首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The C282Y mutation of the HFE gene has been reported as the main cause of hereditary hemochromatosis (HH). Another missense mutation (H63D) has also been detected at an increased frequency in a compound heterozygote state with the C282Y mutation in HH patients. However, these two mutations are not present in all of the HH patients, indicating that other mutations in the HFE gene, or in other loci, should exist. The present study reports the frequencies of the C282Y and H63D mutations in 74 Spanish HH patients and the results of the sequencing analysis of the HFE exons, intron-exon boundaries, and 588 bp of the 5' region in 5 patients negative for the C282Y mutation. We have detected a high frequency of the C282Y mutation (85.1%) in Spanish HH patients, indicating that this mutation is the most common defect associated with the disease in Spain. The screening of the HFE regions in our patients without the C282Y mutation has revealed the presence of five polymorphisms. However, no other pathological mutations have been found. Therefore, further efforts to characterize the unscreened part of the HFE gene or other loci should be taken to identify the potential genetic factors causing HH in the C282Y-negative patients.  相似文献   

2.
Over 90% of patients with hemochromatosis in the United Kingdom are homozygous for the C282Y mutation on the HFE gene. The Centers for Disease Control (CDC) in the United States has recommended that adults should be screened for HFE mutations to identify susceptible individuals before onset of disease. The aim of this study was to evaluate the polymerase chain reaction using sequence-specific primers (PCR-SSP) as a method of large-scale population screening for the common HFE gene mutations, H63D and C282Y. A total of 10,583 consenting blood donors were tested using nonautomated procedures. Three alleles, termed HFE-1, -2, and -3, were detected with phenotype frequencies of 94.56%, 28.33%, and 15.79%, respectively, and gene frequencies of 0.76421, 0.15342, and 0.08237, respectively. All donors identified as homozygous for the C282Y mutation or heterozygous for both the H63D and C282Y mutations were confirmed by heterduplex analysis and/or PCR-SSP. The number of technical failures that affected the identification of donors homozygous for the C282Y mutation was 390 giving an overall repeat rate 3.7%, although this fell to 1% over the last quarter of the study. This study demonstrates that PCR-SSP may be used for large-scale population screening for the C282Y genotype associated with hemochromatosis.  相似文献   

3.
We quantified HFE genotype frequencies in specimens submitted by physicians grouped by specialty and determined associations of genotypes with initial diagnosis based on phenotyping in patients evaluated at an iron disorders center. Of 526 specimens (519 from Alabama), these "typical" hemochromatosis-associated genotypes were detected: 85 C282Y/C282Y, 50 C282Y/H63D, and 27 H63D/H63D. Respective frequencies of C282Y/C282Y in specimens from an iron disorders center (n = 156), gastroenterologists (n = 147), hematologists/medical oncologists (n = 85), liver transplant surgeons (n = 11), endocrinologists and rheumatologists (n = 9), and "other sources" (n = 7) were greater (p < 0.05) than in population controls. In 44 patients from an iron disorders center initially diagnosed as "presumed hemochromatosis," 27 (61.4%) had C282Y/C282Y, 10 (22.7%) had C282Y/H63D, and 3 (6.8%) had H63D/H63D. C282Y/C282Y was not detected in 48 patients with "abnormality probably not an iron overload disorder." A total of 20.5% of 44 family members of patients had "typical" hemochromatosis-associated HFE genotypes (7.0% controls; p = 0.02). We conclude that most physicians who submitted specimens identify patients by phenotyping who have greater frequencies of "typical" hemochromatosis-associated HFE genotypes than controls, and that HFE mutation testing is useful in detecting hemochromatosis in family members of persons with hemochromatosis or iron overload.  相似文献   

4.
Porphyria cutanea tarda (PCT), a disorder characterized by a photosensitive dermatosis and hepatic siderosis, is caused by a decreased activity of the hepatic enzyme uroporphyrinogen decarboxylase (UROD). Two forms of PCT have been described: a familial one (fPCT) with an inherited decrease of UROD activity in all tissues and a sporadic one (sPCT) with a decreased UROD activity restricted to the liver. Iron overload and acquired factors including hepatic viral infections, alcohol, drugs contribute to the expression of PCT. In 65 French sPCT patients and 108 controls we have evaluated the respective role of iron and HCV status, the hemochromatosis (HFE) gene mutations frequencies (H63D. S65C, C282Y), and in a case control study we searched for an association between sPCT and the human transferrin receptor-1 (TFRC1) gene whose product is thought to be in functional association with the HFE protein: three single nucleotide polymorphisms (SNPs) previously characterized and 2 novel ones were studied. The iron-related parameters and transaminases were higher in sPCT patients than those of non-porphyric controls. Of the sPCT patients studied, 28% were HCV positive. In the HFE gene, 17% of sPCT patients carried C282Y mutation compared to 4% in controls, no significant differences were found with H63D and S65C variants. Compound heterozygous genotypes, C282Y/H63D or C282Y/S65C, were not significantly different in sPCT and control groups. Independently from HFE gene mutations, an association was found between the IVS4+198 T allele in the TFRC1 gene and sPCT patients. Analysis of HFE genotypes indicated that C282Y (but not H63D nor S65C) is a susceptibility factor for the development of sPCT in West European continental patients. However, analysis of TFRC1 genotypes suggest that sPCT should be considered as a multifactorial disorder in which other intracellular iron metabolism genes could be involved.  相似文献   

5.
The main hereditary hemochromatosis mutation C282Y in the HFE gene was recently described, and the C282Y frequencies were reported for various European populations. The aim of this synthesis is to compile the Y allele frequencies of the C282Y mutation for 40 European populations. The most elevated values are observed in residual Celtic populations in Ireland, the United Kingdom, and France, in accordance with the hypothesis of Simon et al. (1980) concerning a Celtic origin of the hereditary hemochromatosis mutation.  相似文献   

6.
In populations of northern European ancestry, hereditary hemochromatosis (HH) is tightly linked to mutations within the hemochromatosis gene (HFE gene). Over 93% of Irish HH patients are homozygous for the HFE gene C282Y mutation, providing a reliable diagnostic marker of the disease in this population. However, the prevalence of the C282Y mutation and that of the second HFE gene mutation, H63D, have yet to be determined within the Irish population. The objective of this study was to identify the true prevalence of the genetic form of HH in the Irish population. DNA was extracted from 1002 randomly selected newborn screening cards and analyzed for the C282Y and H63D mutations within the HFE gene. Complete results were obtained from 800 cards. Mutations were identified in 364 (46%) neonates. Eight (1%) neonates were homozygous for C282Y and 8 (1%) were homozygous for H63D. One hundred and fifty-five (19%) neonates were C282Y heterozygous and 226 (28%) were H63D heterozygous. Of these, 33 (4%) carried one copy of both C282Y and H63D mutations, i.e., compound heterozygous. Allele frequencies for C282Y and H63D were 11% and 15%, respectively. The high C282Y allele frequency in the Irish population together with its close linkage to HH indicate that C282Y genotyping is the preferred screening strategy for this disease in Ireland.  相似文献   

7.
A number of factors, including increased iron stores and alcohol consumption, are known to be associated with the development of porphyria cutanea tarda (PCT) in susceptible individuals. Recent reports have described a significant association between inheritance of the C282Y and H63D mutations in the HFE gene, associated with genetic hemochromatosis (GH) and PCT. A strong association between hepatitis C virus infection and PCT has also been demonstrated, while case reports record a link between human immunodeficiency virus (HIV) and PCT. We have investigated the frequency of these factors in a racially-mixed population of patients with PCT in Cape Town, South Africa. 57 patients with PCT drawn from three ethnic groups were screened for the presence of the C282Y and H63D mutations linked to GH, and the prevalences were compared with corresponding healthy control populations. The seroprevalence of markers for HCV, hepatitis B (HBV) and HIV infection were examined in 28 of these. In the control populations, we found that both the C282Y and H63D mutations are highly prevalent in South Africans of European origin. In a population of mixed or Asian origin, the C282Y mutation is very rare whereas the H63D mutation is common. Neither mutation was encountered in any African subject. Both mutations are associated with PCT, but the association is dependent on the ethnic origins of the population to which the patient belongs. In contrast to other studies, HCV infection is numerically unimportant in PCT in our patients. HIV infection is increasingly encountered in our patients with PCT, but the strength of the association cannot be determined in view of the high background prevalence of HIV infection in some sectors of the South African population. The contribution of specific risk factors may be heavily dependent on the population from which patients are drawn, and care should be taken in extrapolating from observations in one racial or geographic population to any other.  相似文献   

8.
Multi-collector inductively coupled plasma--sector field mass spectrometry was applied to the measurement of Fe and Zn isotopes in human whole blood samples. For the Fe present in the blood of healthy adults, enrichment of the lighter isotopes relative to a standard material was observed, in agreement with earlier studies. The level of fractionation was found to be lower in hemochromatosis patients exhibiting homozygous (C282Y/C282Y) mutation of the HFE gene. On the one hand, this reinforces the hypothesis that Fe fractionation in blood decreases with enhanced dietary absorption. On the other hand, this contradicts predictions made on the basis of determinations of Fe fractionation in blood samples collected from subjects characterized by milder HFE mutations. In healthy subjects, the Zn in blood is depleted in lighter isotopes, consistent with the limited number of prior observations. As for Fe, the Zn isotopic composition exhibited a tendency toward lower levels of fractionation in the blood of subjects with hereditary hemochromatosis with homozygous mutation (C282Y/C282Y) of the HFE gene. The results therefore suggest that both Fe and Zn isotopic signatures in whole blood, at least to some extent, reflect polymorphisms in the HFE gene.  相似文献   

9.
In Spain, 85% of patients with genetic hemochromatosis (GH) are homozygous for the C282Y mutation of the HFE gene. H63D and S65C mutations of HFE may also play some role in the disease. The aim of this study was to establish the prevalence of C282Y, H63D, and S65C mutations of the HFE gene in newborns in Catalonia, Spain. One thousand one hundred forty-six newborn screening cards were selected randomly. DNA from these cards was extracted and HFE mutations were analyzed with the LightCycler equipment (Roche Diagnostics Gmbh, Mannheim, Germany). Sufficient DNA sample was obtained to screen for the three mutations in 1,043 cases (91%). The allelic frequencies of C282Y, H63D, and S65C mutations were 0.03 (IC 95% 0.022-0.037), 0.2 (IC 95% 0.19-0.22), and 0.01 (95% confidence interval [CI] 0.006-0.015), respectively. The frequency of C282Y homozygous newborns was 0.001 (95% CI 0.0005-0.0014). The frequencies of newborns doubly heterozygous for C282Y/H63D and C282Y/S65C were 0.01 (95% CI 0.005-0.02) and 0.002 (95% CI 0.0002-0.01), respectively. The allelic frequency of C282Y mutation is similar to that observed in Southern France, in the Czech Republic and in some areas of Italy. The allelic frequency of H63D mutation in Catalonia is the highest reported to date. Nevertheless, S65C is infrequent. These data should be kept in mind when designing hemochromatosis genotypic screening programs in Catalonia.  相似文献   

10.
Frequencies in the Japanese Population of HFE Gene Mutations   总被引:1,自引:0,他引:1  
We studied the frequencies of C282Y and H63Dmutations in the HFE gene, thought to be responsible forhereditary hemochromatosis (HH), in 504 chromosomesobtained from 252 unrelated Japanese. Allele-specific PCR and PCRrestriction fragment lengthpolymorphism methods revealed that the C282Y mutationwas not found and the H63D mutation was low in frequency(at only 0.99%) compared with data from European people. Since most HH is thought to be associated withthe HFE gene mutation, the low incidence of thesemutations is a likely reason for the rarity of thisdisease in the Japanese population.  相似文献   

11.
Genetic testing for hemochromatosis may have important implications for diagnosis and screening of the disease. However, the relative importance of mutations in the gene for hereditary hemochromatosis, HFE, may vary among populations, when the mutant allele frequencies and their penetrance in a particular genetic and environmental background are taken into account. We present data on the allele and genotype frequencies and population structure of two HFE genetic variants in three different ethnic groups from a highly mixed urban population (S?o Paulo, Brazil). Allele frequencies for both the C282Y and H63D HFE mutations showed significant differences among the studied populations (for the C282Y mutation, Euro-Brazilian 3.7%, admixed 0.7%, Afro-Brazilian 0.5%; and for the H63D mutation, Euro-Brazilian 20.3%, admixed 13.0%, Afro-Brazilian 6.4). The data substantiate a European origin for these mutations. Furthermore, they provide a basis for a more rational strategic planning of population screening programs for the disease.  相似文献   

12.
The aim of this study was to assess the frequencies of three hemochromatosis gene (HFE) mutations in ethnic Roma/Gypsies in Slovakia. A cohort of 367 individuals representing general population and not preselected for health status was genotyped by TaqMan real-time PCR assay for C282Y, H63D and S65C mutations in HFE gene. A unique genetic profile was revealed: C282Y is found in the highest frequency of all Central European countries (4.90%), while the frequency of H63D mutation (4.09%) is lower than any reported in Europe so far. S65C mutation was not present in the cohort. These mutation frequencies can be explained rather by gene influx and genetic isolation than by genetic inheritance from a former Roma/Gypsy homeland.  相似文献   

13.
The widespread use of the genotype assay that identifies the common C282Y mutation in the HFE gene has allowed an earlier diagnosis to be made in many subjects. A significant number of these patients may have no evidence of phenotypic disease and have a normal serum ferritin level. This phenomenon is more common when the genotype assay is used to screen populations rather than higher-risk groups such as family members of a proband with hereditary hemochromatosis. Moreover, patients with significant iron overload may be wild type for the C282Y mutation and have no other demonstrable mutation of the HFE gene. The HFE genotype assay has recently been found to give a false-positive C282Y homozygous result in half of the subjects in one population screening study due to the presence of a single nucleotide polymorphism (SNP) that interfered with primer binding in the PCR assay. The problem may be overcome by using alternate primers. A number of other groups have confirmed the finding but in a much smaller number of subjects, whereas others found that their assays were not affected by the SNP. The use of the HFE genotype assay as the sole diagnostic criterion for hereditary hemochromatosis is not recommended. The genotype assay should be used as an adjunct to the established methods of demonstrating iron overload and be viewed as a predictor of either the presence of iron overload or the subsequent development of iron overload during an individual's lifetime.  相似文献   

14.
Gharib AF  Karam RA  Pasha HF  Radwan MI  Elsawy WH 《Gene》2011,489(2):98-102
Hereditary hemochromatosis and alpha-1antitrypsin deficiency are genetic diseases characterized by endoplasmic reticulum (ER) stress with subsequent development of liver disease. Our aim was to estimate the frequency of hemochromatosis gene (HFE) mutant alleles (C282Y and H63D) and alpha-1 antitrypsin S/Z variants among Egyptian HCV cirrhotic patients and in hepatocellular carcinoma patients and to evaluate their effects on disease progression. HFE and alpha-1 antitrypsin polymorphisms were characterized in 200 Egyptian patients with HCV infection (100 patients complicated with cirrhosis, 100 patients with HCC) and 100 healthy subjects who had no history of any malignancy. The frequencies of HD genotype of H63D mutation were significantly increased in HCC patients compared to control group and to cirrhosis group. Also, the frequencies of DD genotype were significantly increased In HCC group compared to control group and to cirrhosis group. Our results suggested that Carriers of the D allele of H63D mutation were significantly more likely to develop HCC.  相似文献   

15.
Hereditary hemochromatosis (HH) is an autosomal recessive disease caused by a defective iron absorption. C282Y is the most frequent HFE gene mutation causing HH in Northern European populations and their descendants. However, two other mutations, H63D and S65C, have been described as pathogenic changes. In this study, we have tried to evaluate the frequency of these three mutations in our community. Eighty-three patients with clinical and/or biochemical features of hemochromatosis and 150 controls were screened for H63D, S65C, and C282Y mutations using a PCR-restriction fragment length polymorphism (RFLP)-based strategy. In contrast to previous studies, 7% of the patients were homozygous for C282Y mutation. The remaining patients were 20% H63D homozygous, 10% H63D/C282Y compound heterozygous, 1% H63D/S65C compound heterozygous, 22% H63D heterozygous, 2% C282Y heterozygous, 2% S65C heterozygous, and 36% of patients lacked any of the three mutations studied, despite the fact that they showed clinical/biochemical features of hemochromatosis. We observed a high frequency of the H63D mutation in both the control group and patients, whereas the main genotypes implicated in HH in our series were H63D homozygous and H63D/C282Y compound heterozygous. We propose that the H63D mutation be analyzed in HH patients from our geographic area. Moreover, further studies are needed to elucidate the role of this mutation in the development of HH and the genetic, environmental or other factors that affect the genotype-phenotype correlation between H63D and hemochromatosis.  相似文献   

16.
Hereditary hemochromatosis (HH) is a common autosomal recessive disorder causing inappropriate dietary iron absorption that affects North Europeans. HH is associated with the C282Y mutation of the HFE gene, and the H63D mutation to a lesser degree. Both mutations are abundant in Europe, with H63D also appearing in North Africa, the Middle East, and Asia. Emigration from Europe over the past 500 years has introduced C282Y and H63D to America, Australia, New Zealand, and South Africa in an essentially predictable fashion. The distinctive characteristics of the population genetics of HH are the confined racial distribution and high frequency in North European peoples. C282Y frequencies in North Europeans are typically between 5% and 10%, with homozygotes accounting for between 1/100 and 1/400 of these populations. The scarcity of the C282Y mutation in other populations accounts for the lack of HH in non-Europeans.  相似文献   

17.
Hereditary hemochroamtosis (HH) refers to a unique clinicopathologic subset of iron overload syndromes that includes the disorder related to C282Y homozygous mutation of the hemochromatosis protein (HFE), the most common form of hereditary hemochromatosis. Recent reports have highlighted analogies with the class of disorders, known as the conformational diseases whereby HFE C282Y mutant protein forms aggregates and is subsequently retained in the endoplasmic reticulum (ER). In conformational disorders, accumulation of unfolded or misfolded proteins in the ER can activate a complex cascade linked to the regulation of diverse physiologic processes, disease onset and progression. To-date, reviews on HFE C282Y HH have largely dealt with the end-stage consequence of this disorder (iron overload). However, our review focuses on upstream molecular events resulting from the mislocalization of the aggregation-prone HFE C282Y protein leading to potential advances in treatment and diagnosis.  相似文献   

18.
The gene whose alteration causes hereditary hemochromatosis (HFE according to the international nomenclature) was, more than 20 years ago, shown to map to 6p21.3. It has since escaped all efforts to identify it by positional cloning strategies. Quite recently, a gene named HLA-H was reported as being responsible for the disease. Two missense mutations, Cys282Tyr (C282Y) and His63Asp (H63D), were observed, but no proof was produced that the gene described is the hemochromatosis gene. To validate this gene as the actual site of the alteration causing hemochromatosis, we decided to look for the two mutations in 132 unrelated patients from Brittany. Our results indicate that more than 92% of these patients are homozygous for the C282Y mutation, and that all 264 chromosomes but 5 carry either mutation. These findings confirm the direct implication of HLA-H in hemochromatosis. Received: 16 December 1996 / Accepted: 13 May 1997  相似文献   

19.
Hereditary hemochromatosis (HH) is a common autosomal recessive disorder of iron metabolism. Iron absorption from the gut is inappropriately high, resulting in increasing iron overload. The hemochromatosis gene (HFE) was identified in 1996 by extensive positional cloning by many groups over a period of about 20 years. Two missense mutations were identified. Homozygosity for one of these, a substitution of a tyrosine for a conserved cysteine (C282Y), has now clearly been shown to be associated with HH in 60-100% of patients. The role of the second mutation, the substitution of an aspartic acid for a histidine (H63D), is not so clear but compound heterozygotes for both these mutations have a significant risk of developing HH. Here we review other putative mutations in the HFE gene and document a number of diallelic polymorphisms in HFE introns.  相似文献   

20.
HFE gene mutations are associated with over 80% of cases of hereditary hemochromatosis (HH), an iron-overload disease in which the liver is the most frequently affected organ. Research on HFE has traditionally focused on its interaction with the transferrin receptor. More recent studies have suggested a more complex function for this nonclassical MHC-I protein. The aim of this study was to examine how HFE and its two most common mutations affect the expression of selected genes in a hepatocyte-like cell line. Gene expression was analyzed in HepG2 cells overexpressing wild-type and mutant HFE. The effect of HFE in iron import and oxidative stress levels was assessed. Unfolded protein response (UPR)-activated gene expression was analyzed in peripheral blood mononuclear cells from characterized HH patients. C282Y HFE down-regulated hepcidin and enhanced calreticulin mRNA expression. Calreticulin levels correlated with intracellular iron increase and were associated with protection from oxidative stress. In C282Y(+/+) patients calreticulin levels correlated with the expression of the UPR marker BiP and showed a negative association with the number of hereditary hemochromatosis clinical manifestations. The data show that expression of C282Y HFE triggers a stress-protective response in HepG2 cells and suggest a role for calreticulin as a modifier of the clinical expression of HH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号