首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The serine and cysteine proteinases represent two important classes of enzymes that use a catalytic triad to hydrolyze peptides and esters. The active site of the serine proteinases consists of three key residues, Asp...His...Ser. The hydroxyl group of serine functions as a nucleophile and the imidazole ring of histidine functions as a general acid/general base during catalysis. Similarly, the active site of the cysteine proteinases also involves three key residues: Asn, His, and Cys. The active site of the cysteine proteinases is generally believed to exist as a zwitterion (Asn...His+...Cys-) with the thiolate anion of the cysteine functioning as a nucleophile during the initial stages of catalysis. Curiously, the mutant serine proteinases, thiol subtilisin and thiol trypsin, which have the hybrid Asp...His...Cys triad, are almost catalytically inert. In this study, ab initio Hartree-Fock calculations have been performed on the active sites of papain and the mutant serine proteinase S195C rat trypsin. These calculations predict that the active site of papain exists predominately as a zwitterion (Cys-...His+...Asn). However, similar calculations on S195C rat trypsin demonstrate that the thiol mutant is unable to form a reactive thiolate anion prior to catalysis. Furthermore, structural comparisons between native papain and S195C rat trypsin have demonstrated that the spatial juxtapositions of the triad residues have been inverted in the serine and cysteine proteinases and, on this basis, I argue that it is impossible to convert a serine proteinase to a cysteine proteinase by site-directed mutagenesis.  相似文献   

2.
Viperid snakes show the most complex snake‐venom proteomes and offer an intriguing challenge in terms of understanding the nature of their components and the pathological outcomes of envenomation characterized by local and systemic effects. In this work, the venom complexity of eight Bothrops species was analyzed by 2‐DE, and their subproteomes of proteinases were explored by 2‐D immunostaining and 2‐D gelatin zymography, demonstrating the diversity of their profiles. Heparin, a highly sulfated glycosaminoglycan released from mast cells, is involved in anti‐coagulant and anti‐inflammatory processes. Here, we explored the hypothesis that heparin released upon envenomation could interact with toxins and interfere with venom pathogenesis. We first identified the Bothrops venom subproteome of toxins that bind with high‐affinity for heparin as composed of mainly serine proteinases and C‐type lectins. Next, we explored the Bothrops jararaca toxins that bind to heparin under physiological conditions and identified a relationship between the subproteomes of proteinases, and that of heparin‐binding toxins. Only the non‐bound fraction, composed mainly of metalloproteinases, showed lethal and hemorrhagic activities, whereas the heparin‐bound fraction contained mainly serine proteinases associated with coagulant and fibrinogenolytic activities. These data suggest that heparin binding to B. jararaca venom components in vivo has a minor protective effect to venom toxicity.  相似文献   

3.
GnRH I regulates reproduction. A second form, designated GnRH II, selectively binds type II GnRH receptors. Amino acids of the type I GnRH receptor required for binding of GnRH I (Asp2.61(98), Asn2.65(102), and Lys3.32(121)) are conserved in the type II GnRH receptor, but their roles in receptor function are unknown. We have delineated their functions using mutagenesis, signaling and binding assays, immunoblotting, and computational modeling. Mutating Asp2.61(97) to Glu or Ala, Asn2.65(101) to Ala, or Lys3.32(120) to Gln decreased potency of GnRH II-stimulated inositol phosphate production. Consistent with proposed roles in ligand recognition, mutations eliminated measurable binding of GnRH II, whereas expression of mutant receptors was not decreased. In detailed analysis of how these residues affect ligand-dependent signaling, [Trp2]-GnRH I showed lesser decreases in potency than GnRH I at the Asp2.61(97)Glu mutant. In contrast, [Trp2]-GnRH II showed the same loss of potency as GnRH II at this mutant. This suggests that Asp2.61(97) contributes to recognition of His2 of GnRH I, but not of GnRH II. GnRH II showed a large decrease in potency at the Asn2.65(101)Ala mutant compared with analogs lacking the CO group of Gly10NH2. This suggests that Asn2.65(101) recognizes Gly10NH2 of GnRH II. GnRH agonists showed large decreases in potency at the Lys3.32(120)Gln mutant, but antagonist activity was unaffected. This suggests that Lys3.32(120) recognizes agonists, but not antagonists, as in the type I receptor. These data indicate that roles of conserved residues are similar, but not identical, in the type I and II GnRH receptors.  相似文献   

4.
5.
The venom of the South American snake Bothrops jararaca contains two serine proteinases, bothrombin and the platelet-aggregating enzyme PA-BJ, which share 66% sequence identity. Each of these proteinases possesses one of the two essential procoagulant functions of thrombin-the clotting of fibrinogen and platelet aggregation. Thus, bothrombin clots fibrinogen but has no direct effect on platelets, unless in the presence of exogenous fibrinogen. PA-BJ induces platelet aggregation by interacting with the protease-activated platelet receptor without clotting fibrinogen. On the other hand, thrombin possesses two extended surfaces. One is composed of basic and hydrophobic residues (exosite I) and the other one of basic residues only (exosite II). These exosites are involved in the recognition of physiological macromolecular substrates. In order to identify the corresponding exosites in bothrombin and PA-BJ and understand the molecular basis of the partition of the two procoagulant functions of thrombin among the two snake venom enzymes, we used molecular modeling to obtain models of their complexes with their natural substrates fibrinogen and a fragment of the protease-activated platelet receptor, respectively. In analogy to thrombin, each of the enzymes presents two exosites. Nonetheless, the exosites contain a smaller proportion of basic residues than thrombin does (45-72%), reducing thus the functional diversity of the enzymes. In addition, the composition of exosite I is different in both enzymes. We identify those residues in exosite I that could contribute to the differences in specificity. Finally, allostery does not seem to mediate macromolecular substrate recognition by these enzymes.  相似文献   

6.
Although angiotensin II (Ang II)-forming enzymatic activity in the human left cardiac ventricle is minimally inhibited by angiotensin I (Ang I) converting enzyme inhibitors, over 75% of this activity is inhibited by serine proteinase inhibitors (Urata, H., Healy, B., Stewart, R. W., Bumpus, F. M., and Husain, A. (1990) Circ. Res. 66, 883-890). We now report the identification and characterization of the major Ang II-forming, neutral serine proteinase, from left ventricular tissues of the human heart. A 115,150-fold purification from human cardiac membranes yielded a purified protein with an Mr of 30,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Based upon its amino-terminal sequence, the major human cardiac Ang II-forming proteinase appears to be a novel member of the chymase subfamily of chymotrypsin-like serine proteinases. Human heart chymase was completely inhibited by the serine proteinase inhibitors, soybean trypsin inhibitor, phenylmethylsulfonyl fluoride, and chymostatin. It was partially inhibited by p-tosyl-L-phenylalanine chloromethyl ketone, but was not inhibited by p-tosyl-L-lysine chloromethyl ketone, and aprotinin. Also, human heart chymase was not inhibited by inhibitors of the other three classes of proteinases. Human heart chymase has a high specificity for the conversion of Ang I to Ang II and the Ang I-carboxyl-terminal dipeptide His-Leu (Km = 60 microM; Kcat = 11,900 min-1; Kcat/Km = 198 min-1 microM-1). Human heart chymase did not degrade several peptide hormones, including Ang II, bradykinin, and vasoactive intestinal peptide, nor did it form Ang II from angiotensinogen. The high substrate specificity of human heart chymase for Ang I distinguishes it from other Ang II-forming enzymes including Ang I converting enzyme, tonin, kallikrein, cathepsin G, and other known chymases.  相似文献   

7.
Cytochrome P450 2D6 (CYP2D6) metabolizes a wide range of therapeutic drugs. CYP2D6 substrates typically contain a basic nitrogen atom, and the active-site residue Asp-301 has been implicated in substrate recognition through electrostatic interactions. Our recent computational models point to a predominantly structural role for Asp-301 in loop positioning (Kirton, S. B., Kemp, C. A., Tomkinson, N. P., St.-Gallay, S., and Sutcliffe, M. J. (2002) Proteins 49, 216-231) and suggest a second acidic residue, Glu-216, as a key determinant in the binding of basic substrates. We have evaluated the role of Glu-216 in substrate recognition, along with Asp-301, by site-directed mutagenesis. Reversal of the Glu-216 charge to Lys or substitution with neutral residues (Gln, Phe, or Leu) greatly decreased the affinity (K(m) values increased 10-100-fold) for the classical basic nitrogen-containing substrates bufuralol and dextromethorphan. Altered binding was also manifested in significant differences in regiospecificity with respect to dextromethorphan, producing enzymes with no preference for N-demethylation versus O-demethylation (E216K and E216F). Neutralization of Asp-301 to Gln and Asn had similarly profound effects on substrate binding and regioselectivity. Intriguingly, removal of the negative charge from either 216 or 301 produced enzymes (E216A, E216K, and D301Q) with elevated levels (50-75-fold) of catalytic activity toward diclofenac, a carboxylate-containing CYP2C9 substrate that lacks a basic nitrogen atom. Activity was increased still further (>1000-fold) upon neutralization of both residues (E216Q/D301Q). The kinetic parameters for diclofenac (K(m) 108 microm, k(cat) 5 min(-1)) along with nifedipine (K(m) 28 microm, k(cat) 2 min(-1)) and tolbutamide (K(m) 315 microm, k(cat) 1 min(-1)), which are not normally substrates for CYP2D6, were within an order of magnitude of those observed with CYP3A4 or CYP2C9. Neutralizing both Glu-216 and Asp-301 thus effectively alters substrate recognition illustrating the central role of the negative charges provided by both residues in defining the specificity of CYP2D6 toward substrates containing a basic nitrogen.  相似文献   

8.
Dekhil H  Wisner A  Marrakchi N  El Ayeb M  Bon C  Karoui H 《Biochemistry》2003,42(36):10609-10618
The venoms of Viperidae snakes contain numerous serine proteinases that have been recognized to possess one or more of the essential activities of thrombin on fibrinogen and platelets. Among them, a platelet proaggregant protein, cerastocytin, has been isolated from the venom of the Tunisian viper Cerastes cerastes. Using the RACE-PCR technique, we isolated and identified the complete nucleotide sequence of a cDNA serine proteinase precursor. The recombinant protein was designated rCC-PPP (for C. cerastes platelet proaggregant protein), since its deduced amino acid sequence is more than 96% identical to the partial polypeptide sequences that have been determined for natural cerastocytin. The structure of the rCC-PPP cDNA is similar to that of snake venom serine proteinases. The expression of rCC-PPP in Escherichia coli system allowed, for the first time, the preparation and purification of an active protein from snake venom with platelet proaggregant and fibrinogenolytic activities. Purified rCC-PPP efficiently activates blood platelets at nanomolar (8 nM) concentrations, as do natural cerastocytin (5 nM) and thrombin (1 nM). It is able to clot purified fibrinogen and to hydrolyze alpha-chains. Thus, rCC-PPP could be therefore considered a cerastocytin isoform. By comparison with other snake venom serine proteinases, a Gly replaces the conserved Cys(42). This implies that rCC-PPP lacks the conserved Cys(42)-Cys(58) disulfide bridge. A structural analysis performed by molecular modeling indicated that the segment of residues Tyr(67)-Arg(80) of rCC-PPP corresponds to anion-binding exosite 1 of thrombin that is involved in its capacity to induce platelet aggregation. Furthermore, the surface of the rCC-PPP molecule is characterized by a hydrophobic pocket, comprising the 90 loop (Phe(90)-Val(99)), Tyr(172), and Trp(215) residues, which might be involved in the fibrinogen clotting activity of rCC-PPP.  相似文献   

9.
Summary Three individual serine proteinases (I, II, III) originating from Antarctic krill (E. superba) were separated and highly purified using a combination of affinity and high resolution ion exchange chromatography. Each enzyme showed a single protein band (30 000 Daltons) in sodium dodecyl sulphate polyacrylamide gradient gel electrophoresis indicating high purity and identical molecular weights. Moreover, each enzyme demonstrated one immunoprecipitate on crossed immunoelectrophoresis (two-dimensional agarose gel electrophoresis) using polyclonal rabbit antibodies which confirmed the high purity of the individual enzymes. A mixture of the three enzymes (I, II, III) revealed two immunoprecipitates, not one or three which should have been the case for identical or non-identical immunological properties. Double immunodiffusion test according to Ouchterlony exhibited immunological identity between enzyme II and III. Enzyme I showed only partial identity with II/III. These findings correlated well with biochemical data on the three serine proteinases. Enzyme I is able to liberate free amino acids from polypeptides in comparison with enzyme II and III (classical true endopeptidases), which do not. We suggest that these unique biochemical properties also have their immunological counterpart expressed as other antigenic determinants of the molecular structure.  相似文献   

10.
X-ray crystallography has been used to determine the 3D structures of two complexes between Streptomyces griseus proteinase B (SGPB), a bacterial serine proteinase, and backbone variants of turkey ovomucoid third domain (OMTKY3). The natural P1 residue (Leu18I) has been substituted by a proline residue (OMTKY3-Pro18I) and in the second variant, the peptide bond between Thr17I and Leu18I was replaced by an ester bond (OMTKY3-psi[COO]-Leu18I). Both variants lack the P1 NH group that donates a bifurcated hydrogen bond to the carbonyl O of Ser214 and O(gamma) of the catalytic Ser195, one of the common interactions between serine proteinases and their canonical inhibitors. The SGPB:OMTKY3-Pro18I complex has many structural differences in the vicinity of the S1 pocket when compared with the previously determined structure of SGPB:OMTKY3-Leu18I. The result is a huge difference in the DeltaG degrees of binding (8.3 kcal/mol), only part of which can be attributed to the missing hydrogen bond. In contrast, very little structural difference exists between the complexes of SGPB:OMTKY3-psi[COO]-Leu18I and SGPB:OMTKY3-Leu18I, aside from an ester O replacing the P1 NH group. Therefore, the difference in DeltaG degrees, 1.5 kcal/mol as calculated from the measured equilibrium association constants, can be attributed to the contribution of the P1 NH hydrogen bond toward binding. A crystal structure of OMTKY3 having a reduced peptide bond between P1 Leu18I and P'1 Asp19I, (OMTKY3-psi[CH2NH2+]-Asp19I) has also been determined by X-ray crystallography. This variant has very weak association equilibrium constants with SGPB and with chymotrypsin. The structure of the free inhibitor suggests that the reduced peptide bond has not introduced any major structural changes in the inhibitor. Therefore, its poor ability to inhibit serine proteinases is likely due to the disruptions of the canonical interactions at the oxyanion hole.  相似文献   

11.
Carnitine palmitoyltransferase (CPT) I, which catalyzes the conversion of palmitoyl-CoA to palmitoylcarnitine facilitating its transport through the mitochondrial membranes, is inhibited by malonyl-CoA. By using the SequenceSpace algorithm program to identify amino acids that participate in malonyl-CoA inhibition in all carnitine acyltransferases, we found 5 conserved amino acids (Thr(314), Asn(464), Ala(478), Met(593), and Cys(608), rat liver CPT I coordinates) common to inhibitable malonyl-CoA acyltransferases (carnitine octanoyltransferase and CPT I), and absent in noninhibitable malonyl-CoA acyltransferases (CPT II, carnitine acetyltransferase (CAT) and choline acetyltransferase (ChAT)). To determine the role of these amino acid residues in malonyl-CoA inhibition, we prepared the quintuple mutant CPT I T314S/N464D/A478G/M593S/C608A as well as five single mutants CPT I T314S, N464D, A478G, M593S, and C608A. In each case the CPT I amino acid selected was mutated to that present in the same homologous position in CPT II, CAT, and ChAT. Because mutant M593S nearly abolished the sensitivity to malonyl-CoA, two other Met(593) mutants were prepared: M593A and M593E. The catalytic efficiency (V(max)/K(m)) of CPT I in mutants A478G and C608A and all Met(593) mutants toward carnitine as substrate was clearly increased. In those CPT I proteins in which Met(593) had been mutated, the malonyl-CoA sensitivity was nearly abolished. Mutations in Ala(478), Cys(608), and Thr(314) to their homologous amino acid residues in CPT II, CAT, and ChAT caused various decreases in malonyl-CoA sensitivity. Ala(478) is located in the structural model of CPT I near the catalytic site and participates in the binding of malonyl-CoA in the low affinity site (Morillas, M., Gómez-Puertas, P., Rubi, B., Clotet, J., Ari?o, J., Valencia, A., Hegardt, F. G., Serra, D., and Asins, G. (2002) J. Biol. Chem. 277, 11473-11480). Met(593) may participate in the interaction of malonyl-CoA in the second affinity site, whose location has not been reported.  相似文献   

12.
The venom proteomics of Vipera ammodytes ammodytes and Vipera ammodytes meridionalis, snakes of public health significance and the most poisonous reptiles in Europe, were analyzed by FPLC, 2-D electrophoresis, sequence analysis, and MS/MS. FPLC analysis showed the presence of l-amino acid oxidase, monomeric and heterodimeric phospholipases A2, C-type lectin protein, and proteinases in the venom of V. a. ammodytes. Representatives of the same protein families were found in the venom of the other subspecies, V. a. meridionalis. N-terminally identical PLA2 neurotoxins were identified in both venoms. Difference in the PLA2 compositions of the venoms was also observed: a monomeric protein with phospholipase A2 activity, identical in the first 20 amino acid residues to the catalitically inactive acidic component of the heterodimeric PLA2 present in both venoms, was found only in that of V. a. meridionalis. Probably, this protein represents an intermediate form of the two components of the heterodimer. 2-D electrophoresis and MS/MS analysis showed that the two venoms shared a number of protein families: monomeric and heterodimeric Group II PLA2s, serine proteinases, Group I, II, and III metalloproteinases, l-amino acid oxidases (LAAOs), cysteine-rich secretory proteins, disintegrins, and growth factors. Totally, 38 venom components of the V. a. ammodytes, belonging to 9 protein families, and 67 components of the V. a. meridionalis venom belonging to 8 protein families were identified. The venom proteome of V. a. ammodytes shows larger diversity of proteins (139) in comparison to that of V. a. meridionalis (104 proteins). Most of the proteins are homologues of known representatives of the respective protein families. The protein compositions explain clinical effects of the V. ammodytes snakebites, such as difficulties in the breathing, paralysis, apoptosis, cloting disorders, hemorrhage, and tissue necrosis. The lists of secreted proteins by the two vipers can be used for further study of structure-function relationships in the toxins and for prediction and treatment of snakebite consequences.  相似文献   

13.
The biosynthesis of serine proteinases by the fungus Acremonium chrysogenum was studied in the process of its growth in media differing in the content of a protein substrate. Morphological differentiation of the submerged fungal culture was shown to be characterised by two reproduction pathways (conidiogenesis and arthrosporogenesis) and by the corresponding synthesis of serine proteinases II and I. The synthesis of serine proteinase I and cephalosporin was found to correlate with the polycyclic culture growth caused by the formation and germination of single spherical arthrospores.  相似文献   

14.
B Asbóth  L Polgár 《Biochemistry》1983,22(1):117-122
X-ray diffraction studies suggested that the tetrahedral intermediate formed during the catalysis by serine and thiol proteinases can be stabilized by hydrogen bonds from the protein to the oxyanion of the intermediate [cf. Kraut, J. (1977) Annu. Rev. Biochem. 46, 331-358; Drenth, J., Kalk, K.H., & Swen, H.M. (1976) Biochemistry 15, 3731-3738]. To obtain evidence in favor or against this hypothesis, we synthesized thiono substrates (the derivatives of N-benzoyl-glycine methyl ester and N-acetylphenylalanine ethyl ester) containing a sulfur in place of the carbonyl oxygen atom of the scissile ester bond. We anticipated that this relatively subtle structural change specifically directed to the oxyanion binding site should produce serious catalytic consequences owing to the different properties of oxygen and sulfur if transition-state stabilization in the oxyanion hole is indeed important. In fact, while in alkaline hydrolysis the chemical reactivities of oxygen esters and corresponding thiono esters proved to be similar, neither chymotrypsin nor subtilisin hydrolyzed the thiono esters at a measurable rate. This result substantiates the crucial role of the oxyanion binding site in serine proteinase catalysis. On the basis of the similar values of the binding constants found for oxygen esters and their thiono counterparts, it can be concluded that the substitution of sulfur for oxygen significantly influences transition state stabilization but not substrate binding. The thiol proteinases papain and chymopapain react with the oxygen and thiono esters of N-benzoylglycine at similar rates. Apparently, in these reactions the above stabilizing mechanism is absent or not important, which is a major mechanistic difference between the catalyses by serine and thiol proteinases.  相似文献   

15.
Vipera lebetina venom contains different metallo- and serine proteinases that affect coagulation and fibrin(ogen)olysis. A novel serine proteinase from V. Lebetina venom having ChymoTrypsin Like Proteolytic activity (VLCTLP) was purified to homogeneity from the venom using Sephadex G-100sf, DEAE-cellulose, heparin-agarose and FPLC on Superdex 75 chromatographies. VLCTLP is a glycosylated serine proteinase with a molecular mass of 41926 Da. It reacts with N-acetyl-l-tyrosine ethyl ester (ATEE) but not with Suc-Ala-Ala-Pro-Phe-pNA or Suc-Ala-Ala-Pro-Leu-pNA. The complete amino acid sequence of the VLCTLP is deduced from the nucleotide sequence of the cDNA encoding this protein. The full-length cDNA sequence of the VLCTLP encodes open reading frame of 257 amino acid residues that includes a putative signal peptide of 18 amino acids, a proposed activation peptide of six amino acid residues and serine proteinase of 233 amino acid residues. VLCTLP belongs to the S1 (chymotrypsin) subfamily of proteases. The multiple alignment of its deduced amino acid sequence showed structural similarity with other serine proteases from snake venoms. The protease weakly hydrolyses azocasein, Aα-chain and more slowly Bβ-chain of fibrinogen. VLCTLP does not cleave fibrin and has no gelatinolytic activity. Specificity studies against peptide substrates (angiotensin I and II, oxidized insulin B-chain, glucagon, fibrinogen fragments etc.) showed that VLCTLP catalysed the cleavage of peptide bonds after tyrosine residues. VLCTLP is the only purified and characterized serine proteinase from snake venoms that catalyses ATEE hydrolysis. We detected ATEE-hydrolysing activities also in 9 different Viperidae and Crotalidae venoms.  相似文献   

16.
Stabilization of an oxyanion transition state is important to catalysis of peptide bond hydrolysis in all proteases. For subtilisin BPN', a bacterial serine protease, structural data suggest that two hydrogen bonds stabilize the tetrahedral-like oxyanion intermediate: one from the main chain NH of Ser221 and another from the side chain NH2 of Asn155. Molecular dynamic studies (Rao, S., N., Singh, U., C. Bush, P. A., and Kollman, P. A. (1987) Nature 328, 551-554) have indicated the gamma-hydroxyl of Thr220 may be a third hydrogen bond donor even though it is 4A away in the static x-ray structure. We have probed the role of Thr220 by replacing it with serine, cysteine, valine, or alanine by site-directed mutagenesis. These substitutions were intended to alter the size and hydrogen bonding ability of residue 220. Removal of the gamma-hydroxyl group reduced the transition state stabilization energy (delta delta GT) by 1.8-2.1 kcal/mol depending upon the substitution. By comparison, removal of the gamma-methyl group in the Thr220 to serine mutation only decreased delta GT by 0.5 kcal/mol. The gamma-hydroxyl of Thr220 is most important for catalysis, not substrate binding, because virtually all of the effects were on kcat and not KM. The role of the Thr220 hydroxyl is functionally independent from the amide NH2 of Asn155 because the free energy effects of double alanine mutants at these two positions are additive. These data indicate that a distal hydrogen bond donor, namely the hydroxyl of Thr220, plays a functionally important role in stabilizing the oxyanion transition state in subtilisin which is independent of Asn155.  相似文献   

17.
Pit viper venoms contain a number of serine proteinases that exhibit one or more thrombin-like activities on fibrinogen and platelets, this being the case for the kinin-releasing and fibrinogen-clotting KN-BJ from the venom of Bothrops jararaca. A three-dimensional structural model of the KN-BJ2 serine proteinase was built by homology modeling using the snake venom plasminogen activator TSV-PA as a major template and porcine kallikrein as additional structural support. A set of intrinsic buried waters was included in the model and its behavior under dynamic conditions was molecular dynamics simulated, revealing a most interesting similarity pattern to kallikrein. The benzamidine-based thrombin inhibitors alpha-NAPAP, 3-TAPAP, and 4-TAPAP were docked into the refined model, allowing for a more insightful functional characterization of the enzyme and a better understanding of the reported comparatively low affinity of KN-BJ2 toward those inhibitors.  相似文献   

18.
Urtica dioica agglutinin is a small plant lectin that binds chitin. We purified the isolectin VI (UDA-VI) and crystal structures of the isolectin and its complex with tri-N-acetylchitotriose (NAG3) were determined by X-ray analysis. The UDA-VI consists of two domains analogous to hevein and the backbone folding of each domain is maintained by four disulfide bridges. The sequence similarity of the two domains is not high (42 %) but their backbone structures are well superimposed except some loop regions. The chitin binding sites are located on the molecular surface at both ends of the dumbbell-shape molecule. The crystal of the NAG3 complex contains two independent molecules forming a protein-sugar 2:2 complex. One NAG3 molecule is sandwiched between two independent UDA-VI molecules and the other sugar molecule is also sandwiched by one UDA-VI molecule and symmetry-related another one. The sugar binding site of N-terminal domain consists of three subsites accommodating NAG3 while two NAG residues are bound to the C-terminal domain. In each sugar-binding site, three aromatic amino acid residues and one serine residue participate to the NAG3 binding. The sugar rings bound to two subsites are stacked to the side-chain groups of tryptophan or histidine and a tyrosine residue is in face-to-face contact with an acetylamino group, to which the hydroxyl group of a serine residue is hydrogen-bonded. The third subsite of the N-terminal domain binds a NAG moiety with hydrogen bonds. The results suggest that the triad of aromatic amino acid residues is intrinsic in sugar binding of hevein-like domains.  相似文献   

19.
Tissue plasminogen activator, separated into variants I and II (differing in Mr by 2000-3000), was reduced and [14C]carboxymethylated. Fragments from cleavages with enzymes and cyanogen bromide (CNBr) were separated by reverse-phase high-performance liquid chromatography and subjected to sequence degradations. All seven CNBr fragments were purified and found to be compatible with the cDNA-derived amino acid sequence [Pennica, D., Holmes, W. E., Kohr, W. J., Harkins, R. N., Vehar, G. A., Ward, C. A., Bennett, W. F., Ylverton, E., Seeburg, P. H., Heynecker, H. L., Goeddel, D. V., & Collen, D. (1983) Nature (London) 301, 214-221]. Chemical characterization of 93% of the 527 residues recovered in 50 peptides confirmed the indirectly deduced primary structure of the protein. The tryptic peptide patterns from the two variants were found to differ for one peptide (T15). Since carbohydrate was present in this peptide for variant I and since a marked difference in chromatographic behavior for T15 was observed in variant II, we conclude that carbohydrate differences in this peptide (i.e., Asn-184 in the numbering system of the cDNA-derived amino acid sequence) are the explanation for the size differences between variants I and II. Carbohydrate was also found at two other positions in the protein, corresponding to Asn-117 and Asn-448. However, a fourth potential glycosylation site, Asn-218, is apparently not utilized for carbohydrate attachment. The enzyme is inactivated by diisopropyl phosphorofluoridate, which covalently modifies the serine residue corresponding to position 478, identifying this as the active site serine residue.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号