首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
血脑屏障是将中枢神经系统与外周循环中的炎症介质和效应性免疫细胞分隔开的重要生理屏障,由脑血管内皮细胞和周围的血管周细胞、胞外基质膜以及星形胶质细胞等构成,对维持脑微环境和正常生理功能至关重要。临床和实验研究表明,外周炎症与血脑屏障破坏有关,炎症可以通过多种途径影响血脑屏障的正常功能,导致中枢神经系统疾病的发生发展。因此,研究外周炎症如何影响血脑屏障的正常功能,可以为保护血脑屏障免受外周炎症破坏提供重要依据。现综述外周炎症对血脑屏障功能的作用及其机制,并分析其与最近的研究热点CAR-T细胞疗法和新型冠状病毒肺炎COVID-19的相关性。  相似文献   

2.
【目的】研究血液通路在H5N1高致病性禽流感病毒入侵小鼠中枢神经系统中的作用。【方法】用3株H5N1病毒滴鼻感染BALB/c小鼠,研究小鼠肺、脑、血中的病毒在感染后不同时间点的复制动态及病理进展,通过免疫组化和免疫荧光染色显示病毒在脑部血管内皮细胞及血管周围神经组织的感染情况。【结果】小鼠感染后病毒迅速在肺中高效复制,随即形成病毒血症;感染后第6天病毒在肺中的滴度和在血液样本中的检出率达到峰值,此时小鼠脑部才开始检测到病毒;小鼠脑内血管内皮细胞、脑血管周围神经组织的神经元和神经胶质细胞中可检测到流感病毒NP蛋白。【结论】血液播散可能是高致病性H5N1禽流感病毒进入中枢神经系统的途径之一。  相似文献   

3.
隐球菌是一种机会感染性真菌,主要侵犯中枢神经系统,隐球菌脑膜炎约占隐球菌感染的80%,死亡率高。研究隐球菌如何侵袭血管内皮细胞,穿过血脑屏障,是揭示隐球菌嗜中枢性的关键。许多因素影响了隐球菌穿越脑血管内皮细胞,如隐球菌毒性因子降解酶、尿素酶使脑血管内皮细胞通透性增加,脑血管内皮细胞CD44分子、HIV-1gp41蛋白能提高隐球菌对大脑血脑屏障的侵入能力等。现就隐球菌通过血脑屏障的机制做一综述。  相似文献   

4.
【目的】构建蜱传脑炎病毒(Tick-borne encephalitis virus,TBEV)跨血脑屏障研究的体外细胞模型,研究2种不同细胞的TBEV培养物在病毒跨过血脑屏障中的主要差异,从而为进一步TBEV跨血脑屏障的分子机制研究奠定基础。【方法】利用人脑微血管内皮细胞(Human brain microvascular endothelial cells,hCMEC/D3)构建体外血脑屏障的细胞模型。用BHK-21细胞中培养的蜱传脑炎病毒感染人脑微血管内皮细胞,检测TBEV在hCMEC/D3中的复制增殖情况;将TBEV加入体外血脑屏障模型的上层微孔中,用实时荧光定量PCR和噬斑测定的方法检测跨过血脑屏障的病毒量;将感染TBEV的人单核细胞加入血脑屏障模型的上层微孔中,观察渗漏进下层孔中的淋巴细胞,并用实时荧光定量PCR和噬斑测定的方法检测跨过血脑屏障的病毒量。利用伊文思蓝标记的白蛋白确定血脑屏障细胞的渗透率变化。【结果】实时荧光定量PCR和病毒滴度测定结果表明,TBEV不能在hCMEC/D3细胞中复制增殖,也不能直接跨过血脑屏障;然而,人单核细胞THP-1感染TBEV后,尽管单核细胞不能直接携带TBEV跨过血脑屏障,但THP-1中产生的病毒却能跨过血脑屏障模型进入下层孔中,并引起血脑屏障渗透率的增高。【结论】单核细胞有助于TBEV跨过血脑屏障。  相似文献   

5.
目的构建体外血脑屏障模型,并检测隐球菌不同菌株穿越血脑屏障的能力。方法本研究应用商品化的小鼠脑微血管内皮细胞系b END.3构建体外血脑屏障模型,并验证该模型应用于隐球菌穿越血脑屏障机制研究的可行性。通过构建模型,以非致病性的酿酒酵母作为阴性对照,比较新生隐球菌不同血清型标准株及基因缺陷株穿越体外血脑屏障能力的差异。结果跨膜电阻值(TEER)检测提示体外血脑屏障模型构建成功。检测结果显示酿酒酵母作为阴性对照穿越血脑屏障效率最低,新生隐球菌血清A型标准株H99穿越细胞屏障效率最强,血清D型标准株JEC21穿越细胞屏障效率显著低于H99。较之H99,黑色素酶缺陷株lac1裣穿越体外血脑屏障模型的效率没有显著差异;尿素酶缺陷株ure1裣效率显著下降(P0.05),约为标准株H99通过率的59.9%;荚膜缺陷株cap59裣突破体外血脑屏障模型效率最低,约为标准株H99的18%(P0.001)。结论隐球菌中枢系统感染体外模型成功构建。新生隐球菌突破血脑屏障的能力与其血清型以及荚膜、尿素酶等毒力因子的表达密切相关。  相似文献   

6.
基质金属蛋白酶与中枢神经系统感染   总被引:1,自引:0,他引:1  
基质金属蛋白酶(MMPs)是一组合锌的能降解细胞外基质的中性蛋白酶家族.目前认为MMPs尤其是明胶酶(MMP-2,MMP-9)与中枢神经系统感染关系密切.通常它们以酶原的形式存在,一旦活化,则迅速攻击血脑屏障,降解基底膜的一些基质蛋白,破坏内皮细胞的紧密连接蛋白,促进脑水肿的形成和炎细胞的浸润.近年来研究发现,中枢神经系统感染后MMPs表达增加.导致血脑屏障损害及血管源性脑水肿,并参与中枢神经系统免疫反应,促进感染的病理生理过程.  相似文献   

7.
目的构建体外血脑屏障模型,并检测隐球菌不同菌株穿越血脑屏障的能力。方法本研究应用商品化的小鼠脑微血管内皮细胞系b END.3构建体外血脑屏障模型,并验证该模型应用于隐球菌穿越血脑屏障机制研究的可行性。通过构建模型,以非致病性的酿酒酵母作为阴性对照,比较新生隐球菌不同血清型标准株及基因缺陷株穿越体外血脑屏障能力的差异。结果跨膜电阻值(TEER)检测提示体外血脑屏障模型构建成功。检测结果显示酿酒酵母作为阴性对照穿越血脑屏障效率最低,新生隐球菌血清A型标准株H99穿越细胞屏障效率最强,血清D型标准株JEC21穿越细胞屏障效率显著低于H99。较之H99,黑色素酶缺陷株lac1裣穿越体外血脑屏障模型的效率没有显著差异;尿素酶缺陷株ure1裣效率显著下降(P<0.05),约为标准株H99通过率的59.9%;荚膜缺陷株cap59裣突破体外血脑屏障模型效率最低,约为标准株H99的18%(P<0.001)。结论隐球菌中枢系统感染体外模型成功构建。新生隐球菌突破血脑屏障的能力与其血清型以及荚膜、尿素酶等毒力因子的表达密切相关。  相似文献   

8.
目的初步探讨新生隐球菌分泌的胞外蛋白水解酶在新生隐球菌穿越血脑屏障致病过程中的作用。方法在含有成熟的脑微血管内皮细胞的培养皿中,分别加入胞外蛋白水解酶相关成分及其特异性抑制剂后,利用相差显微镜动态观察微血管内皮细胞形态学的改变;应用免疫组织细胞化学技术检测基质金属蛋白酶-9(MMP-9)、微管相关蛋白(Tau-LRP)和低密度脂蛋白受体相关蛋白(LDL—LRP)表达的变化。结果①加入丝氨酸蛋白酶1h后可观察到内皮细胞开始收缩,面积变小,细胞间隙增宽,细胞收缩有时间依从性,至10h时仅为处理前的20%;加入丝氨酸蛋白酶+抑肽酶后细胞形态学无明显变化(P〉0.05)。②加入隐球菌浓缩上清液1h后内皮细胞开始收缩,至6h时为原来的20%;加入菌株浓缩上清液+抑肽酶后细胞形态学无明显变化(P〉0.05)。③丝氨酸蛋白酶使内皮细胞的MMP-9、Tau.LRP、LDL—LRP的表达上调,与对照组比较,有显著统计学差异(P〈0.01)。结论新生隐球菌分泌的胞外蛋白水解酶可能通过上调MMP-9和(或)Tau—LRP、LDL—LRP的表达,诱导内皮细胞基质降解和细胞自身微管结构及紧密连接发生变化,最终导致血脑屏障通透性增加,菌体细胞穿越血脑屏障而致病。  相似文献   

9.
脑毛细血管上的特殊结构单元为大脑提供氧气和养分,与此同时形成一种限制性屏障,称为血脑屏障(BBB),该结构单元由单层脑微血管内皮细胞构成,内皮细胞外侧的周细胞、基膜以及星形胶质细胞的足突也参与了血脑屏障的形成.血脑屏障是一种选择性渗透屏障,大多数中枢神经系统候选药物在血脑屏障中的渗透性差,用实验动物进行药物筛选具有成本高、周期长、成功率低等缺点.此外,直接在人体中试验有违道德伦理,但建立可靠的体外血脑屏障模型可以简化实验过程、缩短试验周期、实验结果更易测定,因此建立体外BBB模型可以极大地加快中枢神经系统药物的研发.目前已研究的模型主要可以分为3类:单培养、共培养、三培养,这些模型由简单到复杂,与体内血脑屏障的相似性也越来越高.本文就目前现有的血脑屏障模型进行综述,以期未来在体外BBB模型设计中有新的思路.  相似文献   

10.
隐球菌是一种环境机会致病菌,能够侵袭宿主中枢神经系统并引起致命性的隐球菌性脑膜脑炎。在隐球菌侵犯血脑屏障过程中,有许多重要的致病因素参与,如荚膜、尿素酶、磷脂酶等。其还可以通过多种途径穿越血脑屏障,造成脑部感染。近年来发现隐球菌还可以利用纤溶酶激活基质金属蛋白酶类,使其穿越血脑屏障。该文就隐球菌侵袭血脑屏障的相关机制研究进展作一综述。  相似文献   

11.
Development of the blood-brain barrier   总被引:7,自引:0,他引:7  
The endothelial cells forming the blood-brain barrier (BBB) are highly specialized to allow precise control over the substances that leave or enter the brain. An elaborate network of complex tight junctions (TJ) between the endothelial cells forms the structural basis of the BBB and restricts the paracellular diffusion of hydrophilic molecules. Additonally, the lack of fenestrae and the extremely low pinocytotic activity of endothelial cells of the BBB inhibit the transcellular passage of molecules across the barrier. On the other hand, in order to meet the high metabolic needs of the tissue of the central nervous system (CNS), specific transport systems selectively expressed in the membranes of brain endothelial cells in capillaries mediate the directed transport of nutrients into the CNS or of toxic metabolites out of the CNS. Whereas the characteristics of the mature BBB endothelium are well described, the cellular and molecular mechanisms that control the development, differentiation and maintenance of the highly specialized endothelial cells of the BBB remain unknown to date, despite the recent explosion in our knowledge of the growth factors and their receptors specifically acting on vascular endothelium during development. This review summarizes our current knowledge of the cellular and molecular mechanisms involved in the development and maintenance of the BBB.  相似文献   

12.
The blood–brain barrier (BBB) is a term used to describe the unique properties of central nervous system (CNS) blood vessels. One important BBB property is the formation of a paracellular barrier made by tight junctions (TJs) between CNS endothelial cells (ECs). Here, we show that Lipolysis-stimulated lipoprotein receptor (LSR), a component of paracellular junctions at points in which three cell membranes meet, is greatly enriched in CNS ECs compared with ECs in other nonneural tissues. We demonstrate that LSR is specifically expressed at tricellular junctions and that its expression correlates with the onset of BBB formation during embryogenesis. We further demonstrate that the BBB does not seal during embryogenesis in Lsr knockout mice with a leakage to small molecules. Finally, in mouse models in which BBB was disrupted, including an experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis and a middle cerebral artery occlusion (MCAO) model of stroke, LSR was down-regulated, linking loss of LSR and pathological BBB leakage.  相似文献   

13.
In the central nervous system (CNS) complex endothelial tight junctions (TJs) form a restrictive paracellular diffusion barrier, the blood-brain barrier (BBB). Pathogenic changes within the CNS are frequently accompanied by the loss of BBB properties, resulting in brain edema. In order to investigate whether BBB leakiness can be monitored by a loss of TJ proteins from cellular borders, we used an in vitro BBB model where brain endothelial cells in co-culture with astrocytes form a tight permeability barrier for 3H-inulin and 14C-sucrose. Removal of astrocytes from the co-culture resulted in an increased permeability to small tracers across the brain endothelial cell monolayer and an opening of the TJs to horseradish peroxidase as detected by electron microscopy. Strikingly, opening of the endothelial TJs was not accompanied by any visible change in the molecular composition of endothelial TJs as junctional localization of the TJ-associated proteins claudin-3, claudin-5, occludin, ZO-1 or ZO-2 or the adherens junction-associated proteins -catenin or p120cas did not change. Thus, opening of BBB TJs is not readily accompanied by the complete loss of the junctional localization of TJ proteins.This work is dedicated to the memory of Werner Risau (died 13.12.1998), who initiated this collaboration  相似文献   

14.
The blood–brain barrier (BBB) selectively controls the homeostasis of the central nervous system (CNS) environment using specific structural and biochemical features of the endothelial cells, pericytes, and glial limitans. Glial cells, which represent the cellular components of the mature BBB, are the most numerous cells in the brain and are indispensable for neuronal functioning. We investigated the effects of Shiga toxin on glial cells in vitro. Shiga toxin failed to inhibit cell proliferation but attenuated expression of heat shock protein 70, which is one of the chaperone proteins, in cultured and primary glial cells. Furthermore, the combination of Shiga toxin and a heat shock procedure induced cell apoptosis and decreased cell proliferation in both cells. Thus, we speculate that glial cell death in response to the combination of Shiga toxin and heat shock might weaken the BBB and induce central nervous system complications.  相似文献   

15.
The Blood-brain-barrier (BBB) provides both anatomical and physiological protection for the central nervous system (CNS), shielding the brain for toxic substances in the blood, supplying brain tissues with nutrients and filtering harmful compounds from the brain back to the bloodstream. The BBB is composed of four main cellular elements: endothelial cells (ECs), astrocyte end-feet, microglial cells, and perycites. Transport across the BBB is limited by both physical and metabolic barriers (enzymes, and different transport systems). Tight junctions (TJs) present between ECs form an important barrier against diffusion, excluding most blood-borne substances for entering the brain.  相似文献   

16.
One of the least understood issues in the pathogenesis and pathophysiology of microbial infection of the central nervous system (CNS) is how microorganisms cross the blood–brain barrier (BBB), which separates brain interstitial space from blood and is formed by the tight junctions of brain microvascular endothelial cells (BMEC). BMEC monolayer and bilayer culture systems have been developed as in vitro models to dissect the mechanisms of adhesion and invasion involved in pathogenesis of CNS infection caused by microbes. Viral, bacterial, fungal and parasitic pathogens may breach the BBB and enter the CNS through paracellular, transcellular and/or Trojan horse mechanisms. Conceivable evidence suggests that microbial proteins are the major genetic determinants mediating penetration across the BBB. Several bacterial proteins including IbeA, IbeB, AslA,YijP, OmpA, PilC and InlB contribute to transcellular invasion of BMEC. Viral proteins such as gp120 of HIV have been shown to play a role in penetration of the BBB. Fungal and parasitic pathothogens may follow similar mechanisms. SAG1 of Toxoplasma gondii has been suggested as a ligand to mediate host-cell invasion. Understanding the fundamental mechanisms of microbial penetration of the BBB may help develop novel approaches to prevent the mortality and morbidity associated with central nervous system (CNS) infectious diseases.  相似文献   

17.
Bacterial pathogens may breach the blood-brain barrier (BBB) and invade the central nervous system through paracellular and/or transcellular mechanisms. Transcellular penetration, e.g., transcytosis across the BBB has been demonstrated for Escherichia coli K1, group B streptococcus, Listeria monocytogenes, Citrobacter freundii and Streptococcus pneumonia strains. Genes contributing to invasion of brain microvascular endothelial cells include E. coli K1 genes ompA, ibeA, ibeB, and yijP. Understanding the mechanisms of bacterial penetration across the BBB may help develop novel approaches to preventing bacterial meningitis.  相似文献   

18.
The blood–brain barrier (BBB) is essential for maintaining homeostasis within the central nervous system (CNS) and is a prerequisite for proper neuronal function. The BBB is localized to microvascular endothelial cells that strictly control the passage of metabolites into and out of the CNS. Complex and continuous tight junctions and lack of fenestrae combined with low pinocytotic activity make the BBB endothelium a tight barrier for water soluble moleucles. In combination with its expression of specific enzymes and transport molecules, the BBB endothelium is unique and distinguishable from all other endothelial cells in the body. During embryonic development, the CNS is vascularized by angiogenic sprouting from vascular networks originating outside of the CNS in a precise spatio-temporal manner. The particular barrier characteristics of BBB endothelial cells are induced during CNS angiogenesis by cross-talk with cellular and acellular elements within the developing CNS. In this review, we summarize the currently known cellular and molecular mechanisms mediating brain angiogenesis and introduce more recently discovered CNS-specific pathways (Wnt/β?catenin, Norrin/Frizzled4 and hedgehog) and molecules (GPR124) that are crucial in BBB differentiation and maturation. Finally, based on observations that BBB dysfunction is associated with many human diseases such as multiple sclerosis, stroke and brain tumors, we discuss recent insights into the molecular mechanisms involved in maintaining barrier characteristics in the mature BBB endothelium.  相似文献   

19.
Tight junctions are well-developed between adjacent endothelial cells of blood vessels in the central nervous system, and play a central role in establishing the blood-brain barrier (BBB). Claudin-5 is a major cell adhesion molecule of tight junctions in brain endothelial cells. To examine its possible involvement in the BBB, claudin-5-deficient mice were generated. In the brains of these mice, the development and morphology of blood vessels were not altered, showing no bleeding or edema. However, tracer experiments and magnetic resonance imaging revealed that in these mice, the BBB against small molecules (<800 D), but not larger molecules, was selectively affected. This unexpected finding (i.e., the size-selective loosening of the BBB) not only provides new insight into the basic molecular physiology of BBB but also opens a new way to deliver potential drugs across the BBB into the central nervous system.  相似文献   

20.
Human T-cell leukemia virus type 1 (HTLV-1) is associated with a variety of clinical manifestations, including tropical spastic paraparesis or HTLV-1-associated myelopathy (TSP/HAM). Viral detection in the central nervous system (CNS) of TSP/HAM patients demonstrates the ability of HTLV-1 to cross the blood-brain barrier (BBB). To investigate viral entry into the CNS, rat brain capillary endothelial cells were exposed to human lymphocytes chronically infected by HTLV-1 (MT2), to lymphocytes isolated from a seropositive patient, or to a control lymphoblastoid cell line (CEM). An enhanced adhesion to and migration through brain endothelial cells in vitro was observed with HTLV-1-infected lymphocytes. HTLV-1-infected lymphocytes also induced a twofold increase in the paracellular permeability of the endothelial monolayer. These effects were associated with an increased production of tumor necrosis factor alpha by HTLV-1-infected lymphocytes in the presence of brain endothelial cells. Ultrastructural analysis showed that contact between endothelial cells and HTLV-1-infected lymphocytes resulted in a massive and rapid budding of virions from lymphocytes, followed by their internalization into vesicles by brain endothelial cells and apparent release onto the basolateral side, suggesting that viral particles may cross the BBB using the transcytotic pathway. Our study also demonstrates that cell-cell fusion occurs between HTLV-1-infected lymphocytes and brain endothelial cells, with the latter being susceptible to transient HTLV-1 infection. These aspects may help us to understand the pathogenic mechanisms associated with neurological diseases induced by HTLV-1 infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号