首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined zinc (Zn) metabolism in rats given diets containing excess calcium (Ca). Rats were given phytate-free diet containing 5 g Ca/kg (control), 12.5 g Ca/kg, or 25 g Ca/kg for 4 wk in Experiment 1. The dietary treatment did not affect Zn concentration in the plasma, testis, kidney, spleen and liver; however, Zn concentration in the femur and its cortex was significantly higher in rats given diet containing 25 g Ca/kg than in other rats. Rats were given phytate-free diet containing 5 g Ca /kg or 25 g Ca /kg for 4 wk in Experiment 2. After 12-h food deprivation, rats were given a diet extrinsically labeled by 67Zn with dysprosium as a fecal marker for 4 h. Feces were collected from 1 d before administration of the labeled diet to 5 d after administration. Excess Ca did not affect the true absorption of Zn and its endogenous excretion but increased femoral Zn. These results suggest that excess Ca improves Zn bioavailability without affecting Zn absorption when diets do not contain phytate.  相似文献   

2.
Different zinc (Zn) compounds have unique properties that may influence the amount of Zn absorbed particularly in the presence of phytic acid (PA), a common food component that binds Zn and decreases its bioavailability. In this study, 30-day-old male rats (n = 12/diet group) were fed diets supplemented with PA (0.8%) and low levels (8 mg Zn/kg diet) of inorganic (Zn oxide, Zn sulphate) or chelated (Zn gluconate, Zn acetate, Zn citrate, EDTA disodium Zn, Zn orotate) Zn compounds for 5 weeks. Two control groups were fed diets supplemented with low or normal (30 mg Zn/kg diet) Zn (as Zn oxide) without added PA. Control rats fed the low Zn oxide diet showed depressed Zn status. Addition of PA to this diet exacerbated the Zn deficiency in rats. Growth (body weight gain and femur length) and Zn concentrations in plasma and tissues were similar in rats fed Zn oxide, Zn sulphate, Zn gluconate, Zn acetate, Zn citrate or Zn orotate. Rats fed EDTA disodium Zn showed enhanced growth compared to rats fed Zn oxide or Zn gluconate and had higher Zn concentrations in plasma and femur compared to rats fed all other Zn compounds. Only the haematological profile of rats fed EDTA disodium Zn did not differ from control rats fed normal Zn. These data indicate that in rats fed a high PA diet, bioavailability of commonly used inorganic or chelated Zn compounds does not differ appreciably, but Zn supplied as an EDTA disodium salt has superior bioavailability.  相似文献   

3.
Phytic acid (PA) and fructooligosaccharides (FOS) such as inulin are two food components that are able to modify mineral absorption negatively or positively. The influence of PA and FOS on the cecal and apparent mineral absorption as well as on the mineral status (plasma, hepatic, and bone) were investigated in four groups of rats fed one of the experimental diets: a fiber-free (FF) diet, a FF diet containing 7 g/kg PA (FF + PA), a diet containing 100 g/kg inulin (FOS), or a FOS diet containing 7 g/kg PA (FOS + PA). The cecal enlargement together with the acidification of cecal pH in rats adapted to FOS diets led to an improved Ca and Mg cecal absorption. Mineral apparent absorption was significantly enhanced by FOS ingestion (Ca, +20%; Mg, +50%; Fe, +23%; Cu, +45%), whereas PA decreased this factor only for trace elements (Fe, -48%; Zn, -62%; Cu, -31%). These inhibitory effects of a FF + PA diet have repercussions on blood (Mg, -15%; Fe, -12%; transferrin saturation -31%), liver (Mg, -18%; Fe, -42%; Zn, -25%), and bone (Zn, -25%) variables. However, the introduction of FOS into a PA diet counteracted these observed deleterious effects by stimulating bacterial hydrolysis of PA (+60% in rats adapted to FOS + PA compared to those fed the FF + PA diet) and by improving cecal absorption of minerals.  相似文献   

4.
Five groups of individually housed albino rats (n=7, initial average weight=48 g) were fed diets based on egg albumen and cornstarch (basal diet 8.2 g Ca, 6.0 g P, 0.7 g Mg, 225 mg Zn, 150 mg Fe, 60 mg Mn, 8 mg Cu, and 5 mg Cd) over a 4-wk period. Group I (control) was fed the basal diet free of phytic acid (PA). In groups II, III, IV, and V, cornstarch was replaced by 3.5, 7.0, 10.5, and 14.0 g sodium phytate/kg diet, respectively. Daily gain, feed efficiency, Zn status (Zn in plasma, femur, testes, liver and kidneys, activity of the plasma alkaline phosphatase) and apparent absorption of Zn, Fe, Cu, and Mn remained unchanged by the different dietary treatments. PA decreased apparent Mg absorption significantly and apparent absorption of Ca in tendency. Increasing the amount of phytate caused a corresponding enhancement of amount of the digestible P. Cd accumulation in the liver was not significantly altered, and kidney Cd accumulation slightly increased owing to PA. In conclusion, it was shown that under conditions of high dietary Zn, PA had only little effect on the carryover of Cd in growing rats.  相似文献   

5.
The purpose of this study was to determine the effects of adding yogurt to animal diets that were high in phytic acid (PA) and adequate in zinc (38 μg Zn/g). The PA:Zn molar ratio was 60:1. Zinc status was determined by documenting growth and measuring the zinc concentration in bone (tibia) and plasma. For 25 days, six groups (n=6) of Sprague–Dawley weanling rats were fed one of six AIN-76 diets. Half of the diets contained PA. Four of the diets contained yogurt with either active or heat-treated (inactive) cultures added at 25% of the diet. The diets were as follows: (a) AIN, (b) AIN with active yogurt, (c) AIN and inactive yogurt, (d) AIN with PA, (e) AIN with PA plus active yogurt and (f) AIN with PA plus inactive yogurt. Body weight, weight gain and zinc concentration in bone and plasma were measured, and food efficiency ratio was calculated. Rats fed diets with PA and yogurt had normal growth compared to the control group. Growth retardation was evident in the group fed the diet with PA and no yogurt. This group had significantly lower body weight compared to all other groups (P<.05). Rats fed diets with PA, with or without yogurt, had significantly lower zinc concentration in bone and plasma (P<.05). Adding yogurt to diets high in PA resulted in normal growth in weanling rats; however, zinc concentration in bone and plasma was still suboptimal.  相似文献   

6.
Bone mineralization was studied in rats. Animals were divided into three feeding groups: LCP - diet with 13.5% crude protein in DM (5% of gluten, 10% of casein), HCP - diet with 21.2% CP in DM (8% of gluten, 10% of casein), and LSM - diet based on grain meals and meat-bone meal (21% CP in DM). After 28 days feeding, animals were euthanased by cervical dislocation and femur bones were collected, weighed and kept frozen until analyses. Diets with 21% protein (HCP, LSM) significantly increased weight of femur bones. Despite of the substantially higher ash level (7.1%) in the LSM diet than in the LCP diet (3.4%), rats of both groups had the similar bone concentration of Ca (15.7 +/- 1.1 vs. 17.4 +/- 1.1 g/kg) and Zn (178.7 +/- 7.9 vs. 173.0 +/- 8.5 mg/kg). However bone density in LSM rats was significantly higher than in LCP ones. Although rats fed HCP diet had intermediate bone density, the bone concentration of Ca (11.4 +/- 0.5 g/kg) and Zn (145.1 +/- 2.9 mg/kg) was significantly lower, than in animals fed LCP and LSM diets. This was related to the very wide protein/calcium (37:1 g/g) and protein/zinc (5.3:1 g/mg) ratios in HCP diet. Those ratios were narrowest in the LSM diet: 16.2:1 (CP/Ca) and 2.6:1 (CP/Zn). It can be conluded that protein/mineral ratio in a diet is a very important factor in bone development, besides dietary protein and ash contents itselves.  相似文献   

7.
To examine whether zinc deficiency would increase the toxicity of dietary aluminum, weanling, male Sprague-Dawley rats were fed purified diets containing either 2 or 30 mg Zn/kg diet, with or without 500 mg Al/kg diet for 28 d. Individually pair-fed rats were fed the 30 mg Zn/kg diet with or without added aluminum to control for inanition secondary to zinc deficiency. Rats fed the 2 μg Zn/kg diet showed evidence of zinc deficiency, including anorexia, growth retardation, and depressed concentrations of zinc in tibias and livers. Zinc deficiency did not significantly increase the concentrations of aluminum in the tibias, livers, kidneys, or regions of the brain examined (cerebrum, cerebellum, midbrain, and hippocampus). Inclusion of aluminum in the diet did not alter aluminum concentrations in the various tissues. Under the conditions of this study, zinc deficiency did not result in greater sensitivity to dietary aluminum exposure.  相似文献   

8.
Despite attempts to use zinc (Zn) concentrations in hard tissues to comment upon the degree of carnivory in past populations, zinc has yielded inconsistent trophic level effects. The question of what, if anything, zinc in human enamel reveals regarding past diets is the focus of this research. We test whether the zinc content of deciduous tooth enamel from contemporary Mexican infants varies by maternal dietary variables such as zinc intake, proportion of animal products consumed, and dietary components that are known to impact zinc absorption. Deciduous teeth were collected from former participants in a longitudinal study of maternal and infant diet and function in highland Mexico. The Zn/Ca ratios of both prenatal and postnatal regions of 37 anterior teeth representing 26 individuals were assessed via laser ablation–inductively coupled plasma–mass spectrometry. Maternal dietary data collected during lactation were not correlated with zinc levels in the early postnatal enamel of infants' teeth, which were forming at the same time. In the case of prenatal enamel, zinc values were correlated with the consumption of foods known to influence Zn bioavailability, most notably tortillas (P = 0.008; r = 0.510), but not with meat consumption. Unexpectedly, women who consumed diets with poor zinc bioavailability during pregnancy gave birth to infants whose prenatal enamel demonstrated the highest Zn/Ca ratios, possibly due to enhanced zinc absorption during pregnancy for those mothers suffering most from long‐term micronutrient deficiency. These results would suggest that zinc is not a reliable trophic level indicator. Am J Phys Anthropol, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
To date, most researchers have used dietborne metal concentrations rather than daily doses to define metal exposure and this has resulted in contradictory data within and between fish species. It has also resulted in the impression that high concentrations of dietborne Cu and Zn (e.g. > 900 mg kg(-1) dry diet) are relatively non-toxic to fish. We re-analyzed existing data using rations and dietborne metal concentrations and used daily dose, species and life stage to define the toxicity of dietborne Cu and Zn to fish. Partly because of insufficient information we were unable to find consistent relationships between metal toxicity in laboratory-prepared diets and any other factor including, supplemented metal compound (e.g. CuSO(4) or CuCl(2)), duration of metal exposure, diet type (i.e. practical, purified or live diets), or water quality (flow rates, temperature, hardness, pH, alkalinity). For laboratory-prepared diets, dietborne Cu toxicity occurred at daily doses of > 1 mg kg(-1) body weight d(-1) for channel catfish (Ictalurus punctatus), 1-15 mg kg(-1) body weight d(-1) (depending on life stage) for Atlantic salmon (Salmo salar) and 35-45 mg kg(-1) body weight d(-1) for rainbow trout (Oncorhynchus mykiss). We found that dietborne Zn toxicity has not yet been demonstrated in rainbow trout or turbot (Scophthalmus maximus) probably because these species have been exposed to relatively low doses of metal ( < 90 mg kg(-1) body weight d(-1)) and effects on growth and reproduction have not been analyzed. However, daily doses of 9-12 mg Zn kg(-1) body weight d(-1) in laboratory-prepared diets were toxic to three other species, carp Cyprinus carpio, Nile tilapia Oreochromis niloticus, and guppy Poecilia reticulata. Limited research indicates that biological incorporation of Cu or Zn into a natural diet can either increase or decrease metal bioavailability, and the relationship between bioavailability and toxicity remains unclear. We have resolved the contradictory data surrounding the effect of organic chelation on metal bioavailability. Increased bioavailability of dietborne Cu and Zn is detectable when the metal is both organically chelated and provided in very low daily doses. We have summarized the information available on the effect of phosphates, phytate and calcium on dietborne Zn bioavailability. We also explored a rationale to understand the relative importance of exposure to waterborne or dietborne Cu and Zn with a view to finding an approach useful to regulatory agencies. Contrary to popular belief, the relative efficiency of Cu uptake from water and diet is very similar when daily doses are compared rather than Cu concentrations in each media. The ratio of dietborne dose:waterborne dose is a good discriminator of the relative importance of exposure to dietborne or waterborne Zn. We discuss gaps in existing data, suggest improvements for experimental design, and indicate directions for future research.  相似文献   

10.
This study evaluated the effects of diets with fiber (cellulose and/or pectin) supplemented with chromium(III) on homeostasis of selected minerals in femurs, thigh muscles, livers, and kidneys of rats. For 6 weeks, male rats were fed experimental diets: a fiber-free diet (FF), a diet containing 5 % cellulose (CEL), 5 % pectin (PEC), or 2.5 % cellulose and 2.5 % pectin (CEL?+?PEC). These diets had 2.53 or 0.164 mg Cr/kg diet. The tissue levels of Ca, Mg, Zn, Fe, and Cr were determined by using atomic absorption spectrometry. Supplementing diets with Cr resulted in significantly higher Cr levels in the femurs of rats fed the CEL diet and significantly higher Cr and Fe levels in the rats fed the CEL?+?PEC diet compared to the rats fed FF diet. Muscle Ca content was significantly lower in the rats fed the CEL?+?PEC?+?Cr diet compared to the rats fed FF?+?Cr diet. The rats consuming the PEC?+?Cr diet had the highest liver Cr content. The highest kidney Zn content was observed in the rats fed diets containing Cr and one type of fiber. These results indicate that diets containing chromium at elevated dose and fiber have a significant effect on the mineral balance in rat tissues.  相似文献   

11.
In previous studies based on indirect procedures, we reported that Mg deficit increased the bioavailability of a number of elements such as calcium, zinc, iron, copper, manganese and decreased selenium absorption. The present study was designed to verify these findings by direct methods. We investigated the effect of dietary magnesium deficiency on enterocyte Ca, Fe, Zn, Cu, Mn and Se concentrations. Male Wistar rats were fed a Mg-deficient diet (129 mg Mg/kg food) for 70 days. Whole enterocytes from the upper jejunum were isolated and Ca, Fe, Zn, Cu, Mn and Se were determined. The results were compared with findings in a control group that was pair-fed with an identical diet except that it covered this species's nutritional requirements for Mg (480 mg Mg/kg food). The Mg-deficient diet significantly increased enterocyte content of Ca, Fe, Zn, Cu and Mn; however, we found no significant changes in the Se content of these cells. These data support the results obtained by indirect methods.  相似文献   

12.
Two experiments in a 2?×?2 factorial arrangement were conducted to evaluate the effect of crude protein (CP) (130 vs. 200 g/kg) and phosphorus (P) (4.0 vs. 6.0 g total P/kg) level in a phytase supplemented diet (500 FTU [phytase units]/kg) in grower-finisher pigs. Owing to the design of the experiment, as dietary P level increased, there was also an increase in dietary calcium (Ca) level in order to maintain a dietary Ca to P ratio of 1.6:1. In Experiment 1, four diets were fed to 56 pigs (n?=?14, initial body weight [BW] 36.7?±?4.2 kg) to investigate the interaction between CP and P on growth performance, bone mineralisation and digesta pH. Experiment 2 consisted of 16 entire male pigs (n?=?4; offered identical diets to that offered in Experiment 1) for the determination of total tract apparent digestibility and nitrogen (N), P and Ca utilisation. There was an interaction between CP and P level on bone ash, bone P and bone Ca concentrations (p?<?0.05). Pigs offered low CP–low P diets had a higher bone ash, P and Ca concentrations than pigs offered high CP–low P diets. However, there was no effect of CP level at high P levels on bone ash, P and Ca concentrations. Pigs offered low P diets had a lower ileal pH compared with pigs offered high P diets (p?<?0.05). In conclusion, offering pigs a high CP–low P, phytase-supplemented diet resulted in a decrease in bone mineralisation.  相似文献   

13.
Sensitivity of the assay for Cu,Zn superoxide dismutase 3 (SOD3), the predominant form of SOD in serum, can be increased, and interferences caused by low-molecular-weight substances in the serum can be reduced by conducting the assay at pH 10 with xanthine/xanthine oxidase and acetylated cytochrome c (cyt c) as superoxide generator and detector, respectively. Serum SOD3 activity was assayed under these conditions in an experiment where weanling, male rats were fed diets for 6 weeks containing 3, 5 and 15 mg Zn/kg with dietary Cu set at 0.3, 1.5 and 5 mg Cu/kg at each level of dietary Zn. Serum SOD3 responded to changes in dietary Cu but not to changes in dietary Zn. A second experiment compared serum SOD3 activity to traditional indices of Cu status in weanling, male and female rats after they were fed diets containing, nominally, 0, 1, 1.5, 2, 2.5, 3 and 6 mg Cu/kg for 6 weeks. Serum SOD3 activity was significantly lower (P < .05) in male rats fed diets containing 0 and 1 mg Cu/kg and female rats fed diet containing 0 mg Cu/kg compared with rats fed diet containing 6 mg Cu/kg. These changes were similar to changes in liver Cu concentrations, liver cyt c oxidase (CCO) activity and plasma ceruloplasmin in males and females. Serum SOD3 activity was also strongly, positively correlated with liver Cu concentrations over the entire range of dietary Cu concentrations (R(2) = .942 in males, R(2) = .884 in females, P < .0001). Plots of serum SOD3 activity, liver Cu concentration, liver CCO activity and ceruloplasmin as functions of kidney Cu concentration all had two linear segments that intersected at similar kidney Cu concentrations (18-22 microg/g dry kidney in males, 15-17 microg/g dry kidney in females). These findings indicate that serum SOD3 activity is a sensitive index of Cu status.  相似文献   

14.
Phytic acid, a major phosphorous storage compound found in foodstuffs, is known to form insoluble complexes with nutritionally essential minerals, including zinc (Zn). Phytases are enzymes that catalyze the removal of these minerals from phytic acid, improving their bioavailability. The objective of the present study was to determine the ability of dietary phytase to affect body weight, body composition, and bone strength in growing rats fed a high phytic acid, low Zn diet. Rats (n = 20) were fed either a control (AIN-93) or phytase supplemented (Natuphos, BASF, 1,500 phytase units (FTU)/kg) diet for a period of 8 weeks. Phytase supplementation resulted in increased (P<.05) bone and plasma Zn, but no change in plasma inorganic phosphorous or bone levels of Ca, Fe, or Mg. The addition of phytase to the diets resulted in a 22.4% increase (P<.05) in body weight at the end of the study as compared with rats fed a control diet. Dual x-ray absorptiometry (DXA) revealed that phytase supplementation resulted in increase lean body mass (LBM, P<.001) and increased bone mineral content (BMC, P<.001) as compared with feeding the control diet. Bone studies indicated that femurs and tibias from phytase supplemented rats had greater mass (P<.05) and were stronger (P<.05) than rats fed the control diet. This data suggest that the addition of phytase to low Zn diets results in improved Zn status, which may be responsible for beneficial effects on growth, body composition, and bone strength.  相似文献   

15.
The effects of soluble corn bran arabinoxylans on cecal digestion, lipid metabolism, and mineral utilization [calcium (Ca) and magnesium (Mg)] were investigated in rats adapted to semipurified diets. The diets provided either 710 g/kg wheat starch alone (control) or 610 g/kg wheat starch plus 100 g/kg corn soluble fiber (arabinoxylans) and either 0 or 2 g/kg cholesterol (control + cholesterol and arabinoxylans + cholesterol, respectively). Compared with rats fed the control diets, rats fed the arabinoxylan diets had significant cecal hypertrophy (+50% after 3 days of the fiber adaptation) and an accumulation of short-chain fatty acids, especially propionic acid (up to 45% in molar percentage). Arabinoxylans enhanced the cecal absorption of Ca and Mg (from 0.07 to 0.19 micromol/min for Ca and from 0.05 to 0.23 micromol/min for Mg). Mg balance was enhanced by arabinoxylans (+25%). The arabinoxylan diet markedly reduced the cholesterol absorption from 50% of ingested cholesterol in controls up to approximately 15% in rats adapted to the arabinoxylans diet. Arabinoxylans were effective in lowering plasma cholesterol (approximately -20%). There was practically no effect of the diets on cholesterol in d > 1.040 lipoproteins (high density lipoproteins) whereas arabinoxylans were very effective in depressing cholesterol in d < 1.040 lipoproteins (especially in triglyceride-rich lipoproteins). Corn fermentable fiber decreased the accumulation of cholesterol in the liver. In parallel, the arabinoxylan diet counteracted the downregulation of 3-hydroxy-3-methylglutaryl-CoA by cholesterol. These data suggest that arabinoxylans may have a great impact on intestinal fermentation, mineral utilization, and cholesterol metabolism.  相似文献   

16.
Differences in iron bioavailability from human milk and milk formulas may in part be due to differences in lipid composition. We investigated the short and long term effects of diets based on different fats [corn, coconut, olive, or soy oil, human milk fat (HMF) and a formula fat blend (FF)] on iron absorption in rats. Suckling rat pups dosed with 59Fe-labeled diets containing different fat sources were killed after 6 h, and blood and individual tissues were counted. Iron availability was estimated by % 59Fe in blood. Pups dosed with a more saturated fat (coconut oil) had a higher % 59Fe in blood than those fed other fat sources. Weanling rats were used to determine iron bioavailability from fat sources using both the hemoglobin repletion method and whole body counting. Hemoglobin regeneration was significantly higher for rats fed the HMF diet (8.4 +/- 0.5 g/dl) than from the FF diet (6.5+/-0.6 g/dl) or the corn oil diet (less saturated) (6.4 +/- 0.3 g/dl). Rats fed diets based on coconut oil (more saturated) had significantly higher % 59Fe retention (61.6 +/- 1.4) than rats fed diets based on FF (49.8 +/- 3.4). There was a significant positive association between oleic acid in the diet and oleic acid in the intestinal mucosa (r = 0.95, p < 0.05) and between linoleic acid in the diet and linoleic acid in the intestinal mucosa (r = 0.97, p < 0.05) suggesting that the dietary treatment altered the fatty acid composition of the brush border membrane. Our results suggest that saturated fats may increase iron absorption and that part of this may be achieved by changes in the fatty acid composition of the intestinal mucosa. Hemoglobin regeneration and % 59Fe retention data suggest that differences in iron absorption from infant diets may in part be due to differences in fat composition. Therefore, lipid composition of infant formulas should also be taken into consideration as a factor influencing iron bioavailability.  相似文献   

17.
Phytic acid forms insoluble complexes with nutritionally essential minerals, including zinc (Zn). Animal studies show that addition of microbial phytase (P) to low-Zn diets improves Zn status and bone strength. The present study determined the effects of phytase supplementation on bone mineral density (BMD), body composition and voluntary running activity of male rats fed a high phytic acid, low-Zn diet. In a factorial design, rats were assigned to ZnLO (5 mg/kg diet), ZnLO+P (ZnLO diet with 1500 U phytase/kg) or ZnAD (30 mg/kg diet) groups and were divided into voluntary exercise (EX) or sedentary (SED) groups, for 9 weeks. SED rats were significantly heavier from the second week, and no catch-up growth occurred in EX rats. Feed intakes were not different between groups throughout the study. ZnLO animals had decreased food efficiency ratios compared to both phytase-supplemented (ZnLO+P) and Zn-adequate (ZnAD) animals (P<.01 compared to ZnLO). The ZnLO+P and ZnAD rats ran 56–75 km more total distance than ZnLO rats (P<.05), with the ZnLO+P rats running more kilometers per week than the ZnLO rats by Week 6. In vivo DEXA analyses indicate that rats fed phytase-supplemented diets had higher lean body mass (LBM) than those fed ZnLO diets; and that rats fed the Zn-adequate diets had the highest LBM. Body fat (%) was significantly lower in EX rats and was both Zn- and phytase insensitive. Rats fed phytase-supplemented diets had higher bone mineral content (BMC), bone area (BA) and BMD than rats fed ZnLO diets; and in rats fed ZnAD diets these indices were the highest. The dietary effects on BMC, BA and BMD were independent of activity level.We conclude that consuming supplemental dietary phytase or dietary Zn additively enhances Zn status to increase BMD, LBM and voluntary physical activity in rats fed a low-Zn diet. While the findings confirm that bone health is vulnerable to disruption by moderate Zn deficiency in rats, this new data suggests that if dietary Zn is limiting, supplemental phytase may have beneficial effects on LBM and performance activity.  相似文献   

18.
Mark D. Finke 《Zoo biology》2003,22(2):147-162
A variety of commercially raised insects are fed to insectivorous reptiles, but information concerning appropriate diets used to feed these insects is limited. In the present study, house crickets (Acheta domesticus adults and nymphs), mealworms (Tenebrio molitor larvae), and silkworms (Bombyx mori larvae) were fed diets containing graded levels of calcium (Ca) and/or vitamin A–nutrients that are low or absent in most insects. Diets and insects were analyzed for moisture, Ca, phosphorus (P), and vitamin A. For adult crickets and cricket nymphs, body Ca and vitamin A concentrations increased in a linear fashion with increasing levels of dietary Ca or vitamin A. Ca concentrations of silkworms also increased in a linear fashion with increasing levels of dietary Ca. For mealworms, body Ca and vitamin A concentrations increased in a nonlinear fashion with increasing levels of dietary Ca or vitamin A. These regression equations, in conjunction with insect nutrient composition, allow for the calculation of the optimum nutrient concentration for gut‐loading diets. Final recommendations were based on National Research Council (NRC) requirements for rats, adjustments for the energy content of the insects, and nutrient overages as appropriate. Gut‐loading diets for crickets (adults and nymphs) should be supplemented to contain the following nutrients, respectively: Ca (51 and 32 g/kg), vitamin A (8,310 and 5,270 µg retinol/kg), vitamin D (300 and 190 µg cholecalciferol/kg), vitamin E (140 and 140 mg RRR‐α‐tocopherol/kg), thiamin (31 and 21 mg/kg), and pyridoxine (20 and 10 mg/kg). Gut‐loading diets for mealworms should be supplemented to contain the following nutrients: Ca (90 g/kg), iron (51 mg/kg), manganese (31 mg/kg), vitamin A (13,310 µg retinol/kg), vitamin D (460 µg cholecalciferol/kg), vitamin E (660 mg RRR‐α‐tocopherol/kg), thiamin (5 mg/kg), vitamin B12 (650 µg/kg), and methionine (29 g/kg). Gut‐loading diets for silkworms should be supplemented to contain the following nutrients: Ca (23 g/kg), iodine (0.7 mg/kg), vitamin D (140 µg cholecalciferol/kg), vitamin E (70 mg RRR‐α‐tocopherol/kg), and vitamin B12 (226 µg/kg). Zoo Biol 22:147–162, 2003. © 2003 Wiley‐Liss, Inc.  相似文献   

19.
An enzyme-linked immunosorbent assay (ELISA) for the Alternaria mycotoxin tenuazonic acid (TeA) was evaluated by comparative analysis of naturally contaminated sorghum grains and sorghum-based infant food, using a stable isotope dilution LC-MS assay (SIDA; limit of detection (LOD) 1.0 μg/kg) as the reference method. LODs of the ELISA were 30 μg/kg in sorghum grains and 220 μg/kg in sorghum-based infant cereals. With SIDA, 100% of the samples (n = 28) had been positive for TeA in a concentration range of 6–584 μg/kg (mean 113 μg/kg). The ELISA consistently detected TeA in all naturally contaminated samples at cut-off levels of 30–60 μg/kg (sorghum) and 200–300 μg/kg (infant cereals), as based on corresponding to SIDA values. Although the ELISA was much less sensitive than the SIDA method, it may be useful as a screening method for sorghum and sorghum-based infant foods and can be employed to identify samples containing elevated concentrations of TeA in food, well below the proposed level of concern (500 μg/kg).  相似文献   

20.
Long-term effects of iron: Zinc interactions on growth in rats   总被引:1,自引:0,他引:1  
The influence of iron (Fe) on the bioavailability and functional status of zinc (Zn) was studied in young rats using metabolic balances and tissue dosages, which were compared to growth. Diets supplied adequate intakes of Fe (45 and 300 mg/kg diet) and Zn (14 and 45 mg/kg) for 2 mo. Two metabolic balance determinations were performed that were correlated for Zn and Fe during the first and the last weeks of the study. A significant effect of Fe supply, but not of Zn was displayed on Fe absorption; both Fe and Zn diet concentrations had a significant influence on Zn absorption. Fe and Zn organ contents were significantly correlated with the amount absorbed during the two metabolic balances. There was a positive correlation between liver and muscle Fe and Fe absorption, and Fe absorption and muscle Zn, as well as a negative one with liver Zn; a positive correlation was displayed between Zn absorption and Zn organ content. No correlation was found between Zn absorption and Fe tissue content. Growth was correlated with Zn, but not with Fe absorption during both balances. A positive correlation was displayed between growth and Zn liver content, and a negative one with Fe liver content. Care must be taken to give growing subjects balanced diets or supplementation, since the negative interactions between these trace elements are likely to persist as long as the diet is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号