首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding divergent biological responses to climate change is important for predicting ecosystem level consequences. We use species habitat models to predict the winter foraging habitats of female southern elephant seals and investigate how changes in environmental variables within these habitats may be related to observed decreases in the Macquarie Island population. There were three main groups of seals that specialized in different ocean realms (the sub‐Antarctic, the Ross Sea and the Victoria Land Coast). The physical and climate attributes (e.g. wind strength, sea surface height, ocean current strength) varied amongst the realms and also displayed different temporal trends over the last two to four decades. Most notably, sea ice extent increased on average in the Victoria Land realm while it decreased overall in the Ross Sea realm. Using a species distribution model relating mean residence times (time spent in each 50 × 50 km grid cell) to 9 climate and physical co‐variates, we developed spatial predictions of residence time to identify the core regions used by the seals across the Southern Ocean from 120°E to 120°W. Population size at Macquarie Island was negatively correlated with ice concentration within the core habitat of seals using the Victoria Land Coast and the Ross Sea. Sea ice extent and concentration is predicted to continue to change in the Southern Ocean, having unknown consequences for the biota of the region. The proportion of Macquarie Island females (40%) utilizing the relatively stable sub‐Antarctic region, may buffer this population against longer‐term regional changes in habitat quality, but the Macquarie Island population has persistently decreased (?1.45% per annum) over seven decades indicating that environmental changes in the Antarctic are acting on the remaining 60% of the population to impose a long‐term population decline in a top Southern Ocean predator.  相似文献   

2.
Predictable sources of food underpin lifetime reproductive output in long lived animals. The most important foraging areas of top marine predators are therefore likely to be related to environmental features that enhance productivity in predictable spatial and temporal patterns. Even so, although productive areas within the marine environment are distributed patchily in space and time, most studies assess the relationships between feeding activity and proximate, not long term, environmental characteristics. In addition, individuals within a population may exploit different prey types, and these are often associated with different hydrographic features. Until now, models attempting to associate core foraging areas (CFAs) of marine predators with the environmental characteristics of those areas have not considered the diet of individual animals, despite the influence this could have on these relationships. We used bathymetry and multi‐year (n=24) mean sea surface temperature and variability as predictors of CFAs of lactating Antarctic fur seals Arctocephalus gazella at Heard Island. The effect of prey types on the predictability of these models was explored by matching diet and foraging trip data of individual seals (n=40 seals, n=1 trip each). Differences in diet between seals were mirrored by their spatial behaviour. Foraging strategies differed both between and within groups of seals consuming different diets. Long‐term environmental parameters were useful for predicting the foraging activity of seals that consumed a single prey type with relatively specific habitat preferences, but not for those that consumed single or multiple prey types associated with more varied habitats. Ignoring individual variation in predator diet probably contributes to the poor performance of foraging habitat models. These findings highlight the importance of incorporating individual specialization in foraging behaviour into ecological models and management of predator populations.  相似文献   

3.

Aim

The distribution of marine predators is driven by the distribution and abundance of their prey; areas preferred by multiple marine predator species should therefore indicate areas of ecological significance. The Southern Ocean supports large populations of seabirds and marine mammals and is undergoing rapid environmental change. The management and conservation of these predators and their environment relies on understanding their distribution and its link with the biophysical environment, as the latter determines the distribution and abundance of prey. We addressed this issue using tracking data from 14 species of marine predators to identify important habitat.

Location

Indian Ocean sector of the Southern Ocean.

Methods

We used tracking data from 538 tag deployments made over a decade at the Subantarctic Prince Edward Islands. For each real track, we simulated a set of pseudo‐tracks that allowed a presence‐availability habitat modelling approach that estimates an animal's habitat preference. Using model ensembles of boosted regression trees and random forests, we modelled these tracks as a response to a set of 17 environmental variables. We combined the resulting species‐specific models to evaluate areas of mean importance.

Results

Real tracking locations covered 39.75 million km2, up to 7,813 km from the Prince Edward Islands. Areas of high mean importance were located broadly from the Subtropical Zone to the Polar Frontal Zone in summer and from the Subantarctic to Antarctic Zones in winter. Areas of high mean importance were best predicted by factors including wind speed, sea surface temperature, depth and current speed.

Main conclusions

The models and predictions developed here identify important habitat of marine predators around the Prince Edward Islands and can support the large‐scale conservation and management of Subantarctic ecosystems and the marine predators they sustain. The results also form the basis of future efforts to predict the consequences of environmental change.
  相似文献   

4.
Aerial surveys of ice-associated pinnipeds were conducted south of St. Lawrence Island in March 2001. The observed distributions of bearded seals (Erignathus barbatus), ribbon seals (Phoca fasciata), ringed seals (P. hispida), spotted seals (P. largha), and walruses (Odobenus rosmarus) were compared to the distributions of ice habitat types and benthic communities. Randomization tests were used to investigate habitat selection for each species. Both ringed seals and walruses preferred large ice floes (>48 m in diameter) that were common in the interior ice pack. Spotted seals favored smaller ice floes (<20 m in diameter) common near the ice edge, and bearded seals avoided large floes and preferred transitional habitat between small and large floes. Ringed seals also seemed to prefer areas with greater than 90% sea ice coverage, and bearded seals preferred 70–90% sea ice coverage while avoiding areas with greater than 90% coverage. All species, except spotted seals, were seen most frequently in a region of high benthic biomass, and randomization tests suggested that bearded seals actively selected that region.  相似文献   

5.

Aim

Climate change is fundamentally altering habitats, with complex consequences for species across the globe. The Arctic has warmed 2–3 times faster than the global average, and unprecedented sea ice loss can have multiple outcomes for ice‐associated marine predators. Our goal was to assess impacts of sea ice loss on population‐specific habitat and behaviour of a migratory Arctic cetacean.

Location

Arctic Ocean.

Methods

Using satellite telemetry data collected during summer‐fall from sympatric beluga whale (Delphinapterus leucas) populations (“Chukchi” and “Beaufort” belugas), we applied generalized estimating equations to evaluate shifts in sea ice habitat associations and diving behaviour during two periods: 1993–2002 (“early”) and 2004–2012 (“late”). We used resource selection functions to assess changes in sea ice selection as well as predict trends in habitat selection and “optimal” habitat, based on satellite‐derived sea ice data from 1990 to 2014.

Results

Sea ice cover declined substantially between periods, and Chukchi belugas specifically used significantly lower sea ice concentrations during the late than early period. Use of bathymetric features did not change between periods for either population. Population‐specific sea ice selection, predicted habitat and the amount of optimal habitat also generally did not change during 1990–2014. Chukchi belugas tracked during 2007–2012 made significantly more long‐duration and deeper dives than those tracked during 1998–2002.

Main conclusions

Taken together, our results suggest bathymetric parameters are consistent predictors of summer‐fall beluga habitat rather than selection for specific sea ice conditions during recent sea ice loss. Beluga whales were able to mediate habitat change despite their sea ice associations. However, trends towards prolonged and deeper diving possibly indicate shifting foraging opportunities associated with ecological changes that occur in concert with sea ice loss. Our results highlight that responses by some Arctic marine wildlife can be indirect and variable among populations, which could be included in predictions for the future.
  相似文献   

6.
The extent, thickness and age of Arctic sea ice has dramatically declined since the late 1990s, and these trends are predicted to continue. Exploring the habitat use of sea‐ice‐dependent species can help us understand which resources they use and how their distribution responds to a changing environment. The goal of this study was to develop predictive models of the habitat use of an Arctic apex predator. Polar bear Ursus maritimus habitat use in the Barents Sea subpopulation was modelled with seasonal resource selection functions (RSFs) using satellite‐linked telemetry data from 294 collars deployed on female polar bears between 1991 and 2015. Polar bears selected habitat in the Marginal Ice Zone, with a preference for intermediate sea ice concentrations (40–80%). They spent most time in areas with relatively short travel distances to 15 or 75% ice concentration, and during spring and autumn they exhibited a preference for sea ice areas over the continental shelf or over shallower bathymetry). Predictions of the distribution of polar bears in the Barents Sea area can be made for specific sea ice scenarios using these models. Two such predictive distribution maps based on the autumn seasonal model were made and validated against two independent polar bear survey datasets collected in August 2004 and August 2015. The distribution of optimal polar bear habitat has shifted strongly northwards in all seasons of the year during the 25 yr study period.  相似文献   

7.
Global warming is predicted to reduce the amount of sea ice concentration in polar environments, thus presenting profound changes for populations of seabirds and marine mammals dependent on sea ice. Using data from a shipboard survey during August 2012, I test the hypothesis that relative abundance of seabird and marine mammals reflects environmental variability associated with the dynamic pack ice zone. Using environmental data and observations of sea ice concentration, I quantified an environmental gradient that describes the spatial organization of the dynamic pack ice zone. The relationship of top predators to this environmental gradient revealed three important aspects: (1) an open water and pack ice community is present with some top predator species exhibiting higher abundance associated with moderate sea ice concentration (40–60 %) as opposed to the pack ice edge (10 %), (2) Antarctic fur seals (Arctocephalus gazella) were the most abundant pinniped and they were observed resting on ice floes and foraging within leads and polynyas, and (3) for the most abundant species, spatial regression models indicate that latitude and sea ice concentration (a principal north/south gradient) are the most important environmental determinants. Winter ocean conditions may strongly influence population dynamics of top predators; therefore, information regarding their habitat use during winter is needed for understanding ecosystem dynamics.  相似文献   

8.
Open ocean predator‐prey interactions are often difficult to interpret because of a lack of information on prey fields at scales relevant to predator behaviour. Hence, there is strong interest in identifying the biological and physical factors influencing the distribution and abundance of prey species, which may be of broad predictive use for conservation planning and evaluating effects of environmental change. This study focuses on a key Southern Ocean prey species, Antarctic krill Euphausia superba, using acoustic observations of individual swarms (aggregations) from a large‐scale survey off East Antarctica. We developed two sets of statistical models describing swarm characteristics, one set using underway survey data for the explanatory variables, and the other using their satellite remotely sensed analogues. While survey data are in situ and contemporaneous with the swarm data, remotely sensed data are all that is available for prediction and inference about prey distribution in other areas or at other times. The fitted models showed that the primary biophysical influences on krill swarm characteristics included daylight (solar elevation/radiation) and proximity to the Antarctic continental slope, but there were also complex relationships with current velocities and gradients. Overall model performance was similar regardless of whether underway or remotely sensed predictors were used. We applied the latter models to generate regional‐scale spatial predictions using a 10‐yr remotely‐sensed time series. This retrospective modelling identified areas off east Antarctica where relatively dense krill swarms were consistently predicted during austral mid‐summers, which may underpin key foraging areas for marine predators. Spatiotemporal predictions along Antarctic predator satellite tracks, from independent studies, illustrate the potential for uptake into further quantitative modelling of predator movements and foraging. The approach is widely applicable to other krill‐dependent ecosystems, and our findings are relevant to similar efforts examining biophysical linkages elsewhere in the Southern Ocean and beyond.  相似文献   

9.
10.
Repeated cycles of glaciation have had major impacts on the distribution of genetic diversity of the Antarctic marine fauna. During glacial periods, ice cover limited the amount of benthic habitat on the continental shelf. Conversely, more habitat and possibly altered seaways were available during interglacials when the ice receded and the sea level was higher. We used microsatellites and partial sequences of the mitochondrial cytochrome oxidase 1 gene to examine genetic structure in the direct‐developing, endemic Southern Ocean octopod Pareledone turqueti sampled from a broad range of areas that circumvent Antarctica. We find that, unusually for a species with poor dispersal potential, P. turqueti has a circumpolar distribution and is also found off the islands of South Georgia and Shag Rocks. The overriding pattern of spatial genetic structure can be explained by hydrographic (with ocean currents both facilitating and hindering gene flow) and bathymetric features. The Antarctic Peninsula region displays a complex population structure, consistent with its varied topographic and oceanographic influences. Genetic similarities between the Ross and Weddell Seas, however, are interpreted as a persistent historic genetic signature of connectivity during the hypothesized Pleistocene West Antarctic Ice Sheet collapses. A calibrated molecular clock indicates two major lineages within P. turqueti, a continental lineage and a sub‐Antarctic lineage, that diverged in the mid‐Pliocene with no subsequent gene flow. Both lineages survived subsequent major glacial cycles. Our data are indicative of potential refugia at Shag Rocks and South Georgia and also around the Antarctic continent within the Ross Sea, Weddell Sea and off Adélie Land. The mean age of mtDNA diversity within these main continental lineages coincides with Pleistocene glacial cycles.  相似文献   

11.
Climate warming is causing unidirectional changes to annual patterns of sea ice distribution, structure, and freeze‐up. We summarize evidence that documents how loss of sea ice, the primary habitat of polar bears (Ursus maritimus), negatively affects their long‐term survival. To maintain viable subpopulations, polar bears depend on sea ice as a platform from which to hunt seals for long enough each year to accumulate sufficient energy (fat) to survive periods when seals are unavailable. Less time to access to prey, because of progressively earlier breakup in spring, when newly weaned ringed seal (Pusa hispida) young are available, results in longer periods of fasting, lower body condition, decreased access to denning areas, fewer and smaller cubs, lower survival of cubs as well as bears of other age classes and, finally, subpopulation decline toward eventual extirpation. The chronology of climate‐driven changes will vary between subpopulations, with quantifiable negative effects being documented first in the more southerly subpopulations, such as those in Hudson Bay or the southern Beaufort Sea. As the bears' body condition declines, more seek alternate food resources so the frequency of conflicts between bears and humans increases. In the most northerly areas, thick multiyear ice, through which little light penetrates to stimulate biological growth on the underside, will be replaced by annual ice, which facilitates greater productivity and may create habitat more favorable to polar bears over continental shelf areas in the short term. If the climate continues to warm and eliminate sea ice as predicted, polar bears will largely disappear from the southern portions of their range by mid‐century. They may persist in the northern Canadian Arctic Islands and northern Greenland for the foreseeable future, but their long‐term viability, with a much reduced global population size in a remnant of their former range, is uncertain.  相似文献   

12.
Summary A seabird and mammal census was carried out in the north-eastern Weddell Sea during the austral winter of 1986. The German research icebreaker Polarstern operated in heavy pack ice along the Greenwich Meridian between the northern sea ice boundary and the Antarctic coast. Crabeater seals (Lobodon carcinophagus), minke whales (Balaenoptera acutorostrata), Adélie penguins (Pygoscelis adeliae), Antarctic petrels (Thalassoica antarctica) and snow petrels (Pagodroma nivea) were found to be more abundant in the vicinity of the submarine Maud Rise, about 700 km north of the continental margin, than in other areas of substantial ice cover traversed during that cruise. The aggregations of birds and mammals are expected to reflect aggregations of their principal food, krill (Euphausia superba) wintering underneath the ice cover. The distribution pattern of krill predators coincides with the course of a warm water belt upwelling near Maud Rise. This upwelling could induce local ice melting which in turn may result in an increased release of sea ice algae.  相似文献   

13.
Summary The Antarctic copepod Drescheriella glacialis, an inhabitant of sea ice, is the first polar invertebrate metazoan to have been cultured throughout its life cycle. We describe its demographic characteristics on the basis of a laboratory cohort study and correlative field data. When compared to its closest temperate-zone relatives, D. glacialis shows temperature compensation of developmental and reproductive rates. A genuine r-strategist in every respect, it does not fit established trends for Antarctic invertebrates but appears well adapted to the peculiar spatio-temporal variability of the sea ice habitat.  相似文献   

14.
Studying the effects of prey distribution on predator behavior is complex in systems where there are multiple prey species. The role of prey density in predator behavior is rarely studied in closed ecosystems of one predator species and one prey species, despite these being an ideal opportunity to test these hypotheses. In this study, we investigate the effect of prey density on the foraging behavior of a predatory species in an isolated Antarctic ecosystem of effectively a single predatory species and a single prey species. We use resource selection models to compare prey density in areas utilized by predators (obtained from fine‐scale GPS telemetry data) to prey density at randomly generated points (pseudoabsences) throughout the available area. We demonstrate that prey density of breeding Antarctic petrels (Thalassoica antarctica) is negatively associated with the probability of habitat use in its only predator, the south polar skua (Catharacta maccormicki). Skuas are less likely to utilize habitats with higher petrel densities, reducing predation in these areas, but these effects are present during chick rearing only and not during incubation. We suggest that this might be caused by successful group defense strategies employed by petrel chicks, primarily spitting oil at predators.  相似文献   

15.
The Antarctic minke whale (Balaenoptera bonaerensis) is a difficult species to study because of its low visual detectability and preference for living within the sea ice habitat, accessible only by ice‐strengthened vessels. Recent identification of the Antarctic minke whale as the source of the seasonally ubiquitous bio‐duck call has allowed the use of this sound, as well as downsweeps, to investigate seasonality trends and diel patterns in Antarctic minke whale call production, and their relationship to sea ice cover. Passive acoustic data were collected using an autonomous Acoustic Recording Package (ARP) off the western Antarctic Peninsula. Bio‐duck calls were classified into four distinct call variants, with one variant having two subtypes. Bio‐duck calls were detected between April and November, with increasing call duration during the austral winter, indicating a strong seasonality in call production. Downsweeps, which were also attributed to Antarctic minke whales, were present throughout most months during the recording period, with a peak in July, and an absence in March and April. Both bio‐duck and downsweeps were significantly correlated with sea ice cover. No diel patterns were observed in bio‐duck calls or in downsweep call production at this site.  相似文献   

16.
Habitat partitioning by adult and subadult ringed seals (Phoca hispida) is poorly understood. Conclusions about displacement of subadult seals to suboptimal offshore habitat are largely based on nearshore observations as few satellite tagging studies include data from winter months. In this study, movement patterns of 14 subadult and 11 adult ringed seals were monitored in the Bering and Chukchi seas using satellite-linked telemetry. Seals were captured in Kotzebue Sound, Alaska, during October 2007 and 2008 and tracked for 17–297 days. Subadult ringed seals traveled south from the Chukchi Sea into the Bering Sea ([`(x)] \bar{x}  = 36 km/day) as sea ice coverage increased during November and December, remained ~1,000 km south near the ice edge during winter and returned north in the spring with the receding ice edge. Adults remained in the Chukchi and northern Bering seas, where their movements were more localized ([`(x)] \bar{x}  = 22 km/day). Adults were on average 322 km farther from the ice edge and 48 km closer to land and shorefast ice than were subadults. During winter, adult ringed seals construct and maintain breathing holes through the ice, and in spring, females give birth in subnivean lairs, mostly in shorefast ice; adult males defend breeding territories around those lairs. Our results show that subadult ringed seals, unconstrained by the need to maintain territories that contain stable breeding/pupping habitat, moved south to the Bering Sea ice edge, where there are better feeding opportunities, lower energetic costs (no breathing hole maintenance), and less exposure to predation.  相似文献   

17.
The analysis of animal tracking data provides important scientific understanding and discovery in ecology. Observations of animal trajectories using telemetry devices provide researchers with information about the way animals interact with their environment and each other. For many species, specific geographical features in the landscape can have a strong effect on behavior. Such features may correspond to a single point (eg, dens or kill sites), or to higher dimensional subspaces (eg, rivers or lakes). Features may be relatively static in time (eg, coastlines or home‐range centers), or may be dynamic (eg, sea ice extent or areas of high‐quality forage for herbivores). We introduce a novel model for animal movement that incorporates active selection for dynamic features in a landscape. Our approach is motivated by the study of polar bear (Ursus maritimus) movement. During the sea ice melt season, polar bears spend much of their time on sea ice above shallow, biologically productive water where they hunt seals. The changing distribution and characteristics of sea ice throughout the year mean that the location of valuable habitat is constantly shifting. We develop a model for the movement of polar bears that accounts for the effect of this important landscape feature. We introduce a two‐stage procedure for approximate Bayesian inference that allows us to analyze over 300 000 observed locations of 186 polar bears from 2012 to 2016. We use our model to estimate a spatial boundary of interest to wildlife managers that separates two subpopulations of polar bears from the Beaufort and Chukchi seas.  相似文献   

18.
Predicting how marine mammal populations respond to habitat changes will be essential for developing conservation management strategies in the 21st century. Responses to previous environmental change may be informative in the development of predictive models. Here we describe the likely effects of the last ice age on grey seal population size and distribution. We use satellite telemetry data to define grey seal foraging habitat in terms of the temperature and depth ranges exploited by the contemporary populations. We estimate the available extent of such habitat in the North Atlantic at present (between 1.42·106 km2 and 2.07·106 km2) and at the last glacial maximum (between 4.74·104 km2 and 2.11·105 km2); taking account of glacial and seasonal sea-ice coverage, estimated reductions of sea-level (123 m) and sea surface temperature hind-casts. Most of the extensive continental shelf waters (North Sea, Baltic Sea and Scotian Shelf), currently supporting >95% of grey seals, were unavailable during the last glacial maximum. A combination of lower sea-level and extensive ice-sheets, massively increased seasonal sea-ice coverage and southerly extent of cold water would have pushed grey seals into areas with no significant shelf waters. The habitat during the last glacial maximum might have been as small as 3% of today''s extent and grey seal populations may have fallen to similarly low numbers. An alternative scenario involving a major change to a pelagic or bathy-pelagic foraging niche cannot be discounted. However, hooded seals currently dominate that niche and may have excluded grey seals from such habitat. If as seems likely, the grey seal population fell to very low levels it would have remained low for several thousand years before expanding into current habitats over the past 12,000 years or so.  相似文献   

19.
20.
Ground counts during 1959–1968 compared with counts using high resolution (0.6 m2) satellite imagery during 2008–2012 indicated many fewer Weddell seals (Leptonychotes weddellii) at two major molting areas in the western Ross Sea: Edisto Inlet‐Moubray Bay, northern Victoria Land, and McMurdo Sound, southern Victoria Land. Breeding seals have largely disappeared from Edisto‐Moubray, though the breeding population in McMurdo Sound appears to have recovered from harvest in the 1960s. The timing of decline, or perhaps spreading (lower numbers of seals in more places), is unknown but appears unrelated to changes in sea ice conditions. We analyzed both historic and satellite‐derived ice data confirming a large expansion of pack ice mostly offshore of the Ross Sea, and not over the continental shelf (main Weddell seal habitat), and a thinning of fast ice along Victoria Land (conceivably beneficial to seals). Timing of fast ice presence and extent in coves and bays along Victoria Land, remains the same. The reduction in numbers is consistent with an altered food web, the reasons for which are complex. In the context of a recent industrial fishery targeting a seal prey species, a large‐scale seal monitoring program is required to increase understanding of seal population changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号