首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Deep‐shade plants have adapted to low‐light conditions by varying morphology and physiology of cells and chloroplasts, but it still remains unclear, if prolonged periods of high‐light or darkness induce additional modifications in chloroplasts' anatomy and pigment patterns. We studied giant chloroplasts (bizonoplasts) of the deep‐shade lycopod Selaginella erythropus in epidermal cells of mature fully developed microphylls and subjected them to prolonged darkness and high‐light conditions. Chloroplast size and ultrastructure were investigated by light and electron microscopy. Physiological traits were studied by pigment analyses, photosynthetic performance of photosystem II, and formation of reactive oxygen species. Results show that (a) thylakoid patterns and shape of mature bizonoplasts vary in response to light and dark conditions. (b) Prolonged darkness induces transitory formation of prolamellar bodies, which so far have not been described in mature chloroplasts. (c) Photosynthetic activity is linked to structural responses of chloroplasts. (d) Photosystem II is less active in the upper zone of bizonoplasts and more efficient in the grana region. (e) Formation of reactive oxygen species reflects the stress level caused by high‐light. We conclude that during prolonged darkness, chlorophyll persists and even increases; prolamellar bodies form de novo in mature chloroplasts; bizonoplasts have spatial heterogeneity of photosynthetic performance.  相似文献   

2.
A comparative study was made of the ability of cultured pith tissue, leaves of buds induced from callus, and mature leaf tissue of Nicotiana tabacum L. ‘Maryland Mammoth’ to fix carbon, as determined by light-induced C14O2 incorporation. Photosynthetic ability was then correlated with the fine structure of chloroplasts from these tissues. The light to dark incorporation ratio for C14O2 was at least 3 times as great in the leaf tissue as in growing cultured tissue. The chlorophyll content of the leaf tissue was 10 times as great. The carbon fixation pattern of all the tissues, as determined by radioautographs of chromatogramed extracts, was qualitatively the same. The rate of sucrose synthesis differed greatly, since 20% of the total radioactivity of the extracts from mature leaf tissue appeared in sucrose, while only 1.0% was found in sucrose from callus extracts. The incorporation of C14O2 into sugars was inhibited in all the tissue by DCMU (3,4-dichlorophenyl,1, 1-dimethylurea). Cultured tissue past the log phase of growth was intermediate between the younger cultured tissue and the leaf tissue in its chlorophyll content and ability to incorporate C14O2 in the light. Proplastids from dark-grown callus possessed stroma lamellae, but prolamellar bodies were not observed. The chloroplasts from growing callus were partially differentiated in comparison with chloroplasts from mature leaf tissue, since each granum had only 4-7 lamellae. Chloroplasts from callus past the log phase of growth were indistinguishable from those in mature leaves. This study establishes that the differentiation of chloroplasts in cultured tissue is a function of the growth rate of the tissue. The growth rate and degree of differentiation of the tissue can be regulated, so a well-defined system is available for the experimental study of chloroplast differentiation.  相似文献   

3.
The temporal and spatial changes in reactive oxygen species (ROS) during dark treatment of Pelargonium cuttings and the effect of gibberellic acid (GA3) on ROS levels were studied. ROS-related fluorescence was detected in mitochondria and cytoplasm of epidermal cells and in chloroplasts. By monitoring dichlorofluorescein (DCF) fluorescence, an initial decrease in ROS was observed under darkness in the epidermal cell cytoplasm and the chloroplasts, which was followed by an increase on the third day. Following 3 days under darkness, the size and the structure of the chloroplasts also changed, and they became more sensitive to illumination as judged by a higher accumulation of ROS. Pretreatment of leaves with GA3 did not prevent the structural changes in the chloroplasts, but it inhibited the increase in ROS levels in all cell compartments, including the chloroplasts. It is suggested that the inhibition of ROS increase by GA3 prevented complete disintegration of chloroplasts during dark-induced senescence and thereby enabled the maintenance of chlorophyll levels in the tissue.  相似文献   

4.
Synthesis of chlorophyll was initiated in 5- to 6-day-old dark-grown barley (Hordeum vulgare L. cv. Clipper)seedlings by exposing them to light in the presence of 1-14 C glutamic acid supplied via the roots.The plants were then returned to darkness. At the end of light treatment (T) and after 7 or 18 h dark treatment chlorophylls a and b were extracted, quantified (μgleaf1). purified by HPLC to their magnesium-free derivatives (pheophytin a and b) and their molar radioactivities determined. After 2 h exposure to light followed by 6 h illumination in the presence of 1-14 C glutamic acid, seedlings had accumulated 4-7 nmol chlorophyll leaf1 and had incorporated between 900-1 350 Bq (g fresh weight)1 of radioactive label into the chlorophyll pool. When seedlings were transferred to darkness, label continued to be incorporated and after 18 h the radioactivity of the chlorophyll pool had increased by 300-700 Bq (g fresh weight)1. Net chlorophyll content, however, remained constant during dark treatment. The increase in radioactivity of the chlorophyll pool in darkness represented the difference between a net increase of label incorporated into chlorophyll a and a small loss of label from chlorophyll b. The absence of measurable radioactivity in the phytol moiety of labelled chlorophyll a, extracted at the endof dark treatment, demonstrated thatincorporation of label was into the tetrapyrrole moiely of chlorophyll and not into the phytol chain. Light-independent incorporation of 1-14 C glutamic acid into chlorophyll of greening barley seedlings transferred to darkness indicates that chlorophyll synthesis continues when light is withheld. We interpret the net gain in radioactivity of chlorophyll in darkness, in the absence of a net gain in chlorophyll content, to chlorophyll turnover i.e. to simultaneous synthesis and breakdown of chlorophyll when etiolated greening barley seedlings are transferred to darkness.  相似文献   

5.
Summary The rate of prenyl chain accumulation (C40 carotenoids; C45 in plastoquinone-9; C20 phytyl in chlorophylls, -tocopherol and vitamin K1) in plastids of etiolated radish seedlings (Raphanus sativus L.) is determined in continuous darkness and after far-red and white light treatment. Continuous far-red light (active phytochrome P fr ) stimulates the synthesis of all prenyl chains, but has no or only little effect on the dark pattern of the prenyl chain formation. White light enhances the accumulation of prenyl chains to a much higher degree than does far-red light. By a particularly strong promotion of the accumulation of phytyl chains, which are incorporated into chlorophyll, white light changes the percentage composition of prenyl chains to that of chloroplasts.  相似文献   

6.
Barley ( Hordeum vulgare L. cvs Clipper, Procter, Astrix) seedlings were transferred from daylight to darkness and changes in chlorophyll a , chlorophyll b , protochlorophyllide and chlorophyllide (μ leaf−1) in either the first or second leaf determined spectrophotometrically after separating the esterified from unesterified pigments by partitioning between ammoniacal acetone and light petroleum ether. Chlorophyll a and b as well as protochlorophyllide accumulated in the dark. The ratio of chlorophyll to protochlorophyllide formed in the absence of light was 18:1. 5-aminolevulinic acid (10 m M ) promoted the synthesis of chlorophyll a and b and protochlorophyllide. Pigment synthesis and response to 5-aminolevulinic acid addition was related to tissue age. Mature tissue in the apical third of the leaf accumulated most chlorophyll, but per μg chlorophyll present at the time of transfer to darkness, was less efficient than immature tissue towards the base of the leaf. Immature tissue was also most responsive to added 5-aminolevulinic acid. Chlorophyll synthesis in the dark was accompanied by chloroplast development. Chloroplasts in immature leaf tissue increased in size and extent of thylakoid development when transferred from daylight to darkness. The results indicate that chlorophyll synthesis and chloroplast membrane development in light-grown barley continue into the dark phase of the diurnal cycle. A light-independent protochlorophyllide reductase in light-grown barley seedlings is postulated.  相似文献   

7.
In air largely freed from CO2, senescence of isolated oat (Avena sativa cv Victory) seedling leaves is no longer prevented by white light; instead, the leaves lose both chlorophyll and protein as rapidly as in the dark. Senescence in light is also accelerated in pure O2, but it is greatly delayed in N2; 100% N2 preserves both protein and chlorophyll in light and in darkness. In light in air, most of the compounds tested that had previously been found to delay or inhibit senescence in darkness actually promote the loss of chlorophyll, but they do not promote proteolysis. Under these conditions, proteolysis can therefore be separated from chlorophyll loss. But in light minus CO2, where chlorophyll loss is rapid in controls, two of these same reagents prevent the chlorophyll loss. Unlike the many reagents whose action in light is thus the opposite of that in darkness, abscisic acid, which promotes chlorophyll loss in the dark, also promotes it in light with or without CO2. Kinetin, which prevents chlorophyll loss in the dark, also prevents it in light minus CO2. In general, therefore, the responses to light minus CO2 are similar to the responses to darkness, and (with the exception of abscisic acid and kinetin) opposite to the response to light in air.  相似文献   

8.
The transformation of amyloplast into chloroplasts in potato (Solanum tuberosum L.) tuber tissue can be induced by light. Excised potato tuber discs illuminated with white light of 3000 lux began to synthesize chlorophyll after a lag period of 1 day, and continued to synthesize chlorophyll for 3 weeks. In this paper we present evidence, based on ultracentrifugal sedimentation and immunoprecipitation, that the light-mediated synthesis of Ribulose-1,5-bisphosphate carboxylase began 1 day after illumination with white light. When illuminated the chloroplasts isolated from light-grown potato tuber tissue incorporated [35S]methionine into polypeptides, one of which has been identified as the large subunit of Ribulose-1,5-bisphosphate carboxylase. These chloroplasts are functional as determined by O2 evolution in the Hill reaction.  相似文献   

9.
The development of the Kranz structure was investigated in leaves of C4 Euphorbia maculata using electron microscopy. Four leaf stages, i.e., primordial, immature, young, and mature, were examined, based on the photosynthetic tissue that surrounded the veins. The examination revealed how cells differentiated into distinct bundle sheath cells (BSCs) and mesophyll cells (MCs). Specialization of the BSCs was invariably associated with the development of the veins as well as the MCs. Precursors for BSC and MC were recognizable fairly early, at the immature stage, according to their position and differential enlargement Once these precursors were delimited from the procambial area, differentiation into each cell type occurred synchronously, in a coordinated manner. All cells enlarged as they were displaced from the Kranz precursor area, but the BSC precursors were initially larger and remained relatively larger than the other cell types throughout leaf development The developmental changes sharply distinguished BSCs from the adjacent MCs at the onset of Kranz formation and continued until maturity. Chloroplast enlargement also occurred during cell displacement, but the rate of enlargement was greater in BSCs, resulting in larger chloroplasts at later stages. However, no significant structural differences were detected among the chloroplasts of BSC and MC in the early stages. Most of the specialized features appeared at the young-leaf stage; structural dimorphism became prominent at the later stages. This enhanced development of the BSC chloroplasts was correlated with asymmetric distribution of cellular components. In addition, the BSC formed thin primary pit fields with numerous plasmodesmata. Peripheral reticulum was present, but generally was not conspicuous. We also discuss the characteristics of leaf anatomy and ultrastructure inE. maculata as they relate to the C4 photosynthetic pathway.  相似文献   

10.
After one month of cultivation in the dark in inorganic medium the chloroplasts of protonemata of Ceratodon purpureus have larger grana than chloroplasts from light-grown cultures. Incubation of dark-grown material with ALA increases the chlorophyll content and chlorophyll a/b ratio. On polyacrylamide-gel electrophoresis, a préferential labelling of chlorophyll-protein complex I is obtained after treatment with (3H) ALA in darkness. In contrast, in light, much higher activity is found in chlorophyll-protein complex II. The free pigment zone is highly labelled in both environments.  相似文献   

11.
Summary The possibility that 32PO 4 3- (32Pi) labeling of both chloroplast and non-chloroplast RNAs during light-induced chloroplast development in Euglena is due, in part, to the break-down of existing RNAs and their resynthesis into labeled RNAs has been examined by comparing the RNA content of dark-grown, non-dividing cells after completion of light-induced chloroplast development with that of identical cells maintained in darkness for the same period of time. The involvement of the photo-conversion of protochlorophyll to chlorophyll and other photoreceptor systems in the labeling of RNA during chloroplast development has been considered by comparing the labeling pattern obtained with wild-type cells with the patterns obtained with mutants of Euglena which either lack detectable amounts of protochlorophyll and chlorophyll or form only rudimentary chloroplasts upon light induction.No significant difference in RNA content between dark-grown, non-dividing cells containing fully developed chloroplasts and the same cells maintained in darkness for the development period can be detected. This observation is interpreted to mean that in non-dividing cells precursors for chloroplast-associated RNAs are derived from pools and pre-existing RNAs, including non-chloroplast RNAs, and that the matebolic entrapment of 32Pi involves a light-dependent turnover and DNA-directed RNA synthesis in wild-type cells.The RNA profiles on sucrose gradients of mutants of Euglena show no remarkable deviation from the profile established for wild-type cells. The labeling patterns obtained after 24 hours of incubation in light and in darkness differ from that obtained for wild-type cells in that all mutants show less of a light-minus-dark difference than wild-type and that mutants lacking plastid-associated DNA and detectable amounts of chlorophyll incorporate considerably more 32Pi into RNA in darkness than wild-type. One such mutant shows no significant difference in its light-dark labeling pattern.These observations indicate that cells possessing normal proplastids capable of forming functional chloroplasts regulate metabolism of RNA in darkness in a different manner than with either rudimentary chloroplasts or containing no detectable plastids structures. The possible involvement of more than one photoreceptor system in metabolic control is discussed.Supported by a grant from the National Institutes of Health, GM 14595  相似文献   

12.
Light treatment markedly accelerated the chlorophyll loss in senescing leaves of Hydrilla verticillata [(L.f.) Royle] as compared to dark treatment, whereas such acceleration could not be observed in senescing spinach (Spinacia oleracea L.) leaves. The light-induced cholorophyll loss in Hydrilla was retarded slightly by chloramphenicol and markedly by cycloheximide. Catalase (EC 1.11.1.6) activity did not change appreciably in Hydrilla leaves either in light or in darkness, while in spinach it declined markedly in the dark, and light retarded such decline. Peroxidase activity in Hydrilla showed faster increase in light than in darkness, while in spinach it increased only in light during senescence. The activity of phenol(pyrogallol)-specific peroxidase increased markedly in light, and that of ascorbate-specific peroxidase decreased slightly both in light and darkness during senescence of Hydrilla leaves. This rise in phenolspecific peroxidase activity was prevented by cycloheximide treatment. Pretreatment of Hydrilla leaves with monophenol (2,4-dichlorophenol) and o-diphenol (hydroquinone) accelerated and retarded, respectively, the light-induced cholorophyll loss. Pretreatment of Hydrilla leaves with H2O2 augmented the chlorophyll loss more markedly in light than in darkness. The endogenous level of H2O2 increased more in light than in dark during senescence of Hydrilla leaves. Treatment of Hydrilla leaves with 3-(3.4-dichlorophenyl)-l,l-dimethylurea. a photosystem II inhibitor, prevented both light-induced rise in H2O: level and chlorophyll loss, but it was without effect in the dark. Retardation of light-induced chlorophyll loss occurred during senescence of Hydrilla leaves when light was given in different photoperiods in a 24-h daily cycle for 6 days instead of as continuous irradiance. There was a negative correlation between the length of the photoperiod and the extent of cholorophyll loss.  相似文献   

13.
Continued synthesis of chlorophyll a and chlorophyll b occurs in Tradescantia albiflora Kunth on transfer to darkness. This synthesis continues for several days and may result in a doubling of chlorophyll content per leaf. It is accompanied by continued cell division and development of normal chloroplast ultrastructure, including stacked thylakoids.  相似文献   

14.
Choline oxidation by intact spinach chloroplasts   总被引:4,自引:3,他引:1       下载免费PDF全文
Plants synthesize betaine by a two-step oxidation of choline (choline → betaine aldehyde → betaine). Protoplast-derived chloroplasts of spinach (Spinacia oleracea L.) carry out both reactions, more rapidly in light than in darkness (AD Hanson et al. 1985 Proc Natl Acad Sci USA 82: 3678-3682). We investigated the light-stimulated oxidation of choline, using spinach chloroplasts isolated directly from leaves. The rates of choline oxidation obtained (dark and light rates: 10-50 and 100-300 nanomoles per hour per milligram chlorophyll, respectively) were approximately 20-fold higher than for protoplast-derived chloroplasts. Betaine aldehyde was the main product. Choline oxidation in darkness and light was suppressed by hypoxia. Neither uncouplers nor the Calvin cycle inhibitor glyceraldehyde greatly affected choline oxidation in the light, and maximal choline oxidation was attained far below light saturation of CO2 fixation. The light stimulation of choline oxidation was abolished by the PSII inhibitors DCMU and dibromothymoquinone, and was partially restored by adding reduced diaminodurene, an electron donor to PSI. Both methyl viologen and phenazine methosulfate prevented choline oxidation. Adding dihydroxyacetone phosphate, which can generate NADPH in organello, doubled the dark rate of choline oxidation. These results indicate that choline oxidation in chloroplasts requires oxygen, and reducing power generated from PSI. Enzymic reactions consistent with these requirements are discussed.  相似文献   

15.
The chlorophyll repair potential of mature Cucumis chloroplasts incubated in a simple Tris-HCI/sucrose medium is described. The chloroplasts were isolated from green, fully expanded Cucumis cotyledons which were capable of chlorophyll repair. This was evidenced by a functional chlorophyll biosynthetic pathway in the mature tissue. The biosynthesis of protochlorophyllide from exogenous δ-aminolevulinic acid was used as a marker for the operation of the chlorophyll biosynthetic chain between δ-aminolevulinic acid and protochlorophyllide. The conversion of exogenous protochlorophyllide into chlorophyll a was used as a marker for the operation of the chlorophyll pathway beyond protochlorophyllide. It appeared from these studies that contrary to published reports, unfortified fully developed Cucumis chloroplasts incubated in Tris-HCl/sucrose without the addition of cofactors exhibited a partial and limited chlorophyll repair capability. Their net tetrapyrrole biosynthetic competence from δ-aminolevulinic acid was confined to the accumulation of coproporphyrin. No net tetrapyrrole biosynthesis beyond coproporphyrin was observed. However, the plastids were capable of incorporating small amounts of δ-amino-[4-14C]levulinic acid into [14C] protochlorophyllide but were incapable of converting exogenous protochlorophyllide into chlorophyll. After prolonged incubation of the unfortified chloroplasts in the dark, a fluorescent protochlorophyllide-like compound accumulated. This compound [Cp (E430-F631)] exhibited a soret excitation maximum at 430 nm (E430) and a fluorescence emission maximum at 631 nm (F631) in methanol/acetone (4 : 1, v/v). Cp (E430-F631) was shown to be neither protochlorophyllide nor zinc-protochlorophyllide but an enzymatic degradation product of chlorophyll. The exact chemical identity of this compound has not yet been determined.  相似文献   

16.
The effects of differential photoperiodic treatments applied to shoot tips and mature leaves of the long-day (LD) plant Silene armeria L. on growth and flowering responses, and on the levels of endogenous gibberellins (GAs), were investigated. Gibberellins were analyzed by gaschromatography-mass spectrometry and the use of internal standards. Exposure of mature leaves to LD, regardless of the photoperiodic conditions of the shoot tips, short days (SD), LD, or darkness, promoted elongation of the stems and of the immature leaves. Long-day treatment of the mature leaves modified the levels of endogenous GAs in shoot tips kept under LD, SD, or darkness. In shoot tips kept in LD or darkness the levels of GA53 were reduced, whereas the levels of GA19 and GA20 were increased. The contents of GA1 were increased in all three types of shoots: SD twofold, LD fivefold, and darkness eightfold. Dark treatment of the shoot tips on plants of which the mature leaves were grown in SD promoted elongation of the immature etiolated leaves and increased the GA1 content of the shoot tips threefold. However, this treatment did not cause stem elongation. The different photoperiodic treatments applied to the shoot tips did not change the levels of GAs in mature leaves. These results indicate that both LD and dark treatments result in an increase in GA1 in shoot tips. In addition, it is proposed that LD treatment induces the formation of a signal that is transmitted from mature leaves to shoot tips where it enhances the effect of GA on stem elongation.Abbreviations GAn gibberellin An - LD long day(s) - SD short day(s) We thank Dr. L.N. Mander, Australian National University, Canberra, for providing [2H]-gibberellins and Dr. D.A. Gage, MSU-NIH Mass Spectrometry Facility, East Lansing, for advice with mass spectrometry. This work was supported, in part, by a fellowship from the Spanish Ministry of Agriculture (Instituto Nacional de Investigaciones Agrarias) to M.T., by the U.S. Department of Energy grant No. DE-FG02-91ER20021, and by the U.S. Department of Agriculture grant No. 88-37261-3434 to J.A.D.Z.  相似文献   

17.
S Acker  J Duranton 《BBA》1975,387(2):279-287
Independence of special forms of chlorophyll a and chlorophyll holochromesZea mays L. seedlings were cultivated for 10 days with submission to 4 s illumination periods interspersed with dark periods varying in length from 30 min to 6 h depending on the lot analyzed. The results show that, for the case in which the dark periods were shorter than 1 h, the relative proportions of different spectroscopic chlorophyll forms (maxima at 662, 670, 677.5, and 684 nm) were constant. For longer durations of darkness between illuminations, the relative proportion of the form Ca670 increases, while that of Ca684 diminishes with the length of darkness; to a lesser extent, the relative proportion of Ca662 increases and a form Ca692 disappears. A scheme is proposed to explain the evolution of the relative proportions of the different spectral forms.The different chlorophyll holochromes present in the chloroplasts were also analysed. If the dark period was longer than 1 h, chlorophyll was associated with peptide chains of molecular weights 21 000 and 29 000. If the dark period was shorter than 1 h chlorophyll was associated with four peptide chains of molecular weights 21 000, 25 000, 29 000 and 70 000.The results taken together demonstrate that a given spectral chlorophyll a form cannot be associated with a definite chlorophyll holochrome.  相似文献   

18.
When leaves of plants with C3 metabolism are detached and held in darkness, they senesce and the stomata close. Because the relation of senescence and stomatal closure is very close, if not actually causal, the question arose as to whether in the leaves of plants with Crassulacean acid metabolism whose stomata open at night the relationship to senescence would be reversed. Detached leaves of four species of Hoya, floated on water in constant darkness or constant light, were found to show no large differences in stomatal aperture (measured as diffusion resistance) between those in the light or dark, but the aperture changed in a regular circadian rhythm. In some leaves the rhythm was simple, in others the peak showed small secondary peaks, but in all cases the values were nearly the same in the light as in the dark, throughout the cycle. Previous culture of the intact plants under normal day/night conditions gave results similar to those with plants that had had prolonged culture under constant light or darkness. In those cases when the stomata were more open in the dark, the chlorophyll content was greater than when the stomata were more open in the light; but when they were more open in the light, the chlorophyll content showed little difference between light and dark. When the leaves had only their petioles in water they showed greater senescence in the light than in the dark, and the stomata were more tightly closed in the light, especially at the apical ends. All four species of Hoya gave similar results. We deduce that senescence of these leaves is modified by stomatal aperture, and generally in the same direction as in C3 leaves, but that in continuous light or darkness the primary control over the aperture is the endogenous cycle.  相似文献   

19.
Rates of CO2 fixation during the light period and the rates of CO2 release during the night period were measured using mature leaves from 39- to 49-d-old spinach (Spinacia oleracea L., US Hybrid 424; grown in 9 h light, 15 h darkness, daily) and mature leaves from 21-d-old barley (Hordeum vulgare L., cv. Apex; grown in 14 h light, 10 h darkness, daily). At certain times during the light and dark periods leaves were harvested for assay of their contents of soluble carbohydrates, starch, malate and the various amino acids. Evaluation of the results of these measurements shows that in spinach and barley leaves 46% and 26%, respectively, of the carbon assimilated during the light period is deposited in the leaves for export during the night period. Taking into account the carbon consumption in the source leaves by dark respiration, it is evaluated that rates of assimilate export during the light period from spinach and barley leaves [38 and 42 atom C · (mg Chl)–1 · h–1] are reduced in the dark period to 16 atom C · (mg Chl)–1 · h–1 in both species. The calculated C/N ratios of the photoassimilates exported during the dark period were 0.029 and 0.015 for spinach and barley leaves, respectively.This work was supported by the Deutsche Forschungsgemeinschaft. We thank Dr. Dieter Heineke for stimulating discussions and Mrs. Petra Hoferichter and Mrs. Marita Feldkämper for their technical assistance.  相似文献   

20.
Diurnally grown barley (Hordeum vulgare L. cv. Clipper) seedlings of various ages (3–4, 5–6 and 10–11-days-old) were transferred to darkness for 17 h and changes in leaf fresh weight, chlorophyll a, chlorophyll b and protochlorophyllide measured. The results were consistent with previous evidence of a light-independent chlorophyll biosynthetic pathway in light-grown barley. There was a net gain in chlorophyll (μg leaf-1) in 5–6- and 10–11-day-old plants after 17 h dark treatment. The amounts of chlorophyll that accumulated were similar (5.9 and 4.3 μg Chl leaf-1), despite a twofold difference in leaf size at T0. The rate of leaf expansion in 5–6-day-old plants greatly exceeded the rate of chlorophyll accumulation and leaves were noticeably paler after dark treatment i.e. there was a reduction in chlorophyll concentration (μg g fresh weight-1) in spite of an increase in chlorophyll content (μg leaf-1). The ability of light-grown barley to accumulate chlorophyll in darkness was a function of seedling age. Very young seedlings (3–4-day-old) generally lost chlorophyll in darkness. The decrease in chlorophyll per leaf resulted mainly from loss of chlorophyll b. Preferential loss of chlorophyll b resulted in dramatic increases in the chlorophyll a:b ratio. Since 3–4-day-old seedlings (1) accumulated 5-aminolevulinic acid in the presence of levulinic acid at a rate comparable to older seedlings, and (2) converted exogenous 5-aminolevulinic acid to chlorophyll in the absence of light, it is unlikely that failure of the youngest plants to accumulate chlorophyll in darkness was due to blocks at these steps in the pathway. Net loss of chlorophyll (μg leaf-1) in 3–4-day-old seedlings in darkness was eliminated by the addition of chloramphenicol, which occasionally produced a small, but significant, gain in total chlorophyll. These results imply that chlorophyll degradation in young barley leaves is strongly influenced by the chloroplast genome, and is a major factor influencing changes in chlorophyll levels in darkness. The present findings are consistent with the suggestion that the failure of 3–4-day-old barley seedlings to accumulate chlorophyll in darkness may be due to chlorophyll turnover in which the rate of degradation exceeds the rate of synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号