首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The study of human genetic disorders known as premature aging syndromes may provide insight into the mechanisms of cellular senescence. These diseases are clinically characterized by the premature onset and accelerated progression of numerous features normally associated with human aging. Previous studies have indicated that fibroblasts derived from premature aging syndrome patients have in vitro growth properties similar to senescent fibroblasts from normal individuals. As an initial approach to determine whether gene expression is altered in premature aging syndrome fibroblasts, RNA was prepared from various cell strains and used for gel blot hybridization experiments. Although normal fibroblasts only express platelet-derived growth factor (PDGF) A-chain mRNA for a brief period following mitogenic stimulation, one strain of Hutchinson-Gilford (progeria) syndrome fibroblasts, AG3513, constitutively expresses PDGF A-chain mRNA and PDGF-AA homodimers. The PDGF A-chain gene does not appear to be amplified or rearranged in these fibroblasts. AG3513 progeria fibroblasts have properties characteristic of senescent cells, including an altered morphology and a diminished mitogenic response to growth promoters. The diminished response of AG3513 progeria fibroblasts to PDGF stimulation was examined in some detail. Studies using 125I-PDGF-BB, which binds with high affinity to both A- and B-type PDGF receptors, indicate that normal and AG3513 progeria fibroblasts have a similar number of PDGF receptors. Although receptor autophosphorylation occurs normally in PDGF-stimulated AG3513 progeria fibroblasts, c-fos mRNA induction does not. The senescent phenotype of AG3513 fibroblasts is probably unrelated to their constitutive PDGF A-chain gene expression; further studies are necessary in order to directly address this issue. Also, additional analysis of this progeria fibroblast strain may provide information on the control of mitogen-inducible gene expression in normal cells.  相似文献   

3.
The role of platelet-derived growth factor (PDGF) in the control of smooth muscle cell (SMC) differentiation was explored in vitro by examining its effects on expression of the smooth muscle (SM) specific contractile protein SM alpha actin in cultured rat aortic SMC. Quiescent, postconfluent SMC express maximal levels of alpha actin and responded to human platelet-derived growth factor (partially purified from platelets) by entering the cell cycle and undergoing approximately one synchronous round of DNA synthesis. Concomitantly, these cultures exhibited a marked reduction in alpha actin synthesis. Chronic treatment with PDGF (72 hours at 8 or 12 hour intervals) was associated with a transient increase in thymidine labeling index and a decrease in alpha actin expression. Interestingly, between 48 and 72 hours following initial treatment, thymidine labeling indices returned to near control levels while SM alpha actin expression remained depressed. This effect was reversible; fractional alpha actin synthesis increased immediately after PDGF removal. When subsequently stimulated with 10% fetal bovine serum (FBS), cells chronically pretreated with PDGF entered S phase approximately 4 hours earlier than cells pretreated with PDGF vehicle, consistent with the idea that the maintained suppression of alpha actin synthesis in SMC subjected to chronic PDGF treatment was associated with partial cell cycle transit. Chronic treatment with highly purified recombinant PDGF-BB elicited similar effects on alpha actin synthesis and partial cell cycle transit. Flow cytometric analysis of chronic PDGF-treated SMC demonstrated a 25% increase in forward angle light scatter, an index of cell size. These data implicate a possible role for PDGF in regulation of SMC differentiation and suggest a potentially important role for this mitogen in the phenotypic modulation accompanying SMC growth and in mediation of the cellular hypertrophy associated with cell cycle progression.  相似文献   

4.
5.
6.
Phenotypic transformation of normal rat kidney (NRK) cells requires the concerted action of multiple polypeptide growth factors. Serum-deprived NRK cells cultured in the presence of epidermal growth factor (EGF) become density-inhibited at confluence, but they can be restimulated by a number of defined polypeptide growth factors, resulting in phenotypic cellular transformation. Kinetic data show that restimulation by transforming growth factor beta (TGF-beta) and retinoic acid is delayed when compared to induction by platelet-derived growth factor (PDGF), indicating that both TGF beta and retinoic acid may exert their growth-stimulating action by an indirect mechanism. Northern blot analysis shows that NRK cells express the genes for various polypeptide growth factors, including TGF beta 1, PDGF A-chain and basic fibroblast growth factor, but that the levels of expression are not affected by TGF beta or retinoic acid treatment. NRK cells also secrete low amounts of a PDGF-like growth factor into their extracellular medium, but the levels of secretion are insufficient to induce mitogenic stimulation and are unaffected by agents inducing phenotypic transformation. In combination with studies on the effects of anti-PDGF antibodies, it is concluded that phenotypic transformation of NRK cells by TGF beta and retinoic acid is not the result of enhanced production of a PDGF-like growth factor.  相似文献   

7.
8.
9.
10.
Proliferation of smooth muscle cells (SMC) in the arterial intima of man and experimental animals is important in the pathogenesis of atherosclerosis. Vascular SMC proliferation in vitro is stimulated by a number of agents, including the potent protein mitogen, platelet-derived growth factor (PDGF). Recent studies on rat arterial SMC indicate that these cells may, under certain circumstances, synthesize PDGF protein mitogens, suggesting that the regulation of SMC proliferation in vivo may have an autocrine or paracrine component. In this study we demonstrate that cultured nonhuman primate (baboon) aortic SMC transcribe both the PDGF-A and PDGF-B genes but do not secrete detectable mitogenic activity characteristic of native PDGF. The absence of this activity was not due to the presence in the cell conditioned medium of factors inhibitory for PDGF-mediated mitogenic activity. Metabolic labeling of the cells and immunoprecipitation with specific antibodies to human PDGF did not detect a dimeric (30 kDa) PDGF protein in either the intracellular or extracellular compartments, but instead identified PDGF-related proteins of molecular weight 12 kDa and 100 kDa. These data suggest the presence in vascular SMC of a mechanism regulating the translation of PDGF mRNA that may play an important role in the control of SMC proliferation in vivo.  相似文献   

11.
12.
We have previously found that stimulation of normal neonatal fibroblasts with PDGF or EGF leads to a transient induction of PDGF A-chain mRNA and the synthesis of PDGF-AA proteins. This finding may imply the existence of an autocrine feedback mechanism to amplify the mitogenic signal under certain conditions. We have now studied the PDGF-BB mediated PDGF A-chain induction in a set of fibroblasts from young and old donors to clarify if the levels of induction are correlated to the donor age and the replicative capacity of the cells. The PDGF A-chain induction was found to be reduced in cells from old donors compared with cells from embryonic and neonatal donors. The different cell strains were also characterized further with respect to PDGF receptor expression and PDGF binding properties. PDGF β-receptors were found to be enhanced in old donor cells strains, whereas the PDGF α-receptors showed more variability in expression between the strains. The PDGF A-chain mRNA induction was also decreased or absent in late passage human fibroblasts (senescent cells) when compared with early passage cells. These data suggest that the PDGF A-chain mRNA induction is regulated by an age related mechanism in human fibroblasts. © 1994 Wiley-Liss, Inc.  相似文献   

13.
14.
The human teratocarcinoma stem cell line Tera-2 clone 13 is induced by retinoic acid to differentiate in vitro into endodermal or neuroectodermal cell types. In the absence of externally added growth factors, Tera-2 clone 13 cells proliferated at the same rate as in the presence of serum growth factors. Analysis of serum-free medium conditioned by Tera-2 clone 13 cells showed the presence of a polypeptide immunologically and biochemically related to platelet-derived growth factor (PDGF). In addition transforming growth factor beta (TGF-beta), but no TGF-alpha production could be detected. Tera-2 clone 13 cells specifically expressed high levels of the A-chain mRNA, but not the B-chain mRNA of PDGF. During retinoic acid induced differentiation the level of A-chain mRNA became markedly reduced. In contrast the TGF-beta mRNA levels increased significantly upon differentiation. The implications of these findings are discussed in terms of regulation of growth and differentiation in early embryos as well as in (human) teratocarcinomas.  相似文献   

15.
16.
Platelet-derived growth factor AA (PDGF AA), in contrast to PDGF AB and BB, is a poor mitogen for smooth muscle cells (SMC). However, together with basic fibroblast growth factor (bFGF) it acts synergistically on DNA synthesis of these cells. Northern blot analysis revealed that bFGF selectively increases the PDGF-receptor alpha subtype (PDGF-R alpha) mRNA level without a significant effect on the PDGF-R beta mRNA level. The amount of PDGF-R alpha protein is also selectively increased after stimulating SMC with bFGF as shown by immunoprecipitation of lysates from SMC with anti-PDGF-R alpha antibodies. The number of binding sites for 125I-PDGF AA is more than doubled after bFGF-treatment, whereas the specific binding for PDGF AB and BB increased only by approximately 30 and 20%, respectively. The increase in the number of PDGF-R alpha renders the SMC responsive for PDGF AA as demonstrated by the induction of the proto-oncogene c-fos as well as by an increased cell proliferation. The enhanced PDGF binding after bFGF treatment may in fact explain the observed synergistic behavior. These data are discussed with regard to a possible role of growth factor-induced transmodulation of receptor expression during atherogenesis.  相似文献   

17.
18.
Cultured smooth muscle cells (SMC) undergo induction of smooth muscle (SM) alpha actin at confluency. Since confluent cells exhibit contact inhibition of growth, this finding suggests that induction of SM alpha actin may be associated with cell cycle withdrawal. This issue was further examined in the present study using fluorescence-activated cell sorting of SMC undergoing induction at confluency and by examination of the effects of FBS and platelet-derived growth factor (PDGF) on SM alpha actin expression in postconfluent SMC cultures that had already undergone induction. Cell sorting was based on DNA content or differential incorporation of bromodeoxyuridine (Budr). The fractional synthesis of SM alpha actin in confluent cells was increased two- to threefold compared with subconfluent log phase cells, but no differences were observed between confluent cycling (Budr+) and noncycling (Budr-) cells. In cultures not exposed to Budr, confluent cycling S + G2 cells exhibited similar induction. These data indicate that cell cycle withdrawal is not a prerequisite for the induction of SM alpha actin synthesis in SMC at confluency. Growth stimulation of postconfluent cultures with either FBS or PDGF resulted in marked repression of SM alpha actin synthesis but the level of repression was not directly related to entry into S phase in that PDGF was a more potent repressor of SM alpha actin synthesis than was FBS despite a lesser mitogenic effect. This differential effect of FBS versus PDGF did not appear to be due to transforming growth factor-beta present in FBS since addition of transforming growth factor-beta had no effect on PDGF-induced repression. Likewise, FBS (0.1-10.0%) failed to inhibit PDGF-induced repression. Taken together these data demonstrate that factors other than replicative frequency govern differentiation of cultured SMC and suggest that an important function of potent growth factors such as PDGF may be the repression of muscle-specific characteristics.  相似文献   

19.
Transforming growth factor-beta (TGF-beta) stimulates DNA synthesis in human foreskin fibroblasts after a prolonged lag period as compared with other growth factors. The mechanism of induction of DNA synthesis appears to be dependent on the synthesis and secretion of PDGF-related proteins as antibodies which are specific for PDGF can block the TGF-beta-induced DNA synthesis. Other growth factors such as PDGF, EGF, or FGF do not induce the synthesis of these PDGF-related proteins. Additionally, TGF-beta treatment of human foreskin fibroblasts induces the expression of the PDGF A-chain gene but not the B-chain gene. This phenomenon appears to function in vivo, as subcutaneous injection of TGF-beta in rat skin induces the expression of the PDGF A-chain gene. These data suggest that TGF-beta may stimulate the growth of fibroblastic cells via an autocrine production of PDGF-related proteins.  相似文献   

20.
The autocrine effects of platelet-derived growth factor (PDGF) A- and B-chain homodimers (PDGF-AA and PDGF-BB) on rat-1 cells and human fibroblasts have been investigated by using human PDGF A- and B-chain cDNA clones expressed in a retroviral vector. Infection with replication-defective virus carrying the B-chain cDNA resulted in a phenotypical transformation resembling that induced by simian sarcoma virus. The resulting cells were focus forming in monolayer cultures, grew to high saturation densities, and formed large colonies in soft agar. The PDGF A-chain transfectants showed no transformed morphology and lacked focus-forming activity but grew to high saturation density in monolayer culture and formed small colonies in soft agar. A similar but weaker effect was obtained with an A-chain cDNA variant containing a 69-base-pair insertion in the 3' end of the protein-coding domain. A- and B-chain transfectants released PDGF receptor-competing activity into the medium, but only the medium conditioned by the B-chain transfectants possessed potent mitogenic activity on human fibroblasts. Both types of transfectants had downregulated levels of PDGF receptors; however, the B-chain transfectants were downregulated to significantly lower levels. Metabolic labeling and immunoprecipitations with PDGF antiserum showed that the PDGF B-chain protein was processed to a 24-kilodalton cell-associated and a 30-kilodalton secreted dimeric protein. The A-chain protein was rapidly secreted as a 31-kilodalton dimeric protein. The present study shows a marked difference in the autocrine effects of PDGF-AA and -BB expressed under the control of a retroviral promoter and suggests that different biological properties may be assigned to these two PDGF isoforms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号