首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Although many studies provide examples of evolutionary processes such as adaptive evolution, balancing selection, deleterious variation and genetic drift, the relative importance of these selective and stochastic processes for phenotypic variation within and among populations is unclear. Theoretical and empirical studies from humans as well as natural animal and plant populations have made progress in examining the role of these evolutionary forces within species. Tentative generalizations about evolutionary processes across species are beginning to emerge, as well as contrasting patterns that characterize different groups of organisms. Furthermore, recent technical advances now allow the combination of ecological measurements of selection in natural environments with population genetic analysis of cloned QTLs, promising advances in identifying the evolutionary processes that influence natural genetic variation.  相似文献   

3.
A key objective of population genomics is to identify portions of the genome that have been shaped by natural selection rather than by neutral divergence. A previously recognized but underappreciated challenge to this objective is that observations of allele frequencies across genomes in natural populations often correspond to a single, unreplicated instance of the outcome of evolution. This is because the composition of each individual genomic region and population is expected to be the outcome of a unique array of evolutionary processes. Given a single observation, inference of the evolutionary processes that led to the observed state of a locus is associated with considerable uncertainty. This constraint on inference can be ameliorated by utilizing multi-allelic (e.g. DNA haplotypes) rather than bi-allelic markers, by analysing two or more populations with certain models and by utilizing studies of replicated experimental evolution. Future progress in population genomics will follow from research that recognizes the 'n = 1 constraint' and that utilizes appropriate and explicit evolutionary models for analysis.  相似文献   

4.
Climate change is predicted to lead to increased average temperatures and greater intensity and frequency of high and low temperature extremes, but the evolutionary consequences for biological communities are not well understood. Studies of adaptive evolution of temperature tolerance have typically involved correlative analyses of natural populations or artificial selection experiments in the laboratory. Field experiments are required to provide estimates of the timing and strength of natural selection, enhance understanding of the genetics of adaptation and yield insights into the mechanisms driving evolutionary change. Here, we report the experimental evolution of cold tolerance in natural populations of threespine stickleback fish (Gasterosteus aculeatus). We show that freshwater sticklebacks are able to tolerate lower minimum temperatures than marine sticklebacks and that this difference is heritable. We transplanted marine sticklebacks to freshwater ponds and measured the rate of evolution after three generations in this environment. Cold tolerance evolved at a rate of 0.63 haldanes to a value 2.5°C lower than that of the ancestral population, matching values found in wild freshwater populations. Our results suggest that cold tolerance is under strong selection and that marine sticklebacks carry sufficient genetic variation to adapt to changes in temperature over remarkably short time scales.  相似文献   

5.
A major goal in evolutionary biology is to understand the origins and fates of adaptive mutations. Natural selection may act to increase the frequency of de novo beneficial mutations, or those already present in the population as standing genetic variation. These beneficial mutations may ultimately reach fixation in a population, or they may stop increasing in frequency once a particular phenotypic state has been achieved. It is not yet well understood how different features of population biology, and/or different environmental circumstances affect these adaptive processes. Experimental evolution is a promising technique for studying the dynamics of beneficial alleles, as populations evolving in the laboratory experience natural selection in a replicated, controlled manner. Whole-genome sequencing, regularly obtained over the course of sustained laboratory selection, could potentially reveal insights into the mutational dynamics that most likely occur in natural populations under similar circumstances. To date, only a few evolution experiments for which whole-genome data are available exist. This review describes results from these resequenced laboratory-selected populations, in systems with and without sexual recombination. In asexual systems, adaptation from new mutations can be studied, and results to date suggest that the complete, unimpeded fixation of these mutations is not always observed. In sexual systems, adaptation from standing genetic variation can be studied, and in the admittedly few examples we have, the complete fixation of standing variants is not always observed. To date, the relative frequency of adaptation from new mutations versus standing variation has not been tested using a single experimental system, but recent studies using Caenorhabditis elegans and Saccharomyces cerevisiae suggest that this a realistic future goal.  相似文献   

6.
7.
The view on homogeneous population genetic structure in many marine fish with high mobility has changed significantly during the last ten years. Molecular genetic population studies over the whole ranges of such species as Atlantic herring and Atlantic cod showed a complex picture of spatial differentiation both on the macrogeographic and, in many areas, on the microgeographic scale, although the differentiation for neutral molecular markers was low. It was established that the migration activity of such fish is constrained in many areas of the species range by hydrological and physicochemical transition zones (environmental gradients), as well as gyres in the spawning regions. Natal homing was recorded in a number of marine fish species. Existing in marine fish constraints of gene migration and a very high variance of reproductive success determine a significantly smaller proportion of effective reproductive size of their populations in the total population size, which generates more complex abundance dynamics than assumed earlier. The various constraints on gene migration and natal homing in marine fish promote the formation of local adaptations at ecologically important phenotypic traits. Effects of selection underlying adaptations are actively investigated in marine fish on the genomic level, using approaches of population genomics. The knowledge of adaptive intraspecific structure enables understanding the ecological and evolutionary processes, that influence biodiversity and providing spatial frames for conservation of genetic resources under commercial exploitation. Contemporary views on the population genetic and adaptive structures or biocomplexity in marine fish support and develop the main principles of the conception of systemic organization of the species and its regional populations, which were advanced by Yu.P. Altukhov and Yu.G. Rychkov.  相似文献   

8.
9.
BACKGROUND: The model plant Arabidopsis thaliana (Arabidopsis) shows a wide range of genetic and trait variation among wild accessions. Because of its unparalleled biological and genomic resources, the potential of Arabidopsis for molecular genetic analysis of this natural variation has increased dramatically in recent years. SCOPE: Advanced genomics has accelerated molecular phylogenetic analysis and gene identification by quantitative trait loci (QTL) mapping and/or association mapping in Arabidopsis. In particular, QTL mapping utilizing natural accessions is now becoming a major strategy of gene isolation, offering an alternative to artificial mutant lines. Furthermore, the genomic information is used by researchers to uncover the signature of natural selection acting on the genes that contribute to phenotypic variation. The evolutionary significance of such genes has been evaluated in traits such as disease resistance and flowering time. However, although molecular hallmarks of selection have been found for the genes in question, a corresponding ecological scenario of adaptive evolution has been difficult to prove. Ecological strategies, including reciprocal transplant experiments and competition experiments, and utilizing near-isogenic lines of alleles of interest will be a powerful tool to measure the relative fitness of phenotypic and/or allelic variants. CONCLUSIONS: As the plant model organism, Arabidopsis provides a wealth of molecular background information for evolutionary genetics. Because genetic diversity between and within Arabidopsis populations is much higher than anticipated, combining this background information with ecological approaches might well establish Arabidopsis as a model organism for plant evolutionary ecology.  相似文献   

10.
Bumble bees are a longstanding model system for studies on behaviour, ecology and evolution, due to their well‐studied social lifestyle, invaluable role as wild and managed pollinators, and ubiquity and diversity across temperate ecosystems. Yet despite their importance, many aspects of bumble bee biology have remained enigmatic until the rise of the genetic and, more recently, genomic eras. Here, we review and synthesize new insights into the ecology, evolution and behaviour of bumble bees that have been gained using modern genetic and genomic techniques. Special emphasis is placed on four areas of bumble bee biology: the evolution of eusociality in this group, population‐level processes, large‐scale evolutionary relationships and patterns, and immunity and resistance to pesticides. We close with a prospective on the future of bumble bee genomics research, as this rapidly advancing field has the potential to further revolutionize our understanding of bumble bees, particularly in regard to adaptation and resilience. Worldwide, many bumble bee populations are in decline. As such, throughout the review, connections are drawn between new molecular insights into bumble bees and our understanding of the causal factors involved in their decline. Ongoing and potential applications to bumble bee management and conservation are also included to demonstrate how genetics‐ and genomics‐enabled research aids in the preservation of this threatened group.  相似文献   

11.
The past few years of research in human evolutionary genetics have provided novel insights and questions regarding how human adaptations to recent selective pressures have taken place. Here, we review the advances most relevant to understanding human evolution in response to pathogen-induced selective pressures. Key insights come from theoretical models of adaptive evolution, particularly those that consider spatially structured populations, and from empirical population genomic studies of adaptive evolution in humans. We also review the CCR5-Δ32 HIV resistance allele as a case study of pathogen resistance in humans. Taken together, the results make clear that the human response to pathogen-induced selection pressures depends on a complex interplay between the age of the pathogen, the genetic basis of potential resistance phenotypes, and how population structure impacts the adaptive process in humans.  相似文献   

12.
A robust signal of population structure often provides the first glimpse into the evolutionary history of a species and its populations. In this issue of Molecular Ecology, new work from Louis Bernatchez's group (Benestan et al., 2017 ) starts with an investigation of apparent structure in two marine species and concludes with an identification of sex‐linked genes, and in the process provides a model for robust analysis. Structure is the genetic signal left by natural selection as well as by neutral processes like migration and gene flow. Neutral areas of the genome can reveal the geographical relationships and related gene flow between populations over time and space, while selection can resist the natural genomic turnover created by recombination and generate adaptive structure between populations that can be detected. However, artefacts in a data set can easily hide the true signal of structure; mutation, whether it is a true appearance of a recent, minor allele, or more commonly, an error in SNP calling or molecular library construction, can easily conceal patterns of population structure (e.g., geographical structure in mackerel, Rodriguez‐Ezpeleta et al. ( 2016 )). A demographic structure that results from the most “forceful” evolutionary processes can overwhelm another signal generated by other, unrelated phenotypes. For example, the structure among diverged freshwater and marine threespine stickleback populations results from such strong selection and linkage disequilibrium across the genome that it impairs the ability to disentangle the genetic basis of particular evolved morphological traits (e.g., opercle development, Alligood ( 2017 )). Finally, there might be conflicting inferences for what underlies structure patterns. Structure may be created by differential patterns of meiotic recombination, and genetic maps are a reliable means for identifying genomic regions that resist recombination. But, without additional information (Anderson et al., 2012 ), it can be difficult to distinguish the recombination‐suppressing effect of a segregating genomic inversion (Small et al., 2016 ) from that of sex‐linked selection.  相似文献   

13.
Hu XS  Yeh FC  Wang Z 《Current Genomics》2011,12(1):55-70
An integration of the pattern of genome-wide inter-site associations with evolutionary forces is important for gaining insights into the genomic evolution in natural or artificial populations. Here, we assess the inter-site correlation blocks and their distributions along chromosomes. A correlation block is broadly termed as the DNA segment within which strong correlations exist between genetic diversities at any two sites. We bring together the population genetic structure and the genomic diversity structure that have been independently built on different scales and synthesize the existing theories and methods for characterizing genomic structure at the population level. We discuss how population structure could shape correlation blocks and their patterns within and between populations. Effects of evolutionary forces (selection, migration, genetic drift, and mutation) on the pattern of genome-wide correlation blocks are discussed. In eukaryote organisms, we briefly discuss the associations between the pattern of correlation blocks and genome assembly features in eukaryote organisms, including the impacts of multigene family, the perturbation of transposable elements, and the repetitive nongenic sequences and GC-rich isochores. Our reviews suggest that the observable pattern of correlation blocks can refine our understanding of the ecological and evolutionary processes underlying the genomic evolution at the population level.  相似文献   

14.
Studies of adaptation and speciation have greatly benefited from rapid progress of DNA sequencing and genotyping technologies. Comparative genomics of closely related taxa has great potential to advance evolutionary research on genetic architecture of adaptive traits and reproductive isolation. Such studies that utilized closely related plant species and ecotypes have already provided some important insights into genomic regions and/or genes that are potentially involved in local adaptation and speciation. The choice of an appropriate species model for such research is crucial. The paper discusses current approaches used to reveal the patterns of intra‐ and interspecific divergence due to natural selection. Its outcomes in herbaceous plants and forest trees are briefly summarized and compared to reveal general regularities concerning evolutionary processes. We then highlight the importance of multispecies studies and discuss the utility of several related pine taxa as fine candidates for evolutionary inferences. Genetically similar but ecologically and phenotypically diverged taxa seem a promising study system to search for genomic patterns of speciation and adaptive variation.  相似文献   

15.
There is increasing evidence that evolution can occur rapidly in response to selection. Recent advances in sequencing suggest the possibility of documenting genetic changes as they occur in populations, thus uncovering the genetic basis of evolution, particularly if samples are available from both before and after selection. Here, we had a unique opportunity to directly assess genetic changes in natural populations following an evolutionary response to a fluctuation in climate. We analysed genome‐wide differences between ancestors and descendants of natural populations of Brassica rapa plants from two locations that rapidly evolved changes in multiple phenotypic traits, including flowering time, following a multiyear late‐season drought in California. These ancestor‐descendant comparisons revealed evolutionary shifts in allele frequencies in many genes. Some genes showing evolutionary shifts have functions related to drought stress and flowering time, consistent with an adaptive response to selection. Loci differentiated between ancestors and descendants (FST outliers) were generally different from those showing signatures of selection based on site frequency spectrum analysis (Tajima's D), indicating that the loci that evolved in response to the recent drought and those under historical selection were generally distinct. Very few genes showed similar evolutionary responses between two geographically distinct populations, suggesting independent genetic trajectories of evolution yielding parallel phenotypic changes. The results show that selection can result in rapid genome‐wide evolutionary shifts in allele frequencies in natural populations, and highlight the usefulness of combining resurrection experiments in natural populations with genomics for studying the genetic basis of adaptive evolution.  相似文献   

16.
Krutovskiĭ KV 《Genetika》2006,42(10):1304-1318
Early works by Altukhov and his associates on pine and spruce laid the foundation for Russian population genetic studies on tree species with the use of molecular genetic markers. In recent years, these species have become especially popular as nontraditional eukaryotic models for population and evolutionary genomic research. Tree species with large, cross-pollinating native populations, high genetic and phenotypic variation, growing in diverse environments and affected by environmental changes during hundreds of years of their individual development, are an ideal model for studying the molecular genetic basis of adaptation. The great advance in this field is due to the rapid development of population genomics in the last few years. In the broad sense, population genomics is a novel, fast-developing discipline, combining traditional population genetic approaches with the genomic level of analysis. Thousands of genes with known function and sometimes known genomic localization can be simultaneously studied in many individuals. This opens new prospects for obtaining statistical estimates for a great number of genes and segregating elements. Mating system, gene exchange, reproductive population size, population disequilibrium, interaction among populations, and many other traditional problems of population genetics can be now studied using data on variation in many genes. Moreover, population genomic analysis allows one to distinguish factors that affect individual genes, alleles, or nucleotides (such as, for example, natural selection) from factors affecting the entire genome (e.g., demography). This paper presents a brief review of traditional methods of studying genetic variation in forest tree species and introduces a new, integrated population genomics approach. The main stages of the latter are : (1) selection of genes, which are tentatively involved in variation of adaptive traits, by means of a detailed examination of the regulation and the expression of individual genes and genotypes, with subsequent determination of their complete allelic composition by direct nucleotide sequencing; (2) examination of the phenotypic effects of individual alleles by, e.g., association mapping; and (3) determining the frequencies of the selected alleles in natural population for identification of the adaptive variation pattern in the heterogeneous environment. Through decoding the phenotypic effects of individual alleles and identification of adaptive variation patterns at the population level, population genomics in the future will serve as a very helpful, efficient, and economical tool, essential for developing a correct strategy for conserving and increasing forests and other commercially valuable plant and animal species.  相似文献   

17.
黄志华  薛庆中 《植物学报》2006,23(4):402-408
假基因(pseudogene)是指基因组中与正常基因序列相似, 但是缺乏功能的DNA 序列。通过序列同源性搜索, 可以收集基因组中假基因的群体特性、染色体分布和同源家族等特性。假基因很好地保留了数百万年前基因组中祖先基因的分子记录, 被视为“基因化石”, 因此假基因在进化和比较基因组学中是重要的资源。应用假基因和基因比较体系, 可以探究生物基因的进化史和基因组稳定性。如: 用Ka/Ks比值确定假基因的自然选择压、物种亲缘关系和进化距离, 分析假基因自身的进化趋势, 探讨DNA 突变的成因等。  相似文献   

18.
Selection studies are useful if they can provide us with insights into the patterns and processes of evolution in populations under controlled conditions. In this context it is particularly valuable to be able to analyze the limitations of and constraints on evolutionary responses to allow predictions concerning evolutionary change. The concept of a selection pathway is presented as a means of visualizing this predictive process and the constraints that help define the population's response to selection. As pointed out by Gould and Lewontin, history and chance are confounding forces that can mask or distort the adaptive response. Students of the evolutionary responses of organisms are very interested in the effects of these confounding forces, since they play a critical role not only in the laboratory but also in natural selection in the field. In this article, we describe some methods that are a bit different from those used in most studies for examining data from laboratory selection studies. These analytical methods are intended to provide insights into the physiological mechanisms by which evolutionary responses to the environment proceed. Interestingly, selection studies often exhibit disparate responses in replicate populations. We offer methods for analyzing these disparate responses in replicate populations to better understand this very important source of variability in the evolutionary response. We review the techniques of Travisano et al. and show that these approaches can be used to investigate the relative roles of adaptation, history, and chance in the evolutionary responses of populations of Drosophila melanogaster to selection for enhanced desiccation resistance. We anticipate that a wider application of these techniques will provide valuable insights into the organismal, genetic, and molecular nature of the constraints, as well as the factors that serve to enhance or, conversely, to mask the effects of chance. Such studies should help to provide a more detailed understanding of the processes producing evolutionary change in populations.  相似文献   

19.
This paper reviews the scientific career of Rupert Riedl and his contributions to evolutionary biology. Rupert Riedl, a native of Vienna, Austria, began his career as a marine biologist who made important contributions to the systematics and anatomy of major invertebrate groups, as well as to marine ecology. When he assumed a professorship at the University of North Carolina in 1968, the predominant thinking in evolutionary biology focused on population genetics, to the virtual exclusion of most of the rest of biology. In this atmosphere Riedl developed his "systems theory" of evolution, which emphasizes the role of functional and developmental integration in limiting and enabling adaptive evolution by natural selection. The main objective of this theory is to account for the observed patterns of morphological evolution, such as the conservation of body plans. In contrast to other "alternative" theories of evolution, Riedl never denied the importance of natural selection as the driving force of evolution, but thought it necessary to contextualize natural selection with the organismal boundary conditions of adaptation. In Riedl's view development is the most important factor besides natural selection in shaping the pattern and processes of morphological evolution.  相似文献   

20.
假基因的组成、分布及其分子进化   总被引:5,自引:0,他引:5  
假基因(pseudogene)是指基因组中与正常基因序列相似,但是缺乏功能的DNA序列.通过序列同源性搜索,可以收集基因组中假基因的群体特性、染色体分布和同源家族等特性.假基因很好地保留了数百万年前基因组中祖先基因的分子记录,被视为"基因化石",因此假基因在进化和比较基因组学中是重要的资源.应用假基因和基因比较体系,可以探究生物基因的进化史和基因组稳定性.如:用Ka/Ks比值确定假基因的自然选择压、物种亲缘关系和进化距离,分析假基因自身的进化趋势,探讨DNA突变的成因等.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号