Here we show that in binary reactions synaptobrevin binds weakly to both SNAP-25 and syntaxin, and SNAP-25 binds to syntaxin. In the presence of all three components, a dramatic increase in the interaction strengths occurs and a stable sodium dodecyl sulfate-resistant complex forms. Mapping of the interacting sequences reveals that complex formation correlates with the presence of predicted alpha-helical structures, suggesting that membrane fusion involves intermolecular interactions via coiled-coil structures. Most toxins only attack the free, and not the complexed, proteins, and proteolysis of the proteins by different clostridial neurotoxins has distinct inhibitory effects on the formation of synaptobrevin-syntaxin-SNAP-25 complexes. Our data suggest that synaptobrevin, syntaxin and SNAP-25 associate into a unique stable complex that functions in synaptic vesicle exocytosis.  相似文献   

20.
Exocytosis - syntaxin - synaptobrevin - SNARE synaptic vesicle The lamprey giant reticulospinal synapse can be used to manipulate the molecular machinery of synaptic vesicle exocytosis by presynaptic microinjection. Here we test the effect of disrupting the function of the SNARE protein SNAP-25. Polyclonal SNAP-25 antibodies were shown in an in vitro assay to inhibit the binding between syntaxin and SNAP-25. When microinjected presynaptically, these antibodies produced a potent inhibition of the synaptic response. Ba2+ spikes recorded in the presynaptic axon were not altered, indicating that the effect was not due to a reduced presynaptic Ca2+ entry. Electron microscopic analysis showed that synaptic vesicle clusters had a similar organization in synapses of antibody-injected axons as in control axons, and the number of synaptic vesicles in apparent contact with the presynaptic plasma membrane was also similar. Clathrin-coated pits, which normally occur at the plasma membrane around stimulated synapses, were not detected after injection of SNAP-25 antibodies, consistent with a blockade of vesicle cycling. Thus, SNAP-25 antibodies, which disrupt the interaction with syntaxin, inhibit neurotransmitter release without affecting the number of synaptic vesicles at the plasma membrane. These results provide further support to the view that the formation of SNARE complexes is critical for membrane fusion, but not for the targeting of synaptic vesicles to the presynaptic membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号