首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract.— Theory predicts that in small isolated populations random genetic drift can lead to phenotypic divergence; however this prediction has rarely been tested quantitatively in natural populations. Here we utilize natural repeated island colonization events by members of the avian species complex, Zosterops lateralis , to assess whether or not genetic drift alone is an adequate explanation for the observed patterns of microevolutionary divergence in morphology. Morphological and molecular genetic characteristics of island and mainland populations are compared to test three predictions of drift theory: (1) that the pattern of morphological change is idiosyncratic to each island; (2) that there is concordance between morphological and neutral genetic shifts across island populations; and (3) for populations whose time of colonization is known, that the rate of morphological change is sufficiently slow to be accounted for solely by genetic drift. Our results are not consistent with these predictions. First, the direction of size shifts was consistently towards larger size, suggesting the action of a nonrandom process. Second, patterns of morphological divergence among recently colonized populations showed little concordance with divergence in neutral genetic characters. Third, rate tests of morphological change showed that effective population sizes were not small enough for random processes alone to account for the magnitude of microevolutionary change. Altogether, these three lines of evidence suggest that drift alone is not an adequate explanation of morphological differentiation in recently colonized island Zosterops and therefore we suggest that the observed microevolutionary changes are largely a result of directional natural selection.  相似文献   

2.
Divergent natural selection drives evolutionary diversification. It creates phenotypic diversity by favoring developmental plasticity within populations or genetic differentiation and local adaptation among populations. We investigated phenotypic and genetic divergence in the livebearing fish Poecilia mexicana along two abiotic environmental gradients. These fish typically inhabit nonsulfidic surface rivers, but also colonized sulfidic and cave habitats. We assessed phenotypic variation among a factorial combination of habitat types using geometric and traditional morphometrics, and genetic divergence using quantitative and molecular genetic analyses. Fish in caves (sulfidic or not) exhibited reduced eyes and slender bodies. Fish from sulfidic habitats (surface or cave) exhibited larger heads and longer gill filaments. Common-garden rearing suggested that these morphological differences are partly heritable. Population genetic analyses using microsatellites as well as cytochrome b gene sequences indicate high population differentiation over small spatial scale and very low rates of gene flow, especially among different habitat types. This suggests that divergent environmental conditions constitute barriers to gene flow. Strong molecular divergence over short distances as well as phenotypic and quantitative genetic divergence across habitats in directions classic to fish ecomorphology suggest that divergent selection is structuring phenotypic variation in this system.  相似文献   

3.
Measures of genetic diversity within and among populations and historical geomorphological data on stream landscapes were used in model simulations based on approximate Bayesian computation (ABC) to examine hypotheses of the relative importance of stream features (geomorphology and age) associated with colonization events and gene flow for coho salmon Oncorhynchus kisutch breeding in recently deglaciated streams (50–240 years b.p .) in Glacier Bay National Park (GBNP), Alaska. Population estimates of genetic diversity including heterozygosity and allelic richness declined significantly and monotonically from the oldest and largest to youngest and smallest GBNP streams. Interpopulation variance in allele frequency increased with increasing distance between streams (r = 0·435, P < 0·01) and was inversely related to stream age (r = –0·281, P < 0·01). The most supported model of colonization involved ongoing or recent (<10 generations before sampling) colonization originating from large populations outside Glacier Bay proper into all other GBNP streams sampled. Results here show that sustained gene flow from large source populations is important to recently established O. kisutch metapopulations. Studies that document how genetic and demographic characteristics of newly founded populations vary associated with successional changes in stream habitat are of particular importance to and have significant implications for, restoration of declining or repatriation of extirpated populations in other regions of the species' native range.  相似文献   

4.
Understanding population‐level responses to human‐induced changes to habitats can elucidate the evolutionary consequences of rapid habitat alteration. Reservoirs constructed on streams expose stream fishes to novel selective pressures in these habitats. Assessing the drivers of trait divergence facilitated by these habitats will help identify evolutionary and ecological consequences of reservoir habitats. We tested for morphological divergence in a stream fish that occupies both stream and reservoir habitats. To assess contributions of genetic‐level differences and phenotypic plasticity induced by flow variation, we spawned and reared individuals from both habitats types in flow and no flow conditions. Body shape significantly and consistently diverged in reservoir habitats compared with streams; individuals from reservoirs were shallower bodied with smaller heads compared with individuals from streams. Significant population‐level differences in morphology persisted in offspring but morphological variation compared with field‐collected individuals was limited to the head region. Populations demonstrated dissimilar flow‐induced phenotypic plasticity when reared under flow, but phenotypic plasticity in response to flow variation was an unlikely explanation for observed phenotypic divergence in the field. Our results, together with previous investigations, suggest the environmental conditions currently thought to drive morphological change in reservoirs (i.e., predation and flow regimes) may not be the sole drivers of phenotypic change.  相似文献   

5.
Collin H  Fumagalli L 《Molecular ecology》2011,20(21):4490-4502
Natural selection drives local adaptation, potentially even at small temporal and spatial scales. As a result, adaptive genetic and phenotypic divergence can occur among populations living in different habitats. We investigated patterns of differentiation between contrasting lake and stream habitats in the cyprinid fish European minnow (Phoxinus phoxinus) at both the morphological and genomic levels using geometric morphometrics and AFLP markers, respectively. We also used a spatial correlative approach to identify AFLP loci associated with environmental variables representing potential selective forces responsible for adaptation to divergent habitats. Our results identified different morphologies between lakes and streams, with lake fish presenting a deeper body and caudal peduncle compared to stream fish. Body shape variation conformed to a priori predictions concerning biomechanics and swimming performance in lakes vs. streams. Moreover, morphological differentiation was found to be associated with several environmental variables, which could impose selection on body and caudal peduncle shape. We found adaptive genetic divergence between these contrasting habitats in the form of 'outlier' loci (2.9%) whose genetic divergence exceeded neutral expectations. We also detected additional loci (6.6%) not associated with habitat type (lake vs. stream), but contributing to genetic divergence between populations. Specific environmental variables related to trophic dynamics, landscape topography and geography were associated with several neutral and outlier loci. These results provide new insights into the morphological divergence and genetic basis of adaptation to differentiated habitats.  相似文献   

6.
Fishes often exhibit phenotypic divergence across gradients of abiotic and biotic selective pressures. In streams, many of the known selective pressures driving phenotypic differentiation are largely influenced by hydrologic regimes. Because flow regimes drive so many attributes of lotic systems, we hypothesized fish exhibit phenotypic divergence among streams with different flow regimes. We used a comparative field study to investigate the morphological divergence of Campostoma anomalom (central stonerollers) among streams characterized by highly variable, intermittent flow regimes and streams characterized by relatively stable, groundwater flow regimes. We also conducted a mesocosm experiment to compare the plastic effects of one component of flow regimes, water velocity, on morphology of fish from different flow regimes. We observed differences in shape between flow regimes likely driven by differences in allometric growth patterns. Although we observed differences in morphology across flow regimes in the field, C. anomalum did not exhibit morphologic plasticity in response to water velocity alone. This study contributes to the understanding of how complex environmental factors drive phenotypic divergence and may provide insight into the evolutionary consequences of disrupting natural hydrologic patterns, which are increasingly threatened by climate change and anthropogenic alterations.  相似文献   

7.
Population differentiation is one of the main topics in evolutionary biology. Except the exploration of color variation, few studies focused on morphological divergences among populations of coral reef fishes. In this work, we studied morphological and genetic differentiation among populations of the damselfish, Pomacentrus coelestis, in the northwestern Pacific Ocean. The shapes of the mandible and the premaxilla were explored using geometric morphometric methods and the genetic structure was investigated using microsattelites. Various tests revealed significant shape variation among most P. coelestis populations for both skeletal units. Morphological variation of the mandible accompanies a genetic break between populations of mainland Japan and Okinawa-Taiwan. However, Mantel and Procrustes tests revealed no congruence between morphological and genetic structures. We illustrate that phenotypic plasticity and adaptive divergence are potential evolutionary mechanisms underlying shape difference among P. coelestis populations. An ecomorphological approach suggests that various diet could be related to shape variation of oral jaws.  相似文献   

8.
Intraguild predation is a common ecological interaction that occurs when a species preys upon another species with which it competes. The interaction is potentially a mechanism of divergence between intraguild prey (IG‐prey) populations, but it is unknown if cases of character shifts in IG‐prey are an environmental or evolutionary response. We investigated the genetic basis and inducibility of character shifts in threespine stickleback from lakes with and without prickly sculpin, a benthic intraguild predator (IG‐predator). Wild populations of stickleback sympatric with sculpin repeatedly show greater defensive armor and water column height preference. We laboratory‐raised stickleback from lakes with and without sculpin, as well as marine stickleback, and found that differences between populations in armor, body shape, and behavior persisted in a common garden. Within the common garden, we raised stickleback half‐families from multiple populations in the presence and absence of sculpin. Although the presence of sculpin induced trait changes in the marine stickleback, we did not observe an induced response in the freshwater stickleback. Behavioral and morphological trait differences between freshwater populations thus have a genetic basis and suggest an evolutionary response to intraguild predation.  相似文献   

9.
The frequent occurrence of parallel phenotypic divergence in similar habitats is often evoked when emphasizing the role of ecology in adaptive radiation and speciation. However, because phenotypic plasticity can contribute to the observed pattern of divergence, confirmation of divergence at loci underlying phenotypic traits is important for confirming adaptive divergence. In the present study, we examine parallel morphological, neutral, and potentially adaptive genetic divergence of threespine stickleback inhabiting different habitats within a lake. Three genetic clusters best explained the neutral genetic structure within the lake; however, morphological differences were only weakly connected to genetic clusters and there was considerable phenotypic variation within clusters. Among the factors that could contribute to the observed pattern of morphological and genetic divergence are phenotypic plasticity, selective mortality of hybrids, and habitat choice based on morphology. Several loci are identified as outliers indicating divergent selection between the morphs and some parallels in morphological and adaptive genetic divergence are found in stickleback spawning at two lava sites. However, neutral genetic structure indicates considerable genetic connectivity among the two lava sites, and the parallels in morphology may therefore represent selective distribution of phenotypes rather than parallel divergence. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98 , 803–813.  相似文献   

10.
We present results of an experiment designed to address fundamental issues in the ecology and evolution of plastic trophic morphology: (1) Is observed plasticity adaptive? (2) How much interspecific morphological variation is the result of plasticity? (3) Have different selective regimes resulted in the evolution of different degrees of plasticity? (4) Is genetic variation for phenotypic plasticity present in contemporary populations? We raised fish from two recently diverged species of freshwater threespine sticklebacks on two different diets representative of the natural prey of the two species. Both species exhibited morphological plasticity in an adaptive direction: each species more closely resembled the other when raised on the latter's diet. Dietreversal reduced the natural morphological gap between these two species, -1% to 58%, depending on the trait. One species is known to have a more variable diet in the wild than the other species, and we found that it also exhibited the greater amount of morphological plasticity. Given that the two species have recently diverged, this result is compelling evidence that diet variability is important in the evolution of plastic trophic morphology. Finally, by using a full-sib experimental design, we demonstrated that genetic variation for morphological plasticity exists in contemporary populations, thus confirming that plasticity has evolutionary potential.  相似文献   

11.
Comparisons of neutral marker and quantitative trait divergence can provide important insights into the relative roles of natural selection and neutral genetic drift in population differentiation. We investigated phenotypic and genetic differentiation among Fennoscandian threespine stickleback (Gasterosteus aculeatus) populations, and found that the highest degree of differentiation occurred between sea and freshwater habitats. Within habitats, morphological divergence was highest among the different freshwater populations. Pairwise phenotypic and neutral genetic distances among populations were positively correlated, suggesting that genetic drift may have contributed to the morphological differentiation among habitats. On the other hand, the degree of phenotypic differentiation (PST) clearly surpassed the neutral expectation set by FST, suggesting a predominant role for natural selection over genetic drift as an explanation for the observed differentiation. However, separate PST/FST comparisons by habitats revealed that body shape divergence between lake and marine populations, and even among marine populations, can be strongly influenced by natural selection. On the other hand, genetic drift can play an important role in the differentiation among lake populations.  相似文献   

12.
Geographical variation in microsatellite allele frequencies and morphology were compared for five subspecies of Melospiza melodia (song sparrow; M. m. samuelis, M. m. maxillaris, M. m. pusillula, M. m. gouldii, and M. m. heermanni) in 14 populations in the San Francisco Bay region to (a) assess divergence based on these estimates and (b) test the hypothesis that drift is responsible for morphological and genetic divergence. Morphological differentiation between subspecies was high despite low differentiation at microsatellite loci, indicating high gene flow and large effective population sizes. Low concordance of morphological and genetic estimates of divergence suggests that selection or phenotypic plasticity in morphology has caused morphological differentiation among the subspecies.  相似文献   

13.
Understanding the evolutionary mechanisms that affect the genetic divergence between diadromous and resident populations across heterogeneous environments is a challenging task. While diadromy may promote gene flow leading to a lack of genetic differentiation among populations, resident populations tend to be affected by local adaptation and/or plasticity. Studies on these effects on genomic divergence in nonmodel amphidromous species are scarce. Galaxias maculatus, one of the most widespread fish species in the Southern Hemisphere, exhibits two life histories, an ancestral diadromous, specifically, amphidromous form, and a derived freshwater resident form. We examined the genetic diversity and divergence among 20 estuarine and resident populations across the Chilean distribution of G. maculatus and assessed the extent to which selection is involved in the differentiation among resident populations. We obtained nearly 4,400 SNP markers using a RADcap approach for 224 individuals. As expected, collections from estuarine locations typically consist of diadromous individuals. Diadromous populations are highly differentiated from their resident counterparts by both neutral and putative adaptive markers. While diadromous populations exhibit high gene flow and lack site fidelity, resident populations appear to be the product of different colonization events with relatively low genetic diversity and varying levels of gene flow. In particular, the northernmost resident populations were clearly genetically distinct and reproductively isolated from each other suggesting local adaptation. Our study provides insights into the role of life history differences in the maintenance of genetic diversity and the importance of genetic divergence in species evolution.  相似文献   

14.
Salmonids spawn in highly diverse habitats, exhibit strong genetic population structuring, and can quickly colonize newly created habitats with few founders. Spawning traits often differ among populations, but it is largely unknown if these differences are adaptive or due to genetic drift. To test if sockeye salmon (Oncorhynchus nerka) populations are adapted to glacial, beach, and tributary spawning habitats, we examined variation in heritable phenotypic traits associated with spawning in 13 populations of wild sockeye salmon in Lake Clark, Alaska. These populations were commonly founded between 100 and 400 hundred sockeye salmon generations ago and exhibit low genetic divergence at 11 microsatellite loci (F ST < 0.024) that is uncorrelated with spawning habitat type. We found that mean P ST (phenotypic divergence among populations) exceeded neutral F ST for most phenotypic traits measured, indicating that phenotypic differences among populations could not be explained by genetic drift alone. Phenotypic divergence among populations was associated with spawning habitat differences, but not with neutral genetic divergence. For example, female body color was lighter and egg color was darker in glacial than non-glacial habitats. This may be due to reduced sexual selection for red spawning color in glacial habitats and an apparent trade-off in carotenoid allocation to body and egg color in females. Phenotypic plasticity is an unlikely source of phenotypic differences because Lake Clark sockeye salmon spend nearly all their lives in a common environment. Our data suggest that Lake Clark sockeye salmon populations are adapted to spawning in glacial, beach and tributary habitats and provide the first evidence of a glacial spawning ecotype in salmonids. Glacial spawning habitats are often young (i.e., <200 years old) and ephemeral. Thus, local adaptation of sockeye salmon to glacial habitats appears to have occurred recently.  相似文献   

15.
A peculiar relationship exists between population genetics and invasion biology. Introduced populations often suffer a depletion of genetic variation, but they can persist and adapt to new environments. Here, we show that this relationship is observed in bluegill sunfish (Lepomis macrochirus), an invasive exotic fish in Japan. Genetic analysis using selectively neutral genetic markers reconfirmed that the bluegill introduced into Japan from the United States in 1960 had a single origin with only 15 founders. The analysis also shows that in the process of range expansion, the introduced bluegills experienced severe depletion of genetic diversity due to the founder effect and/or genetic drift. Despite such a decline in genetic diversity, the bluegill populations exhibited a divergent feeding morphology in response to the colonized environments. Such a morphological divergence can facilitate prey exploitation, thereby causing a greater negative impact on native prey resources. Further, in a trophically polymorphic bluegill population in Lake Biwa, physiological characteristics and genetic structures of the intestinal bacterial communities were associated with the difference in diet among the trophic morphs in the host bluegill population. This empirical evidence suggests that despite the severe decline in genetic diversity, the introduced bluegill populations rapidly adapted to the new environment and formed diverse functional relationships with the native bacterial community. Thus, these findings suggest that genetic variation at selectively neutral markers does not always predict adaptability and invasiveness in introduced populations.  相似文献   

16.
Rapid phenotypic diversification during biological invasions can either arise by adaptation to alternative environments or by adaptive phenotypic plasticity. Where experimental evidence for adaptive plasticity is common, support for evolutionary diversification is rare. Here, we performed a controlled laboratory experiment using full-sib crosses between ecologically divergent threespine stickleback populations to test for a genetic basis of adaptation. Our populations are from two very different habitats, lake and stream, of a recently invaded range in Switzerland and differ in ecologically relevant morphological traits. We found that in a lake-like food treatment lake fish grow faster than stream fish, resembling the difference among wild type individuals. In contrast, in a stream-like food treatment individuals from both populations grow similarly. Our experimental data suggest that genetically determined diversification has occurred within less than 140 years after the arrival of stickleback in our studied region.  相似文献   

17.
To examine models of evolution for Coregonus from the Central Alpine region of Europe, 20 populations from nine lakes were assessed for variation at six microsatellite DNA loci. Patterns of variation were tested against three evolutionary models: phenotypic plasticity, multiple invasions of lakes by divergent forms, and within-lake radiation of species flocks. All sympatric and all but one allopatric pairs of populations were significantly divergent in allele frequencies. Pairwise F -statistics indicated reduced gene flow among phenotypically divergent sympatric populations. These results reject the hypothesis that within-lake morphological and ecological diversity reflects phenotypic plasticity within a single gene pool. Genetic similarity was higher among forms within lakes than between populations of the same form in different lakes. Among-lake divergence was primarily a product of allele size differences. Mantel tests contrasting patterns of genetic divergence against patterns predicted from the multiple invasions and species flocks models indicated that the latter is the best explanation of the observed genetic variation. Thus, reproductively isolated species diverged within lakes, with similar patterns repeatedly emerging among lakes. While this study argues for a particular mode of evolution in Central Alpine Coregonus , the taxonomy of these forms remains unresolved.  相似文献   

18.
Human activities reduce biodiversity but may also drive diversification by modifying selection. Urbanization alters stream hydrology by increasing peak water velocities, which should in turn alter selection on the body morphology of aquatic species. Here, we show how urbanization can generate evolutionary divergence in the body morphology of two species of stream fish, western blacknose dace (Rhinichthys obtusus) and creek chub (Semotilus atromaculatus). We predicted that fish should evolve more streamlined body shapes within urbanized streams. We found that in urban streams, dace consistently exhibited more streamlined bodies while chub consistently showed deeper bodies. Comparing modern creek chub populations with historical museum collections spanning 50 years, we found that creek chub (1) rapidly became deeper bodied in streams that experienced increasing urbanization over time, (2) had already achieved deepened bodies 50 years ago in streams that were then already urban (and showed no additional deepening over time), and (3) remained relatively shallow bodied in streams that stayed rural over time. By raising creek chub from five populations under common conditions in the laboratory, we found that morphological differences largely reflected genetically based differences, not velocity–induced phenotypic plasticity. We suggest that urbanization can drive rapid, adaptive evolutionary responses to disturbance, and that these responses may vary unpredictably in different species.  相似文献   

19.

Background

Contemporary evolution following assisted colonization may increase the probability of persistence for refuge populations established as a bet-hedge for protected species. Such refuge populations are considered “genetic replicates” that might be used for future re-colonization in the event of a catastrophe in the native site. Although maladaptive evolutionary divergence of captive populations is well recognized, evolutionary divergence of wild refuge populations may also occur on contemporary time scales. Thus, refuge populations may lose their “value” as true genetic replicates of the native population. Here, we show contemporary evolutionary divergence in body shape in an approximately 30-year old refuge population of the protected White Sands pupfish (Cyprinodon tularosa) resulting in a body-shape mismatch with its native environment.

Methodology/Principal Findings

Geometric morphometic data were collected from C. tularosa cultures raised in experimental mesocosms. Cultures were initiated with fish from the two native populations, plus hybrids, in high or low salinity treatments representing the salinities of the two native habitats. We found that body shape was heritable and that shape variation due to phenotypic plasticity was small compared to shape variation due to population source. C. tularosa from the high salinity population retained slender body shapes and fish from the low salinity population retained deep body shapes, irrespective of mesocosm salinity. These data suggest that the observed divergence of a recently established pupfish population was not explained by plasticity. An analysis of microsatellite variation indicated that no significant genetic drift occurred in the refuge population, further supporting the adaptive nature of changes in body shape. These lines of evidence suggest that body shape divergence of the refuge population reflects a case of contemporary evolution (over a 30-year period).

Conclusions/Significance

These results suggest assisted colonization can introduce novel, and/or relaxed selection, and lead to unintended evolutionary divergence.  相似文献   

20.
Classical Darwinian adaptation to a change in environment can ensue when selection favours beneficial genetic variation. How plastic trait responses to new conditions affect this process depends on how plasticity reveals to selection the influence of genotype on phenotype. Genetic accommodation theory predicts that evolutionary rate may sharply increase when a new environment induces plastic responses and selects on sufficient genetic variation in those responses to produce an immediate evolutionary response, but natural examples are rare. In Iceland, marine threespine stickleback that have colonized freshwater habitats have evolved more rapid individual growth. Heritable variation in growth is greater for marine full-siblings reared at low versus high salinity, and genetic variation exists in plastic growth responses to low salinity. In fish from recently founded freshwater populations reared at low salinity, the plastic response was strongly correlated with growth. Plasticity and growth were not correlated in full-siblings reared at high salinity nor in marine fish at either salinity. In well-adapted lake populations, rapid growth evolved jointly with stronger plastic responses to low salinity and the persistence of strong plastic responses indicates that growth is not genetically assimilated. Thus, beneficial plastic growth responses to low salinity have both guided and evolved along with rapid growth as stickleback adapted to freshwater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号