首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
结肠癌是常见的消化道恶性肿瘤。对术后患者以及无法采用手术治疗的患者,临床多采用化疗、放疗等综合性治疗方法。随着大量化疗药物在临床的广泛使用,结肠癌多药耐药性成为化疗失败的最主要原因。研究表明,P-糖蛋白(P-glycoprotein, P-gp)作为ATP结合盒(ABC)转运蛋白超家族成员之一,与多种肿瘤的多药耐药相关,其介导的多药耐药已经成为目前研究的热点。本文旨在通过对P-糖蛋白的结构、耐药机制以及逆转P-糖蛋白介导的结肠癌多药耐药新发现进行阐述,引导读者对P-糖蛋白在结肠癌多药耐药中的作用有更深入的了解。  相似文献   

2.
肿瘤细胞对化疗药物产生耐药性是肿瘤治疗失败的重要因素。其中,以P-糖蛋白(P-gp)为代表的ABC转运蛋白超家族异常表达引起的药物外排是产生多药耐药(MDR)的主要机制之一。本研究中,我们采用现代分离纯化方法,从半枝莲中分离并鉴定得到了6个已知的新克罗烷型二萜化合物:scutebarbatine Y(1)、scutebarbatine B(2)、suctebartine F(3)、clerdinin B(4)、scutellin A(5)、scutehennanine D(6)。其中,化合物4为首次从半枝莲中分离得到。体外逆转肿瘤多药耐药活性评价发现化合物1、2、3、6在20μM时,与阿霉素(Adr)联用可以逆转HepG2/Adr细胞对阿霉素的耐药性,逆转倍数(RI)范围为14.04~39.42;蛋白印迹分析结果表明,与HepG2敏感株相比,HepG2/Adr耐药细胞P-糖蛋白表达显著提高,可能是其产生耐药性的主要因素;荧光结果显示,该系列化合物能够明显促进阿霉素在HepG2/Adr细胞中的积累;但化合物不影响P-糖蛋白的表达。以上结果显示化合物1、2、3和6可能是通过抑制P-糖蛋白的外排功能来逆转肿瘤细胞多药耐药的。  相似文献   

3.
P-糖蛋白(P-glycoprotein,P-gp)是ABC转运蛋白超家族的一员,能将其药物底物单向转运出细胞.P-gp的过表达被认为是乳腺癌多药耐药(multi-drug resistance,MDR)的主要原因之一.在乳腺癌MDR的发生和发展中,P-gp受到多种信号通路和转录因子的调控,调控网路非常复杂.揭示P-gp在乳腺癌中的调控机制,对于克服乳腺癌MDR极其重要.本文综述了其在乳腺癌MDR中的作用及其调控机制的最新研究进展.  相似文献   

4.
肿瘤的多药耐药性(multidrug resistance,MDR)是导致化疗失败的主要原因,因此寻找高效低毒的MDR逆转剂已成为肿瘤药物开发领域的热点。P-糖蛋白是引起多药耐药性产生的重要因素之一,也是目前肿瘤多药耐药逆转剂最重要的药物靶点。本文介绍了P-糖蛋白的结构、功能和作用机制,以及以P-糖蛋白为靶标的肿瘤多药耐药逆转剂的开发现状。  相似文献   

5.
ABC转运蛋白是一类利用ATP水解能量,逆浓度方向将一系列化合物转运通过膜结构的膜蛋白,这一类蛋白能转运离子,糖,氨基酸,维生素,多肽,多糖,激素,脂类及生物异源物质.P-糖蛋白(P-gp)、多药耐药相关蛋白(MRP)和乳腺癌耐药蛋白(BCRP)等ABC转运蛋白还具有转运抗癌药物的能力,因此对化疗的有效性有负面的影响.近年来,许多研究涉及到如何逆转由ABC转 运蛋白引起的肿瘤多药耐药性.本文概述了近年来在蛋白水平,mRNA水平或DNA水平上对ABC转运蛋白调控的研究.  相似文献   

6.
P-糖蛋白的研究进展   总被引:1,自引:0,他引:1  
P-糖蛋白是一类能量依赖性的转运蛋白,能将许多结构不同的化合物逆向转运出细胞.P-糖蛋白的过表达与肿瘤细胞的多药耐药性(Multidrug Resistance,MDR)密切相关,是导致肿瘤化疗失败的主要原因.随着对MDR机制认识的深入,已针对P-糖蛋白的结构设计出多种形式的MDR逆转药物.近年研究发现,P-糖蛋白广泛存在于正常的组织和器官,参与药物和内、外源毒素的吸收、分布和排泄,行使解毒和防御保护的功能.因此,通过转植P-糖蛋白基因可有效地降低经济鱼类、虾等水产品和经济作物中有毒污染物的积累,对保护人类健康将有着积极意义.  相似文献   

7.
乳腺癌耐药相关蛋白(BCRP/ABCG2)是新近发现的ATP结合盒(Adenosine triphosphate-binding cassette,ABC)膜转运蛋白超家族成员。它作为细胞膜上的药物排出泵,可以将一系列细胞毒药物转运至胞外从而介导肿瘤细胞多药耐药。在很多血液肿瘤和实体瘤中均检测到ABCG2表达。ABCG2在肿瘤的多药耐药上发挥重要作用。本文对ABCG2的发现、基因表达特征、与造血干细胞分化的关系、转运底物及其耐药逆转和临床意义等方面的研究进展进行综述。  相似文献   

8.
P-糖蛋白结构及作用机制   总被引:4,自引:0,他引:4  
ABC (ATP-binding cassette) 转运蛋白广泛存在于各种生物体细胞中,例如细菌的内层细胞浆膜和真核生物的细胞膜和细胞器膜.其利用与ATP的结合和水解供能进行底物的跨膜转运,其中一部分ABC转运蛋白能转运多种疏水性分子.P-糖蛋白隶属于ABC转运蛋白超家族,是研究最为透彻的一员,主要功能是防止机体对外来有害物质的摄入.P-糖蛋白(P-glycoprotein)由4 个基本结构域组成,2 个跨膜区和2 个位于细胞浆内的核苷酸结合区.核苷酸结合区参与ATP的结合和水解,而各由6 个α 跨膜螺旋组成的2个跨膜区联合构成了底物跨膜转运的通道.P 糖蛋白能转运多种不同结构的底物,包括脂类、胆汁酸、多肽和外源性化学物质,这对机体的生存至关重要,但同时也存在不利的一面,包括干扰了药物的运输,从而导致了多药耐药现象的产生.本文就P-糖蛋白的分子结构和作用机制的最新研究进展进行综述.  相似文献   

9.
肿瘤细胞多药耐药性(multidrug resistance,MDR)的产生是临床上导致肿瘤化疗失败的主要原因之一,因此寻找高效低毒的MDR逆转剂已成为肿瘤药物开发领域的热点。MDR的作用机制主要包括P-糖蛋白、多药耐药相关蛋白、乳腺癌耐药蛋白、肺耐药相关蛋白等等。多药耐药逆转剂包括钙离子通道阻滞剂、维拉帕米及其衍生物等等。本文主要介绍了MDR的作用机制以及肿瘤多药耐药逆转剂的研究进展。  相似文献   

10.
目的:探讨七叶皂苷时P-糖蛋白功能的影响.方法:构建稳定表达P-糖蛋白的LLC-PK1细胞系,以real-time RT-PCR和Western Blotting分析P-糖蛋白基因mRNA和蛋白表达,共聚焦显微镜观察P-糖蛋白细胞定位,流式细胞术检测细胞内罗丹明123荧光强度.结果:(1)P-糖蛋白在LLC-PK1细胞中稳定高表达;(2)转染细胞中P-糖蛋白定位在细胞膜上;(3)七叶皂苷抑制P-糖蛋白功能.细胞内罗丹明123荧光强度增加123%,但其抑制效果是维拉帕米的30%.结论:七叶皂苷抑制P-糖蛋白功能,但其抑制效果弱于维拉帕米.  相似文献   

11.
Summary Cell lines derived from the murine macrophage-like cell J 774.2 are resistant to the cytotoxic effects of colchicine, vinblastine, and taxol. These multidrug-resistant (MDR) cells overproduce a family of 130–150 kDa P-glycoproteins (P-gp) associated with the plasma membrane region and display other typical features of the MDR phenotype. Ultrastructural analysis of drug-treated cells indicated that although hallmark structural effects engendered by each drug at efficacious doses were profound in the drug-sensitive J 774.2 cells, they were not evident in the similarly treated MDR cell lines. Thus, MDR phenotypic expression involved maintaining drug levels at subthreshold values so as to preclude the advent of these morphologic changes, and allowed vital tubulin-associated cellular processes, including replication, to occur. Using a polyclonal antibody specific for the P-gp, electron microscopic immunocytochemical evidence is presented for substantial association of P-gp with the plasma membrane/cell surface in the resistant cells which was not demonstrable in the drug-sensitive J 774.2 cells. This key cell surface localization of P-gp is germane to the postulated transport and related mechanisms whereby P-gp may play a pivotal role in endowing cells with multidrug resistance.  相似文献   

12.
MDR has been studied extensively in mammalian cell lines. According to usual practice, the MDR phenotype is characterized by the following features: cross resistance to multiple chemotherapeutic agents (lipophilic cations), defective intracellular drug accumulation and retention, overexpression of P-gp (often accompanied by gene amplification), and reversal of the phenotype by addition of calcium channel blockers. An hypothesis for the function of P-gp has been proposed in which P-gp acts as a carrier protein that actively extrudes MDR compounds out of the cells. However, basic questions, such as what defines the specificity of the pump and how is energy for active efflux transduced, remain to be answered. Furthermore, assuming that P-gp acts as a drug transporter, one will expect a relationship between P-gp expression and accumulation defects in MDR cell lines. A review of papers reporting 97 cell lines selected for resistance to the classical MDR compounds has revealed that a connection exists in most of the reported cell lines. However, several exceptions can be pointed out. Furthermore, only a limited number of well characterized series of sublines with different degrees of resistance to a single agent have been reported. In many of these, a correlation between P-gp expresson and transport properties can not be established. Co-amplification of genes adjacent to the mdr1 gene, mutations [122], splicing of mdr1 RNA [123], modulation of P-gp by phosphorylation [124] or glycosylation [127], or experimental conditions [26,78] could account for some of the complexity of the phenotype and the absence of correlation in some of the cell lines. However, both cell lines with overexpression of P-gp without increased efflux [i.e., 67,75] and cell lines without P-gp expression and accumulation defects/increased efflux [i.e., 25,107] have been reported. Thus, current results from MDR cell lines contradict - but do not exclude - that P-gp acts as multidrug transporter. Other models for the mechanism of resistance have been proposed: (1) An energy-dependent permeability barrier working with greater efficacy in resistant cells. This hypothesis is supported by studies of influx which, although few, all except one demonstrate decreased influx in resistant cells; (2) Resistant cells have a greater endosomal volume, and a greater exocytotic activity accounts for the efflux. Furthermore, large amounts of P-gp in the plasma membrane altering the ultrastructure and generalized changes, such as increases or decreases in membrane fluidity, alterations in lipid composition, changes in transmembrane pH gradient and membrane potential have been described in MDR cell lines and could account for some of the findings.  相似文献   

13.
Dielectrophoresis (DEP) was used to examine a panel of MCF-7 cell lines comprising parental MCF-7 cells and MDR derivatives: MCF-7TaxR (paclitaxel-resistant, P-glycoprotein (P-gp) positive), MCF-7DoxR (doxorubicin-resistant MRP2 positive) plus MCF-7MDR1 (MDR1 transfected, P-gp positive). MCF-7DoxR and MCF-7MDR1 were broadly cross-resistant to natural product anticancer agents, whereas MCF-7TaxR cells were not, contrary to P-gp expression. Whilst DEP revealed modest membrane changes in MDR sub-lines, we saw significant changes in their cytoplasmic conductivity: MCF-7TaxR相似文献   

14.
Natural differences in expression and retroviral transduction techniques were used to test the hypothesis that MDR1 P-glycoprotein (P-gp) and MRP1 (multidrug resistance-related protein) contribute to xenobiotic handling by placental trophoblast. RT-PCR and Western blotting in placenta, primary cytotrophoblast cell cultures, and BeWo, JAr, and JEG choriocarcinoma cell lines showed that MRP1 was ubiquitously expressed, whereas MDR1 was absent or minimally expressed in BeWo and JEG cell lines. In syncytiotrophoblast, P-gp was localized predominantly to the microvillous, maternal facing plasma membrane, and MRP1 to the basal, fetal facing plasma membrane. Functional studies showed that cyclosporin A-sensitive accumulation of [3H]vinblastine by cells containing both transport proteins was significantly different from those expressing predominantly MRP1. Retroviral gene transfer of MDR1 to BeWo cells confirmed that this difference was due to the relative expression of MDR1. Therefore, both P-gp and MRP1 contribute to xenobiotic handling by the trophoblast. Localization of P-gp to the microvillous membrane suggests an essential role in preventing xenobiotic accumulation by the syncytiotrophoblast and, therefore, in protecting the fetus. placenta; multidrug resistance; xenobiotic  相似文献   

15.
Overexpression of the 170 kDa plasma membrane P-glycoprotein (P-gp) represents the most common MDR mechanism in chemotherapy. In this work, specific autoantibodies to fragments from extracellular loops 1, 2, and 4 of the murine MDR1 P-gp were elicited in mice using synthetic palmitoylated peptides reconstituted in liposomes and alum. The highest IgG level was observed after the third immunization and the immune response against lipopeptides was still detected more than 200 days after immunizations. Immunocytochemichal studies revealed that these antibodies were specific for P-gp. When incubated with P-gp-expressing MDR cell lines, serum from immunized mice restored sensitivity to either doxorubicin or vinblastine, or had no effect in a cell type specific manner, suggesting that several mechanisms may occur in the establishment of the MDR phenotype. The expression of mdr1 and mdr3 genes was unchanged in organs from mice immunized with palmitoylpeptides grafted on liposomes. These results suggest that the induction of autoantibodies to P-gp is a safe strategy to overcome MDR in cancer chemotherapy.  相似文献   

16.
Multidrug resistance (MDR) is one of the main obstacles of clinical chemotherapy. A great deal of research shows that the occurrence of drug resistance in various malignant tumors is closely related to the expression of P-glycoprotein (P-gp) on the surface of the cell membrane. In this paper, based on the structure-activity relationship of phenylethyl tetrahydroisoquinoline, we choose tariquidar as the lead compound for the design and synthesis of 17 novel tetrahydroisoquinoline P-gp inhibitors. Additionally, in vitro and in vivo cytotoxicity assays and reversed MDR activity assays were evaluated. Among them, compound 3 had a good reversal of MDR activity and the reversal mechanism study of it was carried out. All of these results demonstrated that compound 3 was considered to be a promising P-gp-mediated MDR reversal candidate.  相似文献   

17.
The debate about a direct or indirect effect of GH and IGF-I on the recurrence of malignancy, especially in the case of rhGH therapy in patients with leukemia, is still going on. Recent studies suggested that IGF-I plays a role in drug resistance during anticancer therapy. This resistance to diverse cytotoxic drugs, named multidrug-resistance (MDR), is mainly due to high levels of P-glycoprotein (P-gp). The gene encoding this membrane-associated transporter protein was named MDR1, and increased levels of P-gp are linked to enhanced MDR1 mRNA expression. Our aim was to investigate a possible effect of rhIGF-I on MDR1 gene expression in vitro. We cultured the T-lymphoblastoid cell line CCRF-CEM with different rhIGF-I concentrations (0, 5, 20 and 50 ng/ml) in serum-free medium for 3 days. CCRF-CEM cells are drug-sensitive and express MDR1 at low levels. MDR1 mRNA expression was measured by semiquantitative RT-PCR using a competitive assay with a heterologous DNA construct. In addition, GAPDH mRNA was amplified as an internal control for RNA integrity. P-gp activity was determined by a flow cytometric assay measuring rhodamine 123 accumulation. Furthermore, cell proliferation was monitored in all experiments. Our data do not support an effect of rhIGF-I on MDR1 mRNA expression, P-gp activity or cell proliferation in the CCRF-CEM cell line. MDR1 mRNA levels were inversely correlated to cell density with high significance (p < 0.0001). In conclusion, multidrug resistance linked to P-gp is not induced by IGF-I in CCRF-CEM cells. At high density, CCRF-CEM cells downregulate MDR1 gene expression. Our experimental model provides a very useful tool for monitoring the influence of growth factors on multidrug resistance in vitro.  相似文献   

18.
One of the underlying mechanisms of multidrug resistance (MDR) is cellular overproduction of P-glycoprotein (P-gp), which acts as an efflux pump for various anti-cancer drugs. P-gp is encoded by a group of related genes termed MDR; only MDR1 is known to confer the drug resistance, and its overexpression in cancer cells has been a therapeutic target to circumvent the resistance. To overcome P-gp-mediated drug resistance, we have developed six anti-MDR1 hammerhead ribozymes and delivered them to P-gp-overproducing human leukemia cell line by a retroviral vector containing RNA polymerase III promoter. These ribozyme-transduced cells became vincristine-sensitive, concomitant with the decreases in MDR1 expression, P-gp amount and efflux pump function. Among the ribozymes tested, the anti-MDR1 ribozyme against the translation-initiation site exhibited the highest efficacy. The retrovirus-mediated transfer of this most potent anti-MDR1 ribozyme into a human lymphoma cell line, which was made resistant by infection of pHaMDR1/A retroviral vector and thus possessed a low degree of MDR due to P-gp expression relevant to clinical MDR, resulted in a complete reversal of MDR phenotype. In addition to retrovirus-mediated transfer of ribozymes, we evaluated the efficacy of cationic liposome-mediated transfer of ribozyme. Treatment of a P-gp-producing human breast cancer cell line with the liposome-ribozyme complex resulted in reversal of resistance, concomitant with the decreases in both MDR1 expression and P-gp amount. Confocal microscopic imaging of the cells after treatment with liposome/FITC-dextran showed cytoplasmic fluorescence that was abolished by cytochalasin B, indicating a high endocytotic activity in these cells. The endocytotic activity was well correlated with the success of cationic liposome-mediated transfer of MDR1 ribozyme. These distinct approaches using either retrovirus- or liposome-mediated transfer of anti-MDR1 ribozyme may be selectively applicable to the treatment of MDR cells with different properties such as endocytotic activity as a specific means to reverse resistance.  相似文献   

19.
Multi-drug resistance (MDR) is a phenomenon by which tumor cells exhibit resistance to a variety of chemically unrelated chemotherapeutic drugs. The classical form of multidrug resistance is connected to overexpression of membrane P-glycoprotein (P-gp), which acts as an energy dependent drug efflux pump. P-glycoprotein expression is known to be controlled by genetic and epigenetic mechanisms. Until now processes of P-gp gene up-regulation and resistant cell selection were considered sufficient to explain the emergence of MDR phenotype within a cell population. Recently, however, "non-genetic" acquisitions of MDR by cell-to-cell P-gp transfers have been pointed out. In the present study we show that intercellular transfers of functional P-gp occur by two different but complementary modalities through donor-recipient cells interactions in the absence of drug selection pressure. P-glycoprotein and drug efflux activity transfers were followed over 7 days by confocal microscopy and flow cytometry in drug-sensitive parental MCF-7 breast cancer cells co-cultured with P-gp overexpressing resistant variants. An early process of remote transfer was established based on the release and binding of P-gp-containing microparticles. Microparticle-mediated transfers were detected after only 4 h of incubation. We also identify an alternative mode of transfer by contact, consisting of cell-to-cell P-gp trafficking by tunneling nanotubes bridging neighboring cells. Our findings supply new mechanistic evidences for the extragenetic emergence of MDR in cancer cells and indicate that new treatment strategies designed to overcome MDR may include inhibition of both microparticles and Tunneling nanotube-mediated intercellular P-gp transfers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号