首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Magnetic resonance imaging (MRI) is the state-of-the-art noninvasive imaging modality in clinical diagnosis. During MRI examination, the patient is exposed to three different forms of electromagnetic radiation: (i) a static magnetic field, (ii) gradient magnetic fields, and (iii) radiofrequency (RF) fields. Each of these may cause significant adverse bioeffects if applied at sufficiently high exposure levels. This article describes in some detail the areas of health concern for both the patient and the health practitioner with respect to the use of clinical MRI, in addition to describing the potential bioeffects of electromagnetic radiations used in this sophisticated imaging modality.  相似文献   

2.
Potential health effects of static magnetic fields have received far less attention than, for example, power frequency or radiofrequency fields. Static fields are found in certain occupational settings, e.g. in the aluminium and chloralkali industries, in arc-welding processes, and certain railways systems. Magnetic resonance imaging (MRI) for medical diagnosis is another source. This paper summarizes the epidemiological evidence of static magnetic field exposure and long-term health effects. There are only a few epidemiological studies available, and the majority of these have focused on cancer risks. There are some reports on reproductive outcomes, and sporadic studies of other outcomes. Overall, few occupational studies have focused specifically on effects of static magnetic field exposure, and exposure assessment have consequently been poor or non-existent. Results from studies that have estimated static magnetic field exposure have not indicated any increased cancer risks, but they are generally based on small numbers of cases and crude exposure assessment. Control of confounding has been limited, and it is likely that the “healthy worker” effect have influenced the results. A few studies have reported results on reproductive outcomes among aluminium workers and MRI operators, but limitations in study designs prevent conclusions. A problem in epidemiological studies of static magnetic fields is that workers in exposed occupations are also exposed to a wide variety of other potentially harmful agents, including some known carcinogens. In conclusion, the available evidence from epidemiological studies is not sufficient to draw any conclusions about potential health effects of static magnetic field exposure.  相似文献   

3.
Epidemiological studies related to radiofrequency (RF) electromagnetic fields (EMF) have mainly used crude proxies for exposure, such as job titles, distance to, or use of different equipment emitting RF EMF. The Royal Norwegian Navy (RNoN) has measured RF field emitted from high‐frequency antennas and radars on several spots where the crew would most likely be located aboard fast patrol boats (FPB). These boats are small, with short distance between the crew and the equipment emitting RF field. We have described the measured RF exposure aboard FPB and suggested different methods for calculations of total exposure and annual dose. Linear and spatial average in addition to percentage of ICNIRP and squared deviation of ICNIRP has been used. The methods will form the basis of a job exposure matrix where relative differences in exposure between groups of crew members can be used in further epidemiological studies of reproductive health. Bioelectromagnetics 31:350–360, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
Dielectric heaters and sealers present the most common source of occupational exposure to excessive radio frequency (RF) fields. These systems are used industrially to heat or melt dielectric materials. Nowadays, the effects of high frequency electromagnetic (EM) fields on the health have been discussed frequently but there are few health studies done for workers around dielectric heaters and sealers. In this study, the leakage fields around dielectric heaters and sealers (27.12?MHz) were measured in MKE – Mechanical and Chemical Industry Corporation, Gazi Rocket Factory and evaluated in terms of standards. It has been observed that operators exposed to same RF fields with occupational exposure limits. Many workers have health complaints, such as elevated body temperatures in the factory. Safe distances or areas for workers should be recommended in these systems. Protective measures could be implemented to minimize these exposures. Further measurements and occupational exposure studies of RF exposed women and men are needed to demonstrate the levels of exposed Radio Frequency Radiation (RFR). Precautions should therefore be taken either to reduce the leakage fields or minimise the exposed fields.  相似文献   

5.
Dielectric heaters and sealers present the most common source of occupational exposure to excessive radio frequency (RF) fields. These systems are used industrially to heat or melt dielectric materials. Nowadays, the effects of high frequency electromagnetic (EM) fields on the health have been discussed frequently but there are few health studies done for workers around dielectric heaters and sealers. In this study, the leakage fields around dielectric heaters and sealers (27.12?MHz) were measured in MKE--Mechanical and Chemical Industry Corporation, Gazi Rocket Factory and evaluated in terms of standards. It has been observed that operators exposed to same RF fields with occupational exposure limits. Many workers have health complaints, such as elevated body temperatures in the factory. Safe distances or areas for workers should be recommended in these systems. Protective measures could be implemented to minimize these exposures. Further measurements and occupational exposure studies of RF exposed women and men are needed to demonstrate the levels of exposed Radio Frequency Radiation (RFR). Precautions should therefore be taken either to reduce the leakage fields or minimise the exposed fields.  相似文献   

6.
A novel exposure system for double-blind human electromagnetic provocation studies has been developed that satisfies the precision, control of fields and potential artifacts, and provides the flexibility to investigate the response of hypotheses-driven electromagnetic field exposure schemes on brain function, ranging from extremely low frequency (ELF) to radio frequency (RF) fields. The system can provide the same exposure of the lateral cerebral cortex at two different RF frequencies (900 and 2140 MHz) but with different exposure levels at subcortical structures, and also allows uniform ELF magnetic field exposure of the brain. The RF modulation and ELF signal are obtained by a freely programmable arbitrary signal generator allowing a wide range of worst-case exposure scenarios to be simulated, including those caused by wireless devices. The maximum achievable RF exposure is larger than 60 W/kg peak spatial specific absorption rate averaged over 10 g of tissue. The maximum ELF magnetic field exposure of the brain is 800 A/m at 50 Hz with a deviation from uniformity of 8% (SD).  相似文献   

7.
Electromagnetic field exposure and health among RF plastic sealer operators   总被引:2,自引:0,他引:2  
Operators of RF plastic sealers (RF operators) are an occupational category highly exposed to radiofrequency electromagnetic fields. The aim of the present study was to make an appropriate exposure assessment of RF welding and examine the health status of the operators. In total, 35 RF operators and 37 controls were included. The leakage fields (electric and magnetic field strength) were measured, as well as induced and contact current. Information about welding time and productivity was used to calculate time integrated exposure. A neurophysiological examination and 24 h ECG were also carried out. The participants also had to answer a questionnaire about subjective symptoms. The measurements showed that RF operators were exposed to rather intense electric and magnetic fields. The mean values of the calculated 6 min, spatially averaged E and H field strengths, in line with ICNIRP reference levels, are 107 V/m and 0.24 A/m, respectively. The maximum measured field strengths were 2 kV/m and 1.5 A/m, respectively. The induced current in ankles and wrists varied, depending on the work situation, with a mean value of 101 mA and a maximum measured value of 1 A. In total, 11 out of 46 measured RF plastic sealers exceeded the ICNIRP reference levels. RF operators, especially the ready made clothing workers had a slightly disturbed two-point discrimination ability compared to a control group. A nonsignificant difference between RF operators and controls was found in the prevalence of subjective symptoms, but the time integrated exposure parameters seem to be of importance to the prevalence of some subjective symptoms: fatigue, headaches, and warmth sensations in the hands. Further, RF operators had a significantly lower heart rate (24 h registration) and more episodes of bradycardia compared to controls.  相似文献   

8.
This paper considers the exposure of humans to static magnetic fields due to magnetic resonance imaging (MRI) procedures. It briefly introduces the types of magnetic fields associated with MRI. It then discusses trends in the number of people exposed to MRI, the field strength of the magnets used in MRI, and the types of applications of MRI. It also considers the types of staff who are exposed to magnetic fields due to MRI, and the alternative techniques that would be used in the absence of MRI.  相似文献   

9.
The clinical and preclinical use of high-field intensity (HF, 3 T and above) magnetic resonance imaging (MRI) scanners have significantly increased in the past few years. However, potential health risks are implied in the MRI and especially HF MRI environment due to high-static magnetic fields, fast gradient magnetic fields, and strong radiofrequency electromagnetic fields. In this study, the genotoxic potential of 3 T clinical MRI scans in cultured human lymphocytes in vitro was investigated by analyzing chromosome aberrations (CA), micronuclei (MN), and single-cell gel electrophoresis. Human lymphocytes were exposed to electromagnetic fields generated during MRI scanning (clinical routine brain examination protocols: three-channel head coil) for 22, 45, 67, and 89 min. We observed a significant increase in the frequency of single-strand DNA breaks following exposure to a 3 T MRI. In addition, the frequency of both CAs and MN in exposed cells increased in a time-dependent manner. The frequencies of MN in lymphocytes exposed to complex electromagnetic fields for 0, 22, 45, 67, and 89 min were 9.67, 11.67, 14.67, 18.00, and 20.33 per 1000 cells, respectively. Similarly, the frequencies of CAs in lymphocytes exposed for 0, 45, 67, and 89 min were 1.33, 2.33, 3.67, and 4.67 per 200 cells, respectively. These results suggest that exposure to 3 T MRI induces genotoxic effects in human lymphocytes.  相似文献   

10.
A total of 550 fertile chicken eggs (White Leghorn) were exposed to a radiofrequency (RF) electromagnetic field of 1.25 GHz (continuous wave) at six different power flux densities in the range of 9.0-0.75 mW/cm(2). The eggs were exposed either continuously throughout the whole 21 days of incubation (long-term exposure) or in a short-term exposure (1-2 h/day). The temperatures of the embryonic tissue and the amniotic fluid, respectively, were measured with inserted temperature probes. This study was designed to investigate the relationship between exposure and temperature changes in exposed tissues, without considering biological and medical effects. This knowledge is of general interest for studies of nonthermic teratological or embryo-lethal effects of exposure to electromagnetic fields (EMFs). Throughout the entire 21 days of embryonic development, the mean temperature increases in the eggs during the exposure were found to be up to 0.25 degrees C for a power flux density of 1.25 mW/cm(2) and increased to 2.3 degrees C for 9.0 mW/cm(2). The corresponding maximum whole-body SARs for the embryos over the 21 days of embryonic development were 1.45 and 10.44 W/kg, respectively. At 0.75 mW/cm(2) (0.87 W/kg) the extent of the RF-field induced hyperthermia was within the measurement accuracy (+/-0.1 degrees C) of the temperature probes used in the tests. The field-induced temperature increase was greatest in the first week of incubation and was less pronounced in the last (third) week before hatching. In both the short- and the long-term exposures, the temperature of the exposed tissue and the amniotic fluid, respectively, reached its maximum (asymptotic) approximately 40-50 min after the RF field was switched on. After the field was switched off, the temperature inside the exposed eggs returned to its initial value within 40-50 min.  相似文献   

11.
Radiofrequency electric and magnetic fields have been measured around 11 large broadcast stations and tall FM/TV towers in Sweden. The results show that operating personnel may be exposed to fields exceeding by several times the present standard for occupational exposure to RF radiation. Maintenance personnel are especially vulnerable to exposure when climbing energized towers. The present study indicates that the transmitters should be switched off during the performance of certain tasks on the tower. Safe passage of maintenance personnel near energized antennas of certain types is impossible without a drastic reduction of the transmitted power. In the stations, the RF leakage radiation was generally low, but when work was done with the cabinet doors of the transmitter open, high field strengths were found in the vicinity of the transmitter even though it was switched off. It was found that the transmitter acted as a tuned receiver of energy from the other transmitters.  相似文献   

12.
The fourth course at the International School of Bioelectromagnetics addressed various aspects of the epidemiology of exposure to electromagnetic fields (EMF). In this overview, inspired by the lectures and the discussions among participants, we summarize current knowledge on exposure to EMF and disease risk, with emphasis on studies of use of mobile phones and brain tumours and exposure to power lines and childhood leukaemia. Sources of bias and error hamper straightforward conclusions in some areas and, in order to move forward, improvements in study design and exposure assessment are necessary. The scientific evidence available to date on possible long‐term effects from exposure to ELF and RF fields is not strong enough to revise current protection limits based on the known acute effects of such exposures. Precautionary measures may be considered to reduce ELF exposure of children or exposure to RF during mobile phone use, keeping in mind that it is unclear whether they involve any preventive benefit. Possible health effects from mobile phone use in adults and in children should be investigated further by prospective epidemiological studies with improved exposure assessment and brain tumour incidence rates should be monitored. Further studies on the relation between childhood leukaemia and ELF magnetic fields would be worthwhile if they focus on heavily exposed groups and attempt to minimize possible selection bias. In conclusion, epidemiological studies conducted with appropriate diligence can play a key role in finding the answers. Bioelectromagnetics 30:511–524, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
Due to the refractory nature of pathogenic microbial biofilms, innovative biofilm eradication strategies are constantly being sought. Thus, this study addresses a novel approach to eradicate Pseudomonas aeruginosa biofilms. Magnetic nanoparticles (MNP), ciprofloxacin (Cipro), and magnetic fields were systematically evaluated in vitro for their relative anti-biofilm contributions. Twenty-four-hour biofilms exposed to aerosolized MNPs, Cipro, or a combination of both, were assessed in the presence or absence of magnetic fields (Static one-sided, Static switched, Oscillating, Static + oscillating) using changes in bacterial metabolism, biofilm biomass, and biofilm imaging. The biofilms exposed to magnetic fields alone exhibited significant metabolic and biomass reductions (p < 0.05). When biofilms were treated with a MNP/Cipro combination, the most significant metabolic and biomass reductions were observed when exposed to static switched magnetic fields (p < 0.05). The exposure of P. aeruginosa biofilms to a static switched magnetic field alone, or co-administration with MNP/Cipro/MNP + Cipro appears to be a promising approach to eradicate biofilms of this bacterium.  相似文献   

14.
The purpose of this study was to examine whether exposure to magnetic fields (MFs) relevant for magnetic resonance imaging (MRI) in clinical routine influences cell cycle progression in two tumor cell lines in vitro. HL60 and EA2 cells were exposed to four types of MFs: (i) static MF of 1.5 and 7.05 T, (ii) extremely low frequency magnetic gradient fields (ELFMGFs) with +/- 10 mT/m and 100 Hz, as well as +/- 100 mT/m and 100 Hz, (iii) pulsed high frequency MF in the radiofrequency (RF) range (63.6 MHz, 5.8 microT), and (iv) a combination of (i-iii). Exposure periods ranged from 1 to 24 h. Cell cycle distribution (G(0)/G(1), S, and G(2)/M phases) was analyzed by flow cytometry. Cell cycle analysis did not reveal differences between the exposed and the control cells. As expected, positive controls with irradiated (8 Gy) HL60 and EA2 cells showed a strong G(2)/M arrest. Using conditions that are relevant for patients during MRI, no influence of MFs on cell cycle progression was observed in these cell lines. Care was taken to control secondary parameters of influence, such as vibration by the MR scanner or temperature to avoid false positive results.  相似文献   

15.
The gradient fields in magnetic resonance imaging (MRI) will in some circumstances exceed the ICNIRP guidelines of occupational electromagnetic field exposure when personnel are near the scanner during MRI scanning. In this work we have shown that using commercially available modified sequences for noise reduction purposes, exposure will decrease by a factor of 1.5 with preserved image quality. This is a first step toward optimizing occupational exposure within the scanner room without affecting image quality. Bioelectromagnetics 31:85–87, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
Clinical and epidemiological studies attest that alterations in heart rate variability (HRV) are predictive of specific types of cardiovascular morbidity and mortality in otherwise healthy persons. Recent reports also suggest that changes in HRV may be associated with exposure to intermittent magnetic fields (60 Hz, 28.3 microT) in the laboratory and that mortality is increased in cardiac disease categories related to altered HRV for utility workers whose jobs involve longer exposure to elevated magnetic fields. This study combined three approaches to learn more about the specific exposure circumstances under which changes in HRV occur. First, cardiac autonomic control, as indexed by HRV spectral analysis measures, was measured in 24 men during exposure to a much higher intensity field than any previously examined (resultant flux density = 127.3 microT [1273 milliGauss, mG]). Second, HRV measures from the same individual were compared across three relevant test conditions: intermittent and continuous field exposure and during a no-exposure, control condition. Third, electrocardiographic data were analyzed to determine if the precise timing of when the magnetic field switched on or off in relation to the cardiac cycle results in phase-resetting of the human cardiac rhythm. HRV measures were not altered by either field exposure condition compared to the control condition, and no evidence for a phase-resetting mechanism was found. Further research is needed to resolve the differences between the present and the earlier laboratory-based studies of HRV and to determine if cardiac rhythm disturbances are associated with exposure to the more complex magnetic fields found in the man-made environment.  相似文献   

17.
Organisms are exposed to electromagnetic fields from the introduction of wireless networks that send information all over the world. In this study we examined the impact of exposure to the fields from mobile phone base stations (GSM 900?MHz) on the reproductive capacity of small, virgin, invertebrates. A field experiment was performed exposing four different invertebrate species at different distances from a radiofrequency electromagnetic fields (RF EMF) transmitter for a 48-h period. The control groups were isolated from EMF exposure by use of Faraday cages. The response variables as measured in the laboratory were fecundity and number of offspring. Results showed that distance was not an adequate proxy to explain dose-response regressions. No significant impact of the exposure matrices, measures of central tendency and temporal variability of EMF, on reproductive endpoints was found. Finding no impact on reproductive capacity does not fully exclude the existence of EMF impact, since mechanistically models hypothesizing non-thermal-induced biological effects from RF exposure are still to be developed. The exposure to RF EMF is ubiquitous and is still increasing rapidly over large areas. We plea for more attention toward the possible impacts of EMF on biodiversity.  相似文献   

18.
Fertilized Medaka fish eggs were used to determine if electromagnetic fields, designed to simulate those beneath a high voltage power line, have biological effects on vertebrate embryo development. The newly fertilized eggs were exposed to a 60 Hz electrical field of 300 mA/m2 current density, a 60 Hz magnetic field of 1.0 gauss RMS, or to the combined electric plus magnetic fields for 48 hours. No gross abnormalities were observed in any of the embryos as they developed, but significant development delays were seen in those embryos exposed to either the magnetic or to the combined electromagnetic fields; delays were not seen in the embryos exposed to the electrical field. Thus, a 60 Hz magnetic field like that encountered in a man made powerline environment was shown to retard development of fish embryos.  相似文献   

19.
Electrosurgical units (ESUs) commonly used in operating suites employ radiofrequency (RF) energy for cutting and coagulation, and operate at different frequencies in the range 0.3–5 MHz. Around the electrode and cables, electric and magnetic fields at similar frequencies will be generated, and the surgeon using the ESU will therefore be exposed to these electromagnetic fields. In this study we have measured the levels of RF fields near the lead wires of two electrosurgical units, BARD 3000 operating at a fixed frequency of 0.5 MHz, and ERBE ICC 350 with a frequency range from 0.3 to 1 MHz. Electric fields were measured at distances from 5–30 cm from the lead wire. Measurements were done with the ESU both cutting and coagulating, and power levels ranging from 10–100 W. The magnetic field outside the lead wire was calculated from the measured current through the leads using standard theory. Using those measurements as a base, the calculated local exposure of the surgeon's hand was estimated to exceed 15 kV/m for the electric field and the corresponding value for the magnetic field was 16 µT. These calculations exceed the suggested international reference levels at 0.5 MHz (610 V/m and 4 µT, respectively).  相似文献   

20.
The study investigates the impact of exposure to the stray magnetic field of a whole-body 7 T MRI scanner on neurobehavioral performance and cognition. Twenty seven volunteers completed four sessions, which exposed them to approximately 1600 mT (twice), 800 mT and negligible static field exposure. The order of exposure was assigned at random and was masked by placing volunteers in a tent to hide their position relative to the magnet bore. Volunteers completed a test battery assessing auditory working memory, eye-hand co-ordination, and visual perception. During three sessions the volunteers were instructed to complete a series of standardized head movements to generate additional time-varying fields ( approximately 300 and approximately 150 mT.s(-1) r.m.s.). In one session, volunteers were instructed to keep their heads as stable as possible. Performance on a visual tracking task was negatively influenced (P<.01) by 1.3% per 100 mT exposure. Furthermore, there was a trend for performance on two cognitive-motor tests to be decreased (P<.10). No effects were observed on working memory. Taken together with results of earlier studies, these results suggest that there are effects on visual perception and hand-eye co-ordination, but these are weak and variable between studies. The magnitude of these effects may depend on the magnitude of time-varying fields and not so much on the static field. While this study did not include exposure above 1.6 T, it suggests that use of strong magnetic fields is not a significant confounder in fMRI studies of cognitive function. Future work should further assess whether ultra-high field may impair performance of employees working in the vicinity of these magnets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号