首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 328 毫秒
1.
Gao Y  Jiang M  Yang T  Ni J  Chen J 《Cell research》2006,16(6):539-547
hPFTAIRE1 (PFTK1), a Cdc2-related protein kinase, is highly expressed in human brain. It exhibits cytoplasmic distribution in Hela cells, although it contains two nuclear localization signals (NLSs) in its N-terminus. To search for its substrates and regulatory components, we screened a two-hybrid library by using the full-length hPFTAIRE1 as a bait. Four 14-3-3 isoforms (β,ε,η,τ) were identified interacting with the hPFTAIRE1. We found a putative 14-3-3 binding consensus motif(RHSSPSS) in the hPFTAIRE 1, which overlapped with its second NLS. Deletion of the RHSSPSS motif or substitution of Ser^119 gwithAla in the conserved binding motif abolished the specific interaction between the hPFTAIRE 1 and the 14-3 -3 proteins. The mutant S 120A hPFTAIRE1 also showed a weak interaction to the 14-3-3 proteins. The results suggested that the Ser^119 is crucial for the interaction between hPFTAIREI and the 14-3-3 proteins. All the hPFTAIRE1 mutants distributed in cytoplasm of Hela cells and human neuroblastoma cells (SH-SY5Y) when fused to the C-terminus of a green fluorescent protein (GFP), indicating that binding with the 14-3-3 proteins does not contribute to the subcellular localization of the hPFTAIRE1, although the binding may be involved in its signaling regulation.  相似文献   

2.
14-3-3 is now well established as a family of dimeric proteins that can modulate interaction between proteins involved in a wide range of functions. In many cases, these proteins show a distinct preference for a particular isoform(s) of 14-3-3 and in many cases a specific repertoire of dimer formation influences the particular proteins that 14-3-3 interact. Well over 200 proteins have been shown to interact with 14-3-3. The purpose of this review is to give an overview of the recently identified post-translational modifications of 14-3-3 isoforms and how this regulates function, interaction, specificity of dimerisation between isoforms and cellular location of target proteins. The association between 14-3-3 and its targets usually involves phosphorylation of the interacting protein which has been the subject of many reviews and discussion of this is included in other reviews in this series. However, it is now realised that in some cases the phosphorylation and a number of other, novel covalent modifications of 14-3-3 isoforms may modulate interaction and dimerisation of 14-3-3. Since this aspect is now emerging to be of major importance in the mechanism of regulation by 14-3-3 isoforms and has not been the focus of previous reviews, this will be detailed here.  相似文献   

3.
The 14-3-3 protein family is a highly conserved and widely distributed group of proteins consisting of multiple isoforms in eukaryotes. Ubiquitously expressed, 14-3-3 proteins play key roles in DNA replication, cell cycle regulation, and apoptosis. The function of 14-3-3 proteins is mediated by interaction with a large number of other proteins and with DNA. It has been demonstrated that 14-3-3γ protein binds strongly to cruciform structures and is crucial for initiating replication. In this study, we analyzed DNA binding properties of the 14-3-3γ isoform to linear and supercoiled DNA. We demonstrate that 14-3-3γ protein binds strongly to long DNA targets, as evidenced by electrophoretic mobility shift assay on agarose gels. Binding of 14-3-3γ to DNA target results in the appearance of blurry, retarded DNA bands. Competition experiments with linear and supercoiled DNA on magnetic beads show very strong preference for supercoiled DNA. We also show by confocal microscopy that 14-3-3 protein in the HCT-116 cell line is co-localized with DNA cruciforms. This implies a role for the 14-3-3γ protein in its binding to local DNA structures which are stabilized by DNA supercoiling.  相似文献   

4.
5.
The 14-3-3 family are homo- and heterodimeric proteins whose biological role has been unclear for some time, although they are now gaining acceptance as a novel type of adaptor protein that modulates interactions between components of signal transduction pathways, rather than by direct activation or inhibition. It is becoming apparent that phosphorylation of the binding partner and possibly also the 14-3-3 proteins may regulate these interactions. 14-3-3 isoforms interact with a novel phosphoserine (Sp) motif on many proteins, RSX1,2SpXP. The two isoforms that interact with Raf-1 are phosphorylated in vivo on Ser185 in a consensus sequence motif for proline-directed kinases. The crystal structure of 14-3-3 indicates that this phosphorylation could regulate interaction of 14-3-3 with its target proteins. We have now identified a number of additional phosphorylation sites on distinct mammalian and yeast isoforms.  相似文献   

6.
Plants and protozoa contain a unique family of calcium-dependent protein kinases (CDPKs) which are defined by the presence of a carboxyl-terminal calmodulin-like regulatory domain. We present biochemical evidence indicating that at least one member of this kinase family can be stimulated by 14-3-3 proteins. Isoform CPK-1 from the model plant Arabidopsis thaliana was expressed as a fusion protein in E. coli and purified. The calcium-dependent activity of this recombinant CPK-1 was shown to be stimulated almost twofold by three different 14-3-3 isoforms with 50% activation around 200 nM. 14-3-3 proteins bound to the purified CPK-1, as shown by binding assays in which either the 14-3-3 or CPK-1 were immobilized on a matrix. Both the 14-3-3 binding and activation of CPK-1 were specifically disrupted by a known 14-3-3 binding peptide LSQRQRSTpSTPNVHMV (IC50=30 μM). These results raise the question of whether 14-3-3 can modulate the activity of CDPK signal transduction pathways in plants.  相似文献   

7.
Cyclin-dependent kinase 11 isoforms (CDK11) are members of the p34(cdc2) superfamily. They have been shown to play a role in RNA processing and apoptosis. In the present study, we investigate whether CDK11 interacts with 14-3-3 proteins. Our study shows that the putative 14-3-3 binding site (113-RHRSHS-118) within the N-terminal domain of CDK11(p110) is functional. Endogenous CDK11(p110) binds directly to 14-3-3 proteins and phosphorylation of the serine 118 within the RHRSHS motif seems to be required for the binding. Besides, CDK11(p110) is capable of interacting with several different isoforms of 14-3-3 proteins both in vitro and in vivo. The interaction of 14-3-3 gamma with CDK11(p110) occurs throughout the entire cell cycle and reaches maximum at the G2/M phase. Interestingly, 14-3-3 gamma shows strong interaction with N-terminal portion of caspase-cleaved CDK11(p110) (CDK11(p60)) product at 48 h after Fas treatment, which correlates with the maximal cleavage level of CDK11(p110) and the maximum activation level of CDK11 kinase activity during apoptosis. Collectively, these results suggest that CDK11 kinases could be regulated by interaction with 14-3-3 proteins during cell cycle and apoptosis.  相似文献   

8.
9.
10.
Tyrosine hydroxylase (TH) has been reported to require binding of 14-3-3 proteins for optimal activation by phosphorylation. We examined the effects of phosphorylation at Ser19, Ser31 and Ser40 of bovine TH and human TH isoforms on their binding to the 14-3-3 proteins BMH1/BMH2, as well as 14-3-3 zeta and a mixture of sheep brain 14-3-3 proteins. Phosphorylation of Ser31 did not result in 14-3-3 binding, however, phosphorylation of TH on Ser40 increased its affinity towards the yeast 14-3-3 isoforms BMH1/BMH2 and sheep brain 14-3-3, but not for 14-3-3 zeta. On phosphorylation of both Ser19 and Ser40, binding to the 14-3-3 zeta isoform also occurred, and the binding affinity to BMH1 and sheep brain 14-3-3 increased. Both phosphoserine-specific antibodies directed against the 10 amino acids surrounding Ser19 or Ser40 of TH, and the phosphorylated peptides themselves, inhibited the association between phosphorylated TH and 14-3-3 proteins. This was also found when heparin was added, or after proteolytic removal of the N-terminal 37 amino acids of Ser40-phosphorylated TH. Binding of BMH1 to phosphorylated TH decreased the rate of dephosphorylation by protein phosphatase 2A, but no significant change in enzymatic activity was observed in the presence of BMH1. These findings further support a role for 14-3-3 proteins in the regulation of catecholamine biosynthesis and demonstrate isoform specificity for both TH and 14-3-3 proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号