首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
【目的】探究乌头产吲哚乙酸(IAA)内生细菌的遗传多样性、溶磷解钾能力、抗逆能力及其对水稻幼苗生长的影响,为道地产区乌头产业可持续发展提供科技支撑。【方法】从健康乌头植株分离可培养内生细菌,采用Salkowski比色法测定内生细菌产IAA能力,16SrDNA限制性片段长度多样性(16SrDNA-RFLP)及16SrDNA全长序列研究其遗传多样性及系统发育地位,平板培养法测定产IAA内生细菌溶磷解钾及其对pH、温度、盐、抗生素等的耐受能力,平板法测定菌悬液浸泡后水稻种子萌发率和室内水培法探究产IAA内生细菌对水稻幼苗生长的影响。【结果】从健康乌头植株分离获得24株高产IAA的内生细菌,其分泌IAA的值为21.39–84.43 mg/L。16S rDNA-RFLP分析表明,24株产IAA的内生细菌可分为12个类群,代表菌株16S rRNA基因系统发育结果显示这些菌分属于肠杆菌属(Enterobacter)、克雷伯氏杆菌属(Klebsiella)、泛菌属(Pantoea)、假单胞菌属(Pseudomonas)、微杆菌属(Microbacterium)、芽孢杆菌属(Bacillus)、鞘氨醇杆...  相似文献   

2.
【背景】蓝藻周围存在伴生细菌,伴生细菌与蓝藻具有复杂的作用关系。【目的】研究淡水聚球藻伴生细菌对聚球藻生长的影响。【方法】采用高通量测序分析聚球藻伴生细菌多样性;平板划线法纯化聚球藻伴生细菌,通过形态观察结合16S rRNA基因序列同源性比对,对其种属关系进行确定;通过聚球藻和不同浓度伴生细菌共培养测定其叶绿素a浓度,分析伴生细菌对聚球藻生长的影响;采用种子发芽试验验证伴生细菌促生功能。【结果】淡水聚球藻伴生细菌优势菌属为产卟啉杆菌属(Porphyrobacter)、根瘤菌属(Rhizobium)、水单胞菌属(Aquimonas)和中慢生根瘤菌属(Mesorhizobium),从聚球藻分离获得了两株伴生细菌JQ1和JQ2,基于16S rRNA基因序列鉴定其分别属于Rhizobium和Peribacillus,通过在聚球藻与不同浓度伴生细菌共培养及水稻发芽试验验证,证明伴生细菌JQ1和JQ2在菌藻比例分别为5:1和15:1时具有促生作用,都对增强秧苗素质和根系发育有一定影响但JQ2与JQ1相比能显著提高水稻种子的发芽率。【结论】淡水聚球藻伴生细菌JQ1和JQ2在适宜的浓度均可显著促进聚球...  相似文献   

3.
【背景】植物种子是植物内生菌筛选的重要原料,从中能够分离得到具有巨大应用价值的内生菌株。【目的】为发掘优良的种子内生细菌资源,对分离自东乡野生稻种子的内生细菌Fse32进行鉴定并研究其抗病原真菌和促生活性。【方法】通过形态学观察、生理生化特征和16SrRNA基因序列分析进行菌种鉴定,采用拮抗试验检测抑制病原真菌的活性,通过促生能力测定试验、水稻种子萌发及盆栽试验评价该菌株的促生效果。【结果】内生细菌Fse32鉴定为唐菖蒲伯克霍尔德氏菌,命名为Burkholderia gladioli Fse32。拮抗试验结果显示,菌株Fse32对禾谷镰孢菌(Fusarium graminearum)、水稻纹枯病菌(Rhizoctoniasolani)、核盘菌(Sclerotiniasclerotiorum)、大豆核盘菌(Sclerotinialibertiana)、尖孢镰刀菌(Fusariumoxysporum)和辣椒疫霉病菌(Phytophthoracapsici)均有较好的抑制作用,吲哚乙酸(indole-3-aceticacid,IAA)产率为17.95mg/L,能产铁载体,其A/Ar比值为0....  相似文献   

4.
In various pathogenicity, serological, physiological and biochemical tests, performed in Belgium and Japan, the Pseudomonas fuscovaginae strains associated above 1,350 m elevation in Burundi with sheath brown rot of rice, rusty seed and black, stripes on seedlings, were found to be similar to reference strains of this pathogen from Japan. The same bacteria was detected on rice seeds imported from Asia to Burundi. Beside the serological characteristics, P. fuscovaginae can be differentiated from other oxidase and arginine dihydrolase positive non-pathogenic fluorescent pseudomonads, also isolated from lesions on rice seedlings, by the simultaneous occurrence of no production of 2-ketogluconate, acid production from trehalose, but not from inositol. Occasionally, other symptoms inducing, oxidase positive, fluorescent pseudomonads, different from any described species, were isolated from rice seedlings and sheath rot in Burundi.  相似文献   

5.
郭鹤宝  何山文  王星  章俊  张晓霞 《微生物学报》2019,59(12):2285-2295
【目的】Pantoea菌株是广泛分布在自然界中的一类功能多样的细菌。本研究对分离自水稻种子内生的Pantoea菌株进行系统发育分析及功能评价,从而确定分类地位、种类多样性、分布特征及功能特性。【方法】采用乙醇-次氯酸钠联合灭菌方法进行水稻种子的表面灭菌,进行内生细菌的分离与纯化;其次将纯化后的菌株进行16Sr RNA基因PCR扩增及序列分析,通过MEGA7软件构建系统发育树;将分离得到的菌株进行功能实验检测,如溶磷、产IAA、产铁载体、拮抗病原真菌等特性,最后检测菌株的溶血性;水稻分型采用SSR方法,并对水稻农学性状如分蘖数、株高、植株重及产量进行调查。【结果】本研究对分离自8个不同基因型水稻种子中的146株内生Pantoea菌株进行系统发育分析及功能评价,结果发现所分离到的泛菌菌株主要属于Pantoea dispersa、Pantoea agglomerans、Pantoea cypripedii以及Pantoea brenneri四个种,其中P. dispersa的菌株数量最多,分布最广,并且存在于所有的8个水稻种子样品中。对其中66株菌进行功能检测,发现86.3%和69.7%的菌株具有溶磷和产IAA能力,有7株菌具有产铁载体能力,未发现对真菌病害Fusarium moniliforme有拮抗作用的菌株,并发现3株菌具有溶血性;本实验未发现泛菌组成与水稻系统发育及农学性状存在明显的相关性。【结论】本研究首次对水稻种子中泛菌的多样性及其功能进行报道,发现不同基因型的水稻种子所含Pantoea种类及组成存在差异,种子选择性地积累了Pantoea类群,大部分菌株具有一定的促生特性。该研究结果有助于进一步探究微生物与植物的共进化、种子微生物的传播途径及作用方式。  相似文献   

6.
Seed shattering is an evolutionary trait that is essential to the survival of wild and weedy rice. Discovery of the qSH1 gene in rice subspecies Japonica and Sh4 in the rice subspecies Indica indicated the possibility that seed shattering is governed by major genes in a qualitative manner. However, observation of the large variability of seed shattering in weedy rice has led us to hypothesise that other genes related to abscission layer integrity could also be important in the regulation of seed shattering in rice. Gene expression 10 days after pollination and nucleotide composition revealed that qSH1 and Sh4 that are described as major players in seed shattering were not important in weedy rice. High expression of the gene OsCPL1 was positively associated with the occurrence of high seed shattering in weedy rice, which did not concur in previous studies of cultivated rice. This result is related to the absence of four SNPs and an indel in the OsCPL1 gene in weedy rice that are related to seed shattering in previous studies. Analysis of the expression of six genes related to cell wall synthesis/degradation revealed the importance of the genes OsXTH8 and OsCel9D in seed shattering in weedy rice. Therefore, in addition to qSH1 and Sh4, the genes OsCPL1, OsXTH8 and OsCel9D should be considered in studies of rice evolution and in the development of mitigation approaches of gene flow in transgenic rice.  相似文献   

7.
The seeds of two cultivars of rice and wheat were examined for the presence of bacteria antagonistic to the growth of fungal plant pathogens. A yellow-pigmented bacterium was found to predominate on rice seed cv. Sasashigure, and in pure culture strongly inhibited mycelial growth of a wide range of pathogens. A similarly inhibitory, cream-coloured bacterium was predominant on wheat seeds cv. Longbow. This paper describes the isolation and range of antagonism of these organisms, and details their identification as a member of the Erwinia herbicola group and Pseudomonas syringae respectively.  相似文献   

8.
9.
Seed shattering is one of the main traits related with the domestication of cultivated rice and with the invasiveness and persistence of weedy rice. Two independent studies in 2006 have indicated that qSH1 in Japonica and Sh4 in Indica rice are major genes governing this trait. However, a wide variation of seed shattering occurs in weedy rice ecotypes from the same geographic region and even within the same ecotype. The aim of this study was to evaluate the nucleotide variability of known and putative genes related to seed shattering in cultivated rice and to identify and validate new genes related to this trait in weedy rice. The qSH1 gene was not associated with seed shattering in the evaluated genotypes. The nucleotide variability of the genes Os01g0849100 and Os08g0512400, previously identified based on a genome‐wide resequencing study, was related to seed shattering in rice. The nucleotide variability of three single nucleotide polymorphisms (SNPs) of the OsXTH8 gene, which is related to cell wall biosynthesis, was not associated with seed shattering. However, the high expression of this gene was related to the occurrence of this trait. This study evaluated jointly a series of genes involved in rice seed shattering and indicated that the genes OsXTH8, Os08g0512400 and Os01g0849100 are important for the regulation of this trait in weedy rice in addition to previously described genes. Seed shattering in weedy rice has a more complex regulation than in cultivated rice where few major genes were identified.  相似文献   

10.
African and Asian populations of Fusarium spp. (Gibberella fujikuroi species complex) associated with Bakanae of rice (Oryzae sativa L.) were isolated from seeds and characterized with respect to ecology, phylogenetics, pathogenicity and mycotoxin production. Independent of the origin, Fusarium spp. were detected in the different rice seed samples with infection rate ranges that varied from 0.25% to 9%. Four Fusaria (F. andiyazi, F. fujikuroi, F. proliferatum and F. verticillioides) were found associated with Bakanae of rice. While three of the Fusaria were found in both African and Asian seed samples, F. fujikuroi was only detected in seed samples from Asia. Phylogenetic studies showed a broad genetic variation among the strains that were distributed into four different genetic clades. Pathogenicity tests showed that all strains reduced seed germination and possessed varying ability to cause symptoms of Bakanae on rice, some species (i.e. F. fujikuroi) being more pathogenic than others. The ability to produce fumonisins (FB1 and FB2) and gibberellin A3 in vitro also differed according to the Fusarium species. While fumonisins were produced by most of the strains of F. verticillioides and F. proliferatum, gibberellin A3 was only produced by F. fujikuroi. Neither fumonisin nor gibberellin was synthesized by most of the strains of F. andiyazi. These findings provide new information on the variation within the G. fujikuroi species complex associated with rice seed and Bakanae disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号