首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Compared to agricultural land and spruce plantations, central European beech-oak forests are often relatively close to natural conditions. However, forest management may alter these conditions. In Steigerwald, southern Germany, a large beech-dominated forest area, three management intensities were applied during the past 30–70 years. Here, we examined the influence of management intensity on saproxylic beetles in >100-year old mature stands at 69 sampling plots in 2004. We sampled beetles using flight-window traps and time standard direct searches. The community structure based on presence/absence data changed remarkably along the gradient from unmanaged to low-intensity to high-intensity management, but these differences were not evident using abundance data from flight interception traps. Saproxylic species richness decreased in intensively managed forests. Elateridae and threatened species richness peaked in unmanaged forests and in forests under low-intensity management. Saproxylic species richness was dependent on certain micro-habitat factors. These factors were (1) the amount of dead wood for Elateridae, overall and threatened saproxylic beetle richness; (2) the amount of flowering plants for Cerambycidae; (3) the richness of wood-inhabiting fungi for Staphylinidae, Melandryidae and overall saproxylic beetle richness; and (4) the frequency of Fomes fomentarius for threatened species. Species richness was better explained by plot factors, such as dead wood or fungi, than by management intensity. These results suggest that the natural variation of dead wood niches (decay stages, snag sizes, tree cavities and wood-inhabiting fungi species) must be maintained to efficiently conserve the whole saproxylic beetle fauna of beech forests. Also, intensive management may alter the specialised saproxylic beetle community even if the initial tree-species composition is maintained, which was the case in our study. For monitoring the ecological sustainability of forest management we must focus on threatened species. If structures alone are sampled then the amount of dead wood is the best indicator for a rich saproxylic beetle fauna.  相似文献   

2.
Dead wood is a habitat for many insects and other small animals, some of which may be rare or endangered and in need of effective protection. In this paper, saproxylic beetle assemblages associated with different host trees in the subtropical forests in southwestern China were investigated. A total of 277 species (1 439 specimens) in 36 beetle families were collected from 117 dead wood samples, of which 101 samples were identified and respectively belonged to 12 tree genera. The number of saproxylic beetle species varied greatly among logs of different tree genera, with the highest diversity on logs of Juglans. Generally, broad‐leaved trees had a higher richness and abundance of saproxylic species than coniferous trees. Cluster analysis revealed that assemblages from broad‐leaved tree genera were generally similar (except for Betula) and assemblages from coniferous trees formed another distinct cluster. The subsequent indicator analysis proposed that there are different characteristic species for different cluster groups of host tree genera. In our study, log diameter has no positive influence on beetle species density. Conversely, comparisons of individual‐based rarefaction curves suggested that beetle species richness was highest in the small diameter class both in coniferous and broad‐leaved tree genera. With increased wood decay, proportion of habitat specialists (saproxylic beetles living on one tree genus) decreased, whereas proportion of habitat generalists (living on more than three tree genera) increased. The beetle species density was found to be higher in early stages, and decreased in later stages as well. A negative influence of altitude on saproxylic beetle species richness and abundance was detected. It was indicated that different tree genera and altitudes possibly display cross effects in modulating the altitudinal distribution and host preference of the beetles.  相似文献   

3.
Beech forests in Central Europe are under strong anthropogenic pressure. Yet they play a fundamental role for biodiversity and are therefore increasingly considered in conservation activities. Sites of high conservation value can be efficiently defined by the use of indicator species, but very few studies have identified indicator species for beech forests on a continental scale. Here we determined the efficacy of saproxylic beetles as indicator species for European beech forests and studied the effect of the amount of dead wood and temperature on their presence. We analyzed data from 988 trap catches from 209 sites in 7 European countries. Using the flexible indicator approach, which allowed combinations of two temperature groups (warm and cool) and three dead-wood amount categories (small, intermediate, high) to be considered, we identified 127 indicator species. Generally, we found more indicator species of beetles at warmer sites and at sites with larger amounts of dead wood. Indicator species at cooler sites were found only in combination with larger amounts of dead wood. We present a comprehensive, data-based list of indicator species of saproxylic beetle for near-natural beech forests, as required in the framework of the European Natura-2000 concept for habitat evaluation. We identified the conspicuous Lucanidae as the family with the highest percentage of indicator species and thus recommend it as a priority indicator group for monitoring. Our results furthermore provide evidence that large amounts of dead wood are particularly important in cool, montane beech forests for maintaining high diversity.  相似文献   

4.
The young successional stages of boreal forests are an important habitat for many saproxylic species. These habitats are formed by disturbances such as forest fires and they are characterized by large volumes of dead wood and sun-exposed conditions. Today, young successional stages of natural origin are very rare in Fennoscandia and there is need for restoration. We constructed a large-scale field experiment in which we studied the effects of two restoration practices on beetle diversity: controlled burning and partial harvesting with creating different volumes of dead wood. We sampled beetles with flight-intercept traps recording a total of 56,031 individuals and 755 species. The species richness and abundance of both saproxylic and non-saproxylic beetles were increased by burning and harvesting but the volume of dead wood created on harvested sites had no short-term effect on species richness or abundance. Rare species, especially saproxylic ones, preferred burned sites and a similar trend was observed among red-listed and pyrophilous species. Burning and harvesting also resulted in different species assemblages and there were some additional differences according to the volume of dead wood. We conclude that fire can be successfully used in restoration of managed boreal forests to increase species diversity and to facilitate the recovery of declined species. However, long-term monitoring is needed to clarify the effects of the restoration practices, in particular those of creating dead wood without using fire.  相似文献   

5.
1 Subsequent to the diversity of saproxylic beetles being proposed as a management tool in forestry, more explicit knowledge about the efficiency and selective properties of beetle sampling methods is needed.
2 We compared saproxylic beetle assemblages caught by alcohol-baited or unbaited window traps in different forest contexts. Considering that trap attractiveness depends on kairomone concentrations, we appraised whether the trap efficiency was influenced by trap environment (openness and local supply of fresh dead wood).
3 Saproxylic beetles were sampled using 48 cross-vane window flight traps, arranged in paired designs (alcohol-baited/unbaited), in eight ancient and eight recent gaps (open stands), and eight closed-canopy control stands in an upland beech forest in the French Pyrenees.
4 Baited traps were more efficient than unbaited traps in terms of abundance and richness in our deciduous forests. The ethanol lure did not have any repellent effect on the individual response of saproxylic taxa.
5 The influence of local environmental conditions on trap attractiveness was observed. Openness had a significant moderate effect on species richness. Trap attractiveness was slightly reduced in the alcohol-saturated environment of recent gaps probably due to a disruption by local fresh dead-wood concentrations of the kairomonal response of saproxylic beetles to baited traps ('alcohol disruption').
6 Because the ethanol lure enhanced the probability of species detection, it may be useful in early-warning surveillance, monitoring and control of wood borers, despite slight influences of local conditions on baited trap efficiency.  相似文献   

6.
Saproxylic beetles constitute a significant proportion of boreal forest biodiversity. However, the long history of timber production in Fennoscandia has significantly reduced the availability of dead wood and is considered a threat to the conservation of saproxylic beetle assemblages. Therefore, since the mid‐1990s dead wood retention in harvested stands has formed an integral part of silvicultural practices. However, the contribution of this biodiversity‐orientated management approach to conserving saproxylic beetle assemblages in boreal forest landscapes that include production forestry remains largely untested. We examined differences in resident saproxylic beetle assemblages among stands under different management in a boreal forest landscape in Central Sweden, and in particular stands managed according to new conservation‐orientated practices. We also investigated the relationship between beetle diversity and forest stand characteristics. Bark of coarse woody debris (CWD) was sieved for beetles in old managed stands, unmanaged nature reserves, and set‐aside areas, and clear‐cut stands harvested according to certification guidelines [new forestry (NF) clear‐cuts]. All stand types contributed significantly to the total diversity of beetles found. While stand size, position, and distance to nearest reserve were unimportant, both the quality and the quantity of CWD in stands contributed significantly to explaining beetle abundance and species richness. This extends the previous findings for red‐listed invertebrates, and shows that heterogeneous substrate quality and a range of management practices are necessary to maintain saproxylic beetle diversity in boreal forest landscapes that include production forestry. The unique abiotic conditions in combination with the abundant and varied CWD associated with NF clear‐cuts form an important component of forest stand heterogeneity for saproxylic beetles. It is thus essential that sufficient, diverse, CWD is retained in managed boreal landscapes to ensure the conservation of boreal saproxylic beetle assemblages.  相似文献   

7.
Many saproxylic species are threatened in Europe because of habitat decline. Hollow trees represent an important habitat for saproxylic species. Artificial habitats may need to be created to maintain or increase the amount of habitat due to natural habitat decline. This study investigated the extent to which saproxylic beetles use artificial habitats in wooden boxes. The boxes were placed at various distances (0–1800 m) from known biodiversity hotspots with hollow oaks and studied over 10 years. Boxes were mainly filled with oak saw dust, oak leaves, hay and lucerne flour. In total, 2170 specimens of 91 saproxylic beetle species were sampled in 43 boxes. The abundance of species associated with tree hollows, wood rot and animal nests increased from the fourth to the final year, but species richness declined for all groups. This study shows that wooden boxes can function as saproxylic species habitats. The artificial habitats developed into a more hollow-like environment during the decade long experiment with fewer but more abundant tree hollow specialists.  相似文献   

8.
Effective fire suppression in combination with intensive forestry has caused a large number of dead wood‐dependent (saproxylic) species to become threatened in Fennoscandia. In order to return the fire disturbance dynamics and to increase the amount of dead wood, restoration actions are urgently needed. We studied the effects of restoring young (under 30 years old) pine‐dominated (Pinus sylvestris L.) forest stands on saproxylic beetle assemblages in eastern Finland, focusing especially on rare, red‐listed, and pyrophilous (RRLP) species. Our experiment included a restoration treatment including two tree felling levels for fuel load (10 or 20 m3/ha) followed by burning, and an untreated control. We sampled beetles before restoration in 2005, during the year of restoration in 2006, and in two post‐treatment years in 2007 and 2011. Both restoration treatments increased the number of saproxylic and RRLP species. The species richness increased most in the year of restoration in 2006 and this trend continued in the following year 2007, but no differences in species assemblages were detected between the two fuel load levels. By 2011, however, the species richness and abundance had declined back to the pre‐treatment level. We suggest that restoration burning can also be directed to young forests where biodiversity values are initially low. On the basis of the observed decline in the species richness, we suggest that fire could be introduced in neighboring areas in approximately 5‐year intervals to maintain populations of the most demanding pyrophilous species .  相似文献   

9.
The effects of commercial forestry harvest and regeneration practices (clearfelling and slash-burning) on the lucanid fauna of the wet sclerophyll forests of southern Tasmania and the dry sclerophyll forests of eastern Tasmania were examined using pitfall catches. Lucanids are saproxylic beetles, dependent on dead, moribund and decaying wood. Samples taken from old-growth forest and from a chronosequence of sites regenerating after logging, in each forest type, were used to compare the species richness and abundance of the lucanid assemblages. In both forest types, species richness and abundance was highest in the youngest regeneration sites (1–3 year), reflecting the species richness of the original and adjacent unlogged forest, lowest in the older (20–25 year) sites, and variable in the old-growth sites. TWINSPAN cluster analysis showed no clear distinction between regeneration and old-growth forest. The post-harvest slash and stump residue provided an important refugium and initial habitat, but our research indicates that some species may not maintain populations in the long term. Our results suggest that most species of lucanids will find a continuous supply of suitable habitat only in old-growth forests; and such species may become less common as clearfell harvesting leads to a replacement of heterogeneous old-growth forest with single-aged monospecific stands. Continuity of supply of wood in all decay stages, the maintenance of sufficient source areas, and biological connectivity between old-growth stands to enable dispersal, are all likely to be essential to maintain lucanid beetle community integrity. If similar principles apply to other saproxylic species of invertebrate, then clearfelling and slash-burning may cause a gradual extinction of an important element of the forest biota.  相似文献   

10.
11.
Wood-inhabiting fungi and saproxylic beetles are threatened by habitat degradation. Our understanding of the importance of macroclimate and local factors determining their taxonomic diversity has increased, but determinants of functional and phylogenetic diversity are poorly understood. We investigated assemblages of wood-inhabiting fungi and saproxylic beetles along a 1000 m elevational gradient of a temperate low mountain range. We (i) tested the relative importance of macroclimate (i.e. elevation) and local variables (microclimate, i.e. canopy closure, amount and diversity of dead wood) in determining observed and rarefied diversities and (ii) explored whether determinants of observed functional and phylogenetic diversities match those of taxonomic diversity. For both taxa, the determinants of observed phylogenetic and functional diversities largely matched those of taxonomic diversity. The diversity of wood-inhabiting fungi was predominantly determined by local variables, whereas that of saproxylic beetles was determined by both local variables and elevation. Taxonomic and phylogenetic diversities of saproxylic beetles decreased with increasing elevation, but standardized functional richness and entropy of both groups increased with increasing elevation. Diversities of wood-inhabiting fungi increased with canopy closure, while diversities of saproxylic beetles decreased with increasing canopy closure. Microclimate and dead-wood amount and diversity affected the observed and rarefied diversity of both saproxylic taxa, which justifies conservation actions that focus on attributes of dead wood and canopy cover. The contrasting responses of fungi and beetles highlight the need for amounts of diverse dead wood in the various microclimates to preserve functional and phylogenetic diversities of saproxylic organisms.  相似文献   

12.
Although both saproxylic longhorn beetles and hoverflies benefit from the presence of woody substrates for reproduction, they differ in their requirements for floral resources and for microbiotopes of overmature and senescent trees. This led us to expect contrasting responses between the two species groups in relation to these essential resources. We examined this prediction in 22 mature oak- and beech-dominated stands of southern Belgium by relating their species assemblages to local vegetation structure and composition, altitude and landscape composition. Stands were organised in pairs as a function of their overall dead wood supply. Free-hanging window traps, stump emergence traps and Malaise traps produced 30 longhorn beetle species (1637 individuals) and 106 hoverfly species (3020 individuals). Paired-comparisons controlling for annual variation in captures showed that, unlike saproxylic hoverflies, stands with dead wood hosted more species and individuals of longhorn beetles. Accordingly, the two species groups were found to be independent on ordination axes, responding to different sets of environmental conditions. While stands dominated by oaks with a high snag volume were highly favoured by longhorn beetles, saproxylic and threatened syrphids were limited to open-stands with large trees and a well-developed, species rich herb layer providing the floral resources required for their reproduction. Our results suggest that, when defining criteria to identify or restore important habitats for saproxylic insect conservation, variables related to different aspects of dead wood supply should not be the only criteria taken into account.  相似文献   

13.
The use of flight interception traps (window traps) has been criticized for catching too many species without affinity to the immediate surroundings. We study aspen retention trees left for conservation reasons in a boreal forest in south-eastern Norway, and investigate how placement of window traps affects the beetle species assemblage, abundance of habitat specialists, saproxylic species and vagrant species. We also test the correlation between beetle trappings and beetle exit holes in wood. The window traps clearly responded to the immediate surroundings of the trap. Traps located on tree trunks had a different species assemblage than traps hanging freely. Traps mounted on trees caught more aspen associated beetles and less vagrant species than their free-hanging counterparts. The differences were larger when trees were dead than alive. There was a significant positive correlation between presence of individuals in the trunk-window traps and presence of exit holes for three aspen associated species. Thus, the trapping results indicated successful reproduction, showing that aspen associated beetles are not only attracted to but also utilise aspen retention trees/high stumps left in clear-cuts. This indicates that this conservation measure in forest management can have positive, alleviating effects concerning the dead wood deficit in managed boreal forest.  相似文献   

14.
Old hollow trees have declined in Europe and many saproxylic (i.e. wood-dwelling) invertebrates living on them are threatened. The aim of this study was to investigate to what extent artificial habitats can be exploited by saproxylic beetles. To mimic the conditions in tree hollows, we constructed wooden boxes filled with different combinations of substrates like oak saw dust, oak leaves, a dead hen (Gallus domesticus), chicken dung, lucerne flour or potatoes and placed them on tree trunks. To investigate the importance of distance from dispersal sources, we placed boxes at different distances (0–1,800 m) from three species-rich sites with high densities of hollow oaks. Over 3 years, 3,423 specimens of 105 saproxylic beetle species were caught in 47 boxes. Among beetles found in hollow oaks that were either tree-hollow species, bird nest species, or wood rot species, 70% were also found in the boxes. A dead hen added to the artificial wood mould gave a higher number of beetle specimens. The number of species associated with tree hollows in oak decreased with distance from sites with hollow oaks. In conclusion, the prospects for using artificial environments for boosting substrate availability, or to fill spatial and temporal gaps therein, for saproxylic beetles are good.  相似文献   

15.
The use of saproxylic beetle community as a metric to evaluate nature conservation measures in forests requires efficient methods. We first compare traditional bark sieving to a potential improvement (extracting beetles from whole bark with Tullgren funnels) to determine the most efficient. Secondly we compare this most efficient bark sampling to eclector and window traps. At the species, family, and functional group levels, we consider species richness, abundance and practical aspects. Traditional bark sieving missed >50% of the individual beetles compared to whole bark sampling so we recommend the latter. Window traps caught large numbers of mobile saproxylic beetles, but a high proportion of non-saproxylics results in high sorting cost; bark sampling and eclector traps had a high proportion of saproxylics and obligate saproxylics. Compared to bark sampling, eclector traps are non-destructive, and monitor the whole saproxylic assemblage (i.e. also beetles inside the wood). Overall, window traps are useful because they capture saproxylic beetles attracted to dead wood and sample the local species pool, whereas eclector traps capture the saproxylics that actually emerge from a particular piece of dead wood, and thus are suited to detailed studies. Overall, we suggest that a combination of these two best methods is highly complementary.  相似文献   

16.
Karin Schiegg 《Ecography》2000,23(5):579-587
Saproxylic beetles have been shown to be vulnerable to within-forest fragmentation expressed as large distances between single dead wood pieces (low spatial connectivity of dead wood). From samples of a two-year study of saproxylic beetles, species that were characteristic of sites with high dead wood connectivity were identified by Canonical Correspondence Analysis, the method of Dufrêne and Legendre (IndVal) and by considering the species occurring exclusively in sites with high dead wood connectivity. These species differed mainly from the other species by their high habitat specificity. Hence, there arc species-specific responses of saproxylic beetles to the spatial arrangement of dead wood. High dead wood connectivity must be achieved in managed forests to sustain species which are particularly vulnerable to fragmentation.  相似文献   

17.
This study investigates the relationship between the abundance of wood-rotting fungus suggested as 'continuity indicator species' and environmental variables for the assemblage of saproxylic (wood-living) beetles associated with Fomitopsis pinicola fruiting bodies in a mature spruce forest in southeastern Norway. The presence of species thought to indicate continuity in old growth is one of the criteria used when finding and delineating small protected areas ('woodland key habitats') in Scandinavian forestry. Although it is clear that remnants of old-growth forest are important for many taxa, documentation as to which entities or species the indicator species indeed indicate is scarce. If stands with a continuous and unbroken input of dead wood have a unique assemblage of wood-rotting fungi, it seems relevant to ask if these stands also have a unique assemblage of rare saproxylic beetles. I find that the indicator species exhibit no significant correlations with beetle species richness or with the presence of red-listed saproxylic beetles as a group. The different characteristics of dead wood conditions are the most important environmental variables that explain both the species richness and the presence of red-listed beetles. Single-species analyses reveal contrasting relationships. The red-listed beetle Atomaria alpina shows a significant and positive association to the abundance of indicator species. Contrary, a group of three red-listed species with similar ecology in the family Cisidae exhibits a significant and negative association to indicator species abundance. This indicates that important patterns are concealed when considering general measures such as overall presence of red-listed beetles. Single-species studies are necessary in order to correctly understand how rare beetles respond to forestry activities and to develop a policy that can secure their continuing existence in the boreal forest.  相似文献   

18.
Many protected areas have a long history of human intervention before being protected. In protected forests, the past land use has reduced the amount of natural structures, which are crucial substrates for thousands of species. We evaluate the short-term ecological effect of forest restoration (dead wood creation) on conifer-associated saproxylic (dead-wood dependent) beetles. More specifically, we analyze the effect of dead wood creation on the number of beetle species and individuals 1 and 5 years after restoration in spruce and pine forests, using a large-scale monitoring network over Finland. The number of saproxylic beetle species and individuals was larger at restored than at control plots both 1 and 5 years after restoration in both spruce and pine forests. Community composition in restored plots was different from control plots 1 year after restoration, but had returned towards the control plot composition 5 years after restoration, while control plots remained largely unchanged. Both in spruce and pine forests, there were more red-listed and rare saproxylic beetles in restored than in control plots 1 and 5 years after restoration. Our results indicate that restoration has an overall positive influence on saproxylic beetle diversity immediately after dead wood creation, but this effect is rather short-lived. Long term monitoring of restored dead wood is crucial in investigating successional pathways as well as biotic communities in advanced decay stages, and in fully evaluating the ecological effect of dead wood creation as a forest restoration measure.  相似文献   

19.
Today, the importance of restoring natural forest disturbance regimes and habitat structures for biodiversity is widely recognized. We evaluated the immediate effects of two restoration methods on wood-inhabiting (saproxylic) beetles in boreal forest voluntary set-asides. We used a before-after control-impact experimental set-up in 15 set-asides; each assigned to one of three treatments: (1) restoration burning, (2) gap cutting and (3) no-treatment reference stands. Before treatment, abundance, species richness and assemblage composition of trapped beetles did not differ significantly among treatments. Burning resulted in a significant change in assemblage composition and increased species richness and abundance compared to reference stands. As predicted, saproxylic species known to be fire favoured increased dramatically after burning. The immediate response shows that, initially, fire favoured species are attracted from the surrounding landscape and not produced on site. Gap cutting increased the abundance of cambium consumers but had no significant effect on total species richness or assemblage composition of saproxylic beetles. The stronger effect of burning compared to gap cutting on saproxylic assemblages is probably due to the very specific conditions created by fires that attracts many disturbance-dependent species, but that at the same time disfavour some disturbance-sensitive species. By contrast, gap cutting maintained assemblage composition, increased abundances and is likely to increase species richness in the years to follow, due to elevated level of dead wood. The restoration methods applied in this study may prove particularly useful, partly because of positive effect on saproxylic beetles, but also due to the cost-efficiency of the measures; the voluntary set-asides were already established and the restoration costs fully covered by revenue from the extracted timber.  相似文献   

20.
Economic and biological consequences are associated with exotic ambrosia beetles and their fungal associates. Despite this, knowledge of ambrosia beetles and their ecological interactions remain poorly understood, especially in the oak-hickory forest region. We examined how forest stand and site characteristics influenced ambrosia beetle habitat use as evaluated by species richness and abundance of ambrosia beetles, both the native component and individual exotic species. We documented the species composition of the ambrosia beetle community, flight activity, and habitat use over a 2-yr period by placing flight traps in regenerating clearcuts and older oak-hickory forest stands differing in topographic aspect. The ambrosia beetle community consisted of 20 species with exotic ambrosia beetle species dominating the community. Similar percentages of exotic ambrosia beetles occurred among the four forest habitats despite differences in stand age and aspect. Stand characteristics, such as stand age and forest structure, influenced ambrosia beetle richness and the abundances of a few exotic ambrosia beetle species and the native ambrosia beetle component. Topographic aspect had little influence on ambrosia beetle abundance or species richness. Older forests typically have more host material than younger forests and our results may be related to the amount of dead wood present. Different forms of forest management may not alter the percent contribution of exotic ambrosia beetles to the ambrosia beetle community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号