首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Assessing the mating 'health' of commercial honey bee queens   总被引:1,自引:0,他引:1  
Honey bee queens mate with multiple males, which increases the total genetic diversity within colonies and has been shown to confer numerous benefits for colony health and productivity. Recent surveys of beekeepers have suggested that 'poor queens' are a top management concern, thus investigating the reproductive quality and mating success of commercially produced honey bee queens is warranted. We purchased 80 commercially produced queens from large queen breeders in California and measured them for their physical size (fresh weigh and thorax width), insemination success (stored sperm counts and sperm viability), and mating number (determined by patriline genotyping of worker offspring). We found that queens had an average of 4.37 +/- 1.446 million stored sperm in their spermathecae with an average viability of 83.7 +/- 13.33%. We also found that the tested queens had mated with a high number of drones (average effective paternity frequency: 17.0 +/- 8.98). Queen "quality" significantly varied among commercial sources for physical characters but not for mating characters. These findings suggest that it may be more effective to improve overall queen reproductive potential by culling lower-quality queens rather than systematically altering current queen production practices.  相似文献   

2.
Effects of insemination quantity on honey bee queen physiology   总被引:1,自引:0,他引:1  
Mating has profound effects on the physiology and behavior of female insects, and in honey bee (Apis mellifera) queens, these changes are permanent. Queens mate with multiple males during a brief period in their early adult lives, and shortly thereafter they initiate egg-laying. Furthermore, the pheromone profiles of mated queens differ from those of virgins, and these pheromones regulate many different aspects of worker behavior and colony organization. While it is clear that mating causes dramatic changes in queens, it is unclear if mating number has more subtle effects on queen physiology or queen-worker interactions; indeed, the effect of multiple matings on female insect physiology has not been broadly addressed. Because it is not possible to control the natural mating behavior of queens, we used instrumental insemination and compared queens inseminated with semen from either a single drone (single-drone inseminated, or SDI) or 10 drones (multi-drone inseminated, or MDI). We used observation hives to monitor attraction of workers to SDI or MDI queens in colonies, and cage studies to monitor the attraction of workers to virgin, SDI, and MDI queen mandibular gland extracts (the main source of queen pheromone). The chemical profiles of the mandibular glands of virgin, SDI, and MDI queens were characterized using GC-MS. Finally, we measured brain expression levels in SDI and MDI queens of a gene associated with phototaxis in worker honey bees (Amfor). Here, we demonstrate for the first time that insemination quantity significantly affects mandibular gland chemical profiles, queen-worker interactions, and brain gene expression. Further research will be necessary to elucidate the mechanistic bases for these effects: insemination volume, sperm and seminal protein quantity, and genetic diversity of the sperm may all be important factors contributing to this profound change in honey bee queen physiology, queen behavior, and social interactions in the colony.  相似文献   

3.
Queen promiscuity lowers disease within honeybee colonies   总被引:2,自引:0,他引:2  
Most species of social insects have singly mated queens, but in some species each queen mates with numerous males to create a colony with a genetically diverse worker force. The adaptive significance of polyandry by social insect queens remains an evolutionary puzzle. Using the honeybee (Apis mellifera), we tested the hypothesis that polyandry improves a colony's resistance to disease. We established colonies headed by queens that had been artificially inseminated by either one or 10 drones. Later, we inoculated these colonies with spores of Paenibacillus larvae, the bacterium that causes a highly virulent disease of honeybee larvae (American foulbrood). We found that, on average, colonies headed by multiple-drone inseminated queens had markedly lower disease intensity and higher colony strength at the end of the summer relative to colonies headed by single-drone inseminated queens. These findings support the hypothesis that polyandry by social insect queens is an adaptation to counter disease within their colonies.  相似文献   

4.
Five microsatellite loci were used to determine paternities in six Apis mellifera colonies headed by naturally mated queens. The last inseminating males were identified by collecting and genotyping the mating sign left in the genital tract of each queen. Significant differences in paternity frequencies were observed between males, but the proportion of worker and queen offspring sired by the last inseminating drone did not differ significantly from those of other drones. Each male kept his rank of precedence for the different cohorts, although the variance in subfamily proportions decreased over time, most notably in the colony displaying the lowest level of polyandry. These results suggest that, if sperm competition exists in the honeybee, it does not significantly increase the fitness of the last inseminating drone. The spermatozoa of the different inseminating drones are not totally mixed before they reach the spermatheca, in particular when only few males mate with the queen. The weak difference in the subfamily proportions observed between queen and worker samples confirms that nepotistic interactions are rare. Copyright 2002 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.  相似文献   

5.
Summary: Honey bee queens have been shown to mate with a high number of males, but the evolutionary advantage of this high degree of polyandry is still unclear. Mating data from a number of different Apis species and subspecies are needed to help explain polyandry in honey bees. Pupae of four colonies of Apis mellifera sicula from Sicily were genotyped on three polymorphic microsatellite loci. The genotypes of the queens and fathering drones from these colonies were deduced from the genotypes of the pupae. We found no evidence for polygyny, at least we can exclude more than one functional queen, even super-sister queens, if maternity contributions are equal. The four queens mated with at least 5 to 12 (mean: 9.3 - 3.0 SE) drones. We estimate the error in our determination of the mating frequency that is caused by limited genetic resolution of the marker loci to be less than 1 mating given that Hardy-Weinberg assumptions are satisfied. However, the drones the single queens mated with may be a non-random sample of the whole population, so that detection error may be more severe. The average pedigree relatedness among workers within the colonies was estimated to be 0.341. These results are within the range of those found in other A. mellifera subspecies and Apis species except A. dorsata. We speculate that mating frequency may be positively correlated with drone density.  相似文献   

6.
The significance of multiple mating in the social wasp Vespula maculifrons   总被引:1,自引:0,他引:1  
The evolution of the complex societies displayed by social insects depended partly on high relatedness among interacting group members. Therefore, behaviors that depress group relatedness, such as multiple mating by reproductive females (polyandry), are unexpected in social insects. Nevertheless, the queens of several social insect species mate multiply, suggesting that polyandry provides some benefits that counteract the costs. However, few studies have obtained evidence for links between rates of polyandry and fitness in naturally occurring social insect populations. We investigated if polyandry was beneficial in the social wasp Vespula maculifrons. We used genetic markers to estimate queen mate number in V. maculifrons colonies and assessed colony fitness by counting the number of cells that colonies produced. Our results indicated that queen mate number was directly, strongly, and significantly correlated with the number of queen cells produced by colonies. Because V. maculifrons queens are necessarily reared in queen cells, our results demonstrate that high levels of polyandry are associated with colonies capable of producing many new queens. These data are consistent with the explanation that polyandry is adaptive in V. maculifrons because it provides a fitness advantage to queens. Our research may provide a rare example of an association between polyandry and fitness in a natural social insect population and help explain why queens in this taxon mate multiply.  相似文献   

7.
Multiple functional queens in a colony (polygyny) and multiple mating by queens (polyandry) in social insects challenge kin selection, because they dilute inclusive fitness benefits from helping. Colonies of the ant Plagiolepis pygmaea brash contain several hundreds of multiply mated queens. Yet, within‐colony relatedness remains unexpectedly high. This stems from low male dispersal, extensive mating among relatives and adoption of young queens in the natal colony. We investigated whether inbreeding results from workers expelling foreign males, and/or from preferential mating between related partners. Our data show that workers actively repel unrelated males entering their colony, and that queens preferentially mate with related males. These results are consistent with inclusive fitness being a driving force for inbreeding: by preventing outbreeding, workers reduce erosion of relatedness within colonies due to polygyny and polyandry. That virgin queens mate preferentially with related males could result from a long history of inbreeding, which is expected to reduce depression in species with regular sibmating.  相似文献   

8.
The mating system of honey bees (genus Apis) is extremely polyandrous, where reproductive females (queens) typically mate with 12 or more males (drones) during their mating flight(s). The evolutionary implications for hyperpolyandry have been subject to considerable debate and empirical testing because of the need to understand the proximate mechanisms that drive such extreme mating behavior despite the potential costs. The ability of queens to gauge and adjust their reproductive success is therefore important for selection to act on queen mating number at both the evolutionary (colony-level) and proximate (individual-level) timescales. We observed the mating flight activities of 80 queens in their respective mating nucleus hives each with a modified entrance that restricts flight attempts. We also attached a small weight (0, 16, or 38 mg) onto each queen’s thorax as a means of imposing additional flight costs. We then compared queens that were restricted from taking multiple mating flights to those that started oviposition after a single flight for their mating numbers as quantified by microsatellite analyses of their respective worker offspring. We found that neither additional weight nor restricted mating attempts had any significant effect on the effective mating frequencies of the experimental queens during their single mating flight. This observation suggests that queens are not adjusting their nuptial flight activity according to their precise mating number during their flight. These findings provide insights into the proximate regulation of honey bee queen mating behavior and the fitness consequences of hyperpolyandry at the colony level.  相似文献   

9.
Queens of the honey bee, Apis mellifera (L.), exhibit extreme polyandry, mating with up to 45 different males (drones). This increases the genetic diversity of their colonies, and consequently their fitness. After copulation, drones leave a mating sign in the genital opening of the queen which has been shown to promote additional mating of the queen. On one hand, this signing behavior is beneficial for the drone because it increases the genetic diversity of the resulting colony that is to perpetuate his genes. On the other hand, it decreases the proportion of the drone??s personal offspring among colony members which is reducing drone fitness. We analyze the adaptiveness and evolutionary stability of this drone??s behavior with a game-theoretical model. We find that theoretically both the strategy of leaving a mating sign and the strategy of not leaving a mating sign can be evolutionary stable, depending on natural parameters. However, the signing strategy is not favored for most scenarios, including the cases that are biologically plausible in reference to empirical data. We conclude that leaving a sign is not in the interest of the drone unless it serves biological functions other than increasing subsequent queen mating chances. Nevertheless, our analysis can also explain the prevalence of such a behavior of honey bee drones by a very low evolutionary pressure for an invasion of the nonsigning strategy.  相似文献   

10.
Relatedness is a central parameter in the evolution of sociality, because kin selection theory assumes that individuals involved in altruistic interactions are related. At least three reproductive characteristics are known to profoundly affect colony kin structure in social insects: the number of reproductive queens per colony, the relatedness among breeding queens and queen mating frequency. Both the occurrence of multiple queens (polygyny) and multiple mating (polyandry) decrease within-colony relatedness, while mating among sibs increases relatedness between the workers and the brood they rear. Using DNA microsatellites, we performed a detailed genetic analysis of the colony kin structure and breeding system in three ant species belonging to the genus Plagiolepis: P. schmitzii, P. taurica and P. maura. Our data show that queens of the three species mate multiply: queens of P. maura mate with 1-2 males, queens of P. taurica with 3-11 males and queens of P. schmitzii may have 1-14 different mates. Moreover, colonies are headed by multiple queens: P. taurica and P. maura are facultatively polygynous, while P. schmitzii is obligately polygynous. Despite polyandry and polygyny, relatedness within colonies remains high because all species are characterized by sib-mating, with a fixation index F(it) = 0.25 in P. taurica, 0.24 in P. schmitzii and 0.26 in P. maura, and because the male mates of a queen are on average closely related.  相似文献   

11.
Honey bee queens are exceptionally promiscuous. Early in life, queens perform one to five nuptial flights, mating with up to 44 drones. Many studies have documented potential benefits of multiple mating. In contrast, potential costs of polyandry and the sensitivity of queens to such costs have largely been ignored because they are difficult to address experimentally. To consider one aspect of mating costs to queens, the difficulty of flight, we compared flight behavior and success among a group of control queens and two experimental groups of queens that carried lead weights of two different sizes. For each queen, we assessed the number and duration of all flights and, after egg-laying commenced, the amount of stored sperm and the number of mates in terms of the offspring's patrilineal genetic diversity. Added weights quantitatively decreased the number of flights, the mean duration of flights and consequently the total time spent flying. Mating success in terms of sperm quantity and patrilines detected among the queens' offspring was also negatively impacted by the experimental manipulation. Thus, it can be concluded that the flight effort of honey bee queens during their mating period is adjusted in response to an experimentally increased cost of flying with multiple consequences for their mating success. Our results suggest that queen behavior is flexible and mating costs deserve more attention to explain the extreme polyandry in honey bees.  相似文献   

12.
Several genetic and nongenetic benefits have been proposed toexplain multiple mating (polyandry) in animals, to compensatefor costs associated with obtaining additional mates. The mostprominent hypotheses stress the benefits of increased geneticdiversity. In social insects, queens of most species mate onlyonce or have effective mating frequencies close to one. Yet,in a few species of ants, bees, and wasps, polyandry is therule. In these species, colonies are usually headed by a singlequeen, whereas multiple queening adds diversity in several ofthe remaining species, especially in ants. Here we investigatedmating frequency, inbreeding and relatedness between the queensand their mates in the polygynous ant Plagiolepis pygmaea, andthe effect of polyandry on the genetic diversity as a functionof the effective population size of individual colonies. Ourresults show that polyandry occurs frequently in the species.However, queens are frequently inseminated by close relatives,and additional sires add little genetic diversity among offspringof individual queens. In addition, the increase in diversityat the colony level is only marginal. Hence, contrary to establishednotions, polyandry in P. pygmaea seems not to be driven by substantialbenefits of genetic diversity. Nonetheless, very small or asyet unidentified genetic benefits to one party (males, workers,queens) in conjunction with low costs of mating may favor polyandry.Alternatively, nongenetic factors, such as convenience polyandry,may be more important than genetic factors in promoting polyandryin P. pygmaea.  相似文献   

13.
Across their introduced range in North America, populations of feral honey bee (Apis mellifera L.) colonies have supposedly declined in recent decades as a result of exotic parasites, most notably the ectoparasitic mite Varroa destructor. Nonetheless, recent studies have documented several wild populations of colonies that have persisted. The extreme polyandry of honey bee queens—and the increased intracolony genetic diversity it confers—has been attributed, in part, to improved disease resistance and may be a factor in the survival of these populations of feral colonies. We estimated the mating frequencies of queens in feral colonies in the Arnot Forest in New York State to determine if the level of polyandry of these queens is especially high and so might contribute to their survival success. We genotyped the worker offspring from 10 feral colonies in the Arnot Forest of upstate New York, as well as those from 20 managed colonies closest to this forest. We found no significant differences in mean mating frequency between the feral and managed queens, suggesting that queens in the remote, low-density population of colonies in the Arnot Forest are neither mate-limited nor adapted to mate at an especially high frequency. These findings support the hypothesis that the hyperpolyandry of honey bees has been shaped on an evolutionary timescale rather than on an ecological one.  相似文献   

14.
Summary The number and frequencies of subfamilies in a honey bee colony were determined by DNA fingerprinting. Queen and brood samples were taken from three colonies with artificially inseminated queens and from one colony with a naturally mated queen. UsingHae III restriction enzyme and (GATA)4 oligonucleotide, the number of subfamilies in the colonies with artificially inseminated queens corresponded with the number of drones used for insemination. In the colony with the naturally mated queen, 12 subfamilies were found in a random sample of 104 workers. Considering that subfamily frequencies range from 1 to 26%, introcolonial worker relationship was estimated to be 0.328, corresponding to a genetical effective number of 6.4 matings.  相似文献   

15.
Multiple mating (i.e., polyandry) by queens in social Hymenoptera is expected to weaken social cohesion since it lowers within-colony relatedness, and hence, indirect fitness benefits from kin selection. Yet, there are many species where queens mate multiply. Several hypotheses have been put forward to explain the evolution and maintenance of polyandry. Here,we investigated the ‘sperm limitation’ and the ‘diploid male load’ hypotheses in the ant Cataglyphis cursor. Genetic analyses of mother-offspring combinations showed that queens mate with up to 8 males, with an effective mating frequency of 3.79. Significant paternity skew (unequal contribution of the fathers) was detected in 1 out of 5 colonies. The amount of sperm stored in the spermatheca was not correlated with the queen mating frequency, and males carry on average enough sperm in their seminal vesicles to fill one queen’s spermatheca. Analyses of the nuclear DNA-content of males also revealed that all were haploid. These results suggest that the ‘sperm limitation’ and the ‘diploid male load’ hypotheses are unlikely to account for the queen mating frequency reported in this ant. In light of our results and the life-history traits of C. cursor, we discuss alternative hypotheses to account for the adaptive significance of multiple mating by queens in this species. Received 13 August 2008; revised 19 November 2008; accepted 21 November 2008.  相似文献   

16.
Honey bee males and queens mate in mid air and can fly many kilometres on their nuptial flights. The conservation of native honey bees, such as the European black bee (Apis mellifera mellifera), therefore, requires large isolated areas to prevent hybridisation with other subspecies, such as A. m. ligustica or A. m. carnica, which may have been introduced by beekeepers. This study used DNA microsatellite markers to determine the mating range of A. m. mellifera in two adjacent semi-isolated valleys (Edale and Hope Valley) in the Peak District National Park, England, in order to assess their suitability for native honey bee conservation and as isolated mating locations. Three apiaries were set up in each valley, each containing 12 colonies headed by a virgin queen and 2 queenright drone producing hives. The virgin queens were allowed to mate naturally with drones from the hives we had set up and with drones from hives owned by local beekeepers. After mating, samples of worker larvae were taken from the 41 queens that mated successfully and genotyped at 11 DNA microsatellite loci. Paternity analyses were then carried out to determine mating distances and isolation. An average of 10.2 fathers were detected among the 16 worker progeny. After correction for non-detection and non-sampling errors, the mean effective mating frequency of the test queens was estimated to be 17.2, which is a normal figure for honey bees. Ninety percent of the matings occurred within a distance of 7.5 km, and fifty percent within 2.5 km. The maximal mating distance recorded was 15 km. Queens and drones did occasionally mate across the borders between the two valleys, showing that the dividing mountain ridge Losehill does not provide complete isolation. Nevertheless, in the most isolated part of Edale sixty percent of all matings were to drones from Edale hives. The large majority of observed mating distances fell within the range of Hope Valley, making this site a suitable location for the long term conservation of a breeding population of black bees.  相似文献   

17.
Worker honeybees (Apis mellifera) usually only lay eggs when their colony is queenless. However, an extremely rare ''anarchistic'' phenotype occurs, in which workers develop functional ovaries and lay large numbers of haploid eggs which develop into adult drones despite the presence of the queen. Studies of such colonies can give important insights into the mechanisms by which worker sterility is maintained in normal colonies. Here we report on the results of a breeding programme which enhanced the frequency of the anarchistic phenotype. Colonies derived from queens inseminated only by worker-laid males showed up to 9% of workers with highly developed ovaries. In these colonies a large proportion of males arose from worker-laid eggs. Colonies headed by queens inseminated with 50% worker-laid drones and 50% queen-laid drones showed variable phenotypes. In most such colonies there was no worker reproduction. In some, many workers had highly developed ovaries, but no worker-laid eggs were reared. In one colony, many worker-laid eggs were reared to maturity. The results suggest that the anarchy phenotype results from a complex interaction of queen genotype, the worker genotype of subfamilies that successfully reproduce and of those that do not, and the external environment.  相似文献   

18.
Although multiple mating most likely increases mortality risk for social insect queens and lowers the kin benefits for nonreproductive workers, a significant proportion of hymenopteran queens mate with several males. It has been suggested that queens may mate multiply as a means to manipulate sex ratios to their advantage. Multiple paternity reduces the extreme relatedness value of females for workers, selecting for workers to invest more in males. In populations with female-biased sex ratios, queens heading such male-producing colonies would achieve a higher fitness. We tested this hypothesis in a Swiss and a Swedish population of the ant Lasius niger. There was substantial and consistent variation in queen mating frequency and colony sex allocation within and among populations, but no evidence that workers regulated sex allocation in response to queen mating frequency; the investment in females did not differ among paternity classes. Moreover, population-mean sex ratios were consistently less female biased than expected under worker control and were close to the queen optimum. Queens therefore had no incentive to manipulate sex ratios because their fitness did not depend on the sex ratio of their colony. Thus, we found no evidence that the sex-ratio manipulation theory can explain the evolution and maintenance of multiple mating in L. niger.  相似文献   

19.
Estimating the population size of social bee colonies in the wild is often difficult because nests are highly cryptic. Because of the honeybee (Apis mellifera) mating behaviour, which is characterized by multiple mating of queens at drone congregation areas (DCA), it is possible to use genotypes of drones caught at these areas to infer the number of colonies in a given region. However, DCAs are difficult to locate and we assess the effectiveness of an alternative sampling technique to determine colony density based on inferring male genotypes from queen offspring. We compare these methods in the same population of wild honeybees, Apis mellifera scutellata. A set of linked microsatellite loci is used to decrease the frequency of recombination among marker loci and therefore increase the precision of the estimates. Estimates of population size obtained through sampling of queen offspring is significantly larger than that obtained by sampling drones at DCAs. This difference may be due to the more extensive flying range of queens compared with drones on mating flights. We estimate that the population size sampled through queen offspring is about double that sampled through drones.  相似文献   

20.
Abstract Female multiple mating with different males (polyandry) can be advantageous because the resulting genetic heterogeneity among offspring reduces the effects of parasitism. However, the underlying assumption that offspring fathered by different males vary in their susceptibility to parasites is so far only supported indirectly. Here we tested this crucial assumption using data from a study on the bumblebee Bombus terrestris L. with queens inseminated with sperm of either one or several males that originated from different sire groups (i.e. groups of brothers). We found that, under field conditions, workers from different sire groups, forming a patriline within a given colony, indeed differ in their susceptibility to the common intestinal parasite, Crithidia bombi, and do so independently of queen mating frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号