首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hnRNP A1 protein and a shortened derivative (UP1) promote telomere elongation in mammalian cells. In support of a direct role for A1 in telomere biogenesis, we have shown that the recombinant UP1 protein binds to telomeric DNA sequences in vitro, and pulls down telomerase activity from a cell extract. Here we show that A1/UP1 can interact directly with the RNA component of human telomerase (hTR). A portion of A1/UP1 that contains RNA recognition motif 2 (RRM2) is sufficient for an interaction with the first 208 nt of hTR. Given that the portion of A1/UP1 that contains RRM1 is sufficient for binding to a telomeric DNA oligonucleotide, we have tested whether A1/UP1 can interact simultaneously with both nucleic acids. Using a chromatography assay, we find that A1/UP1 bound to hTR can interact with telomeric DNA. Notably, these interactions are sufficiently robust to withstand incubation in a cell extract. Our results suggest that hnRNP A1 may help recruit telomerase to the ends of chromosomes.  相似文献   

2.
G-rich telomeric DNA sequences can form G-quadruplex structures. The heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) and a shortened derivative (UP1) are active in telomere length regulation, and it has been reported that UP1 can unwind G-quadruplex structures. Here, we investigate the interaction of hnRNP A1 with G-quadruplex DNA structures containing the human telomere repeat (TTAGGG) by gel retardation assays, ensemble fluorescence energy transfer (FRET) spectroscopy, and single molecule FRET microscopy. Our biochemical experiments show that hnRNP A1 binds well to the G-quadruplex telomeric DNA. Ensemble and single molecule FRET measurements provide further insight into molecular conformation: the telomeric DNA overhang is found to be in a folded state in the absence of hnRNP A1 and to remain predominantly in a compact state when complexed with hnRNP A1. This finding is in contrast to the previously reported crystal structures of UP1-telomere DNA complexes where the DNA oligo within the protein-DNA complex is in a fully open conformation.  相似文献   

3.
hnRNP A1 associates with telomere ends and stimulates telomerase activity   总被引:6,自引:1,他引:5  
Telomerase is a ribonucleoprotein enzyme complex that reverse-transcribes an integral RNA template to add short DNA repeats to the 3'-ends of telomeres. G-quadruplex structure in a DNA substrate can block its extension by telomerase. We have found that hnRNP A1--which was previously implicated in telomere length regulation--binds to both single-stranded and structured human telomeric repeats, and in the latter case, it disrupts their higher-order structure. Using an in vitro telomerase assay, we observed that depletion of hnRNP A/B proteins from 293 human embryonic kidney cell extracts dramatically reduced telomerase activity, which was fully recovered upon addition of purified recombinant hnRNP A1. This finding suggests that hnRNP A1 functions as an auxiliary, if not essential, factor of telomerase holoenzyme. We further show, using chromatin immunoprecipitation, that hnRNP A1 associates with human telomeres in vivo. We propose that hnRNP A1 stimulates telomere elongation through unwinding of a G-quadruplex or G-G hairpin structure formed at each translocation step.  相似文献   

4.
Telomeres are dynamic DNA-protein complexes at the end of linear chromosomes. Maintenance of functional telomeres is required for chromosome stability, and to avoid the activation of DNA damage response pathway and cell cycle arrest. Telomere-binding proteins play crucial roles in the maintenance of functional telomeres. In this study, we employed affinity pull-down and proteomic approach to search for novel proteins that interact with the single-stranded telomeric DNA. The proteins identified by two-dimensional gel electrophoresis were further characterized by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and MALDI-TOF-TOF tandem MS. Among the five identified proteins, we report here the biochemical properties of a novel protein, hnRNP A3. The purified hnRNP A3 bound specifically to G-rich strand, but not to C-rich strand or double-stranded telomeric DNA. The RRM1 (RNA recognition motif 1) domain, but not RRM2, of hnRNP A3 is sufficient to confer specific binding to the telomeric sequence. In addition, we present evidence that hnRNP A3 can inhibit telomerase extension in vitro. These biochemical properties of hnRNP A3 suggest that hnRNP A3 can participate in telomere regulation in vivo.  相似文献   

5.
The telomere integrity is maintained via replication machinery, telomere associated proteins and telomerase. Many telomere associated proteins are regulated in a cell cycle-dependent manner. Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1), a single-stranded oligonucleotide binding protein, is thought to play a pivotal role in telomere maintenance. Here, we identified hnRNP A1 as a novel substrate for vaccinia-related kinase 1 (VRK1), a cell cycle regulating kinase. Phosphorylation by VRK1 potentiates the binding of hnRNP A1 to telomeric ssDNA and telomerase RNA in vitro and enhances its function for telomerase reaction. VRK1 deficiency induces a shortening of telomeres with an abnormal telomere arrangement and activation of DNA-damage signaling in mouse male germ cells. Together, our data suggest that VRK1 is required for telomere maintenance via phosphorylation of hnRNP A1, which regulates proteins associated with the telomere and telomerase RNA.  相似文献   

6.
7.
In Saccharomyces cerevisiae, the Ku heterodimer contributes to telomere maintenance as a component of telomeric chromatin and as an accessory subunit of telomerase. How Ku binding to double-stranded DNA (dsDNA) and to telomerase RNA (TLC1) promotes Ku's telomeric functions is incompletely understood. We demonstrate that deletions designed to constrict the DNA-binding ring of Ku80 disrupt nonhomologous end-joining (NHEJ), telomeric gene silencing, and telomere length maintenance, suggesting that these functions require Ku's DNA end-binding activity. Contrary to the current model, a mutant Ku with low affinity for dsDNA also loses affinity for TLC1 both in?vitro and in?vivo. Competition experiments reveal that wild-type Ku binds dsDNA and TLC1 mutually exclusively. Cells expressing the mutant Ku are deficient in nuclear accumulation of TLC1, as expected from the RNA-binding defect. These findings force reconsideration of the mechanisms by which Ku assists in recruiting telomerase to natural telomeres and broken chromosome ends. PAPERCLIP:  相似文献   

8.
9.
Heterogeneous ribonucleoprotein A1 (hnRNP A1) is an abundant nuclear protein that participates in RNA processing, alternative splicing, and chromosome maintenance. hnRNP A1 can be proteolyzed to unwinding protein (UP1), a 22.1-kDa protein that retains a high affinity for purine-rich single-stranded nucleic acids, including the human telomeric repeat (hTR) d(TTAGGG)n. Using the structure of UP1 bound to hTR as a guide, we have incorporated the fluorescent guanine analog 6-MI at one of two positions within the DNA to facilitate binding studies. One is where 6-MI remains stacked with an adjacent purine, and another is where it becomes fully unstacked upon UP1 binding. The structures of both modified oligonucleotides complexed to UP1 were determined by x-ray crystallography to validate the efficacy of our design, and 6-MI has proven to be an excellent reporter molecule for single-stranded nucleic acid interactions in positions where there is a change in stacking environment upon complex formation. We have shown that UP1 affinity for d(TTAGGG)2 is approximately 5 nm at 100 mm NaCl, pH 6.0, and our binding studies with d(TTAGG(6-MI)TTAGGG) show that binding is only modestly sensitive to salt and pH. UP1 also has a potent G-tetrad destabilizing activity that reduces the Tm of the hTR sequence d(TAGGGT)4 from 67.0 degrees C to 36.1 degrees C at physiological conditions (150 mm KCl, pH 7.0). Consistent with the structures determined by x-ray crystallography, UP1 is able to bind the hTR sequence in solution as a dimer and supports a model for hnRNP A1 binding to nucleic acids in arrays that may make a contiguous set of anti-parallel single-stranded nucleic acid binding clefts. These data suggest that seemingly disparate roles for hnRNP A1 in alternative splice site selection, RNA processing, RNA transport, and chromosome maintenance reflect its ability to bind a purine-rich consensus sequence (nYAGGn) and destabilize potentially deleterious G-tetrad structures.  相似文献   

10.
11.
hnRNP A2, a potential ssDNA/RNA molecular adapter at the telomere   总被引:5,自引:1,他引:4       下载免费PDF全文
The heterogeneous nuclear ribonucleoprotein (hnRNP) A2 is a multi-tasking protein that acts in the cytoplasm and nucleus. We have explored the possibility that this protein is associated with telomeres and participates in their maintenance. Rat brain hnRNP A2 was shown to have two nucleic acid binding sites. In the presence of heparin one site binds single-stranded oligodeoxyribonucleotides irrespective of sequence but not the corresponding oligoribonucleotides. Both the hnRNP A2-binding cis-acting element for the cytoplasmic RNA trafficking element, A2RE, and the ssDNA telomere repeat match a consensus sequence for binding to a second sequence-specific site identified by mutational analysis. hnRNP A2 protected the telomeric repeat sequence, but not the complementary sequence, against DNase digestion: the glycine-rich domain was found to be necessary, but not sufficient, for protection. The N-terminal RRM (RNA recognition motif) and tandem RRMs of hnRNP A2 also bind the single-stranded, template-containing segment of telomerase RNA. hnRNP A2 colocalizes with telomeric chromatin in the subset of PML bodies that are a hallmark of ALT cells, reinforcing the evidence for hnRNPs having a role in telomere maintenance. Our results support a model in which hnRNP A2 acts as a molecular adapter between single-stranded telomeric repeats, or telomerase RNA, and another segment of ssDNA.  相似文献   

12.
The telomere specific shelterin complex, which includes TRF1, TRF2, RAP1, TIN2, TPP1 and POT1, prevents spurious recognition of telomeres as double-strand DNA breaks and regulates telomerase and DNA repair activities at telomeres. TIN2 is a key component of the shelterin complex that directly interacts with TRF1, TRF2 and TPP1. In vivo, the large majority of TRF1 and TRF2 are in complex with TIN2 but without TPP1 and POT1. Since knockdown of TIN2 also removes TRF1 and TRF2 from telomeres, previous cell-based assays only provide information on downstream effects after the loss of TRF1/TRF2 and TIN2. Here, we investigated DNA structures promoted by TRF2–TIN2 using single-molecule imaging platforms, including tracking of compaction of long mouse telomeric DNA using fluorescence imaging, atomic force microscopy (AFM) imaging of protein–DNA structures, and monitoring of DNA–DNA and DNA–RNA bridging using the DNA tightrope assay. These techniques enabled us to uncover previously unknown unique activities of TIN2. TIN2S and TIN2L isoforms facilitate TRF2-mediated telomeric DNA compaction (cis-interactions), dsDNA–dsDNA, dsDNA–ssDNA and dsDNA–ssRNA bridging (trans-interactions). Furthermore, TIN2 facilitates TRF2-mediated T-loop formation. We propose a molecular model in which TIN2 functions as an architectural protein to promote TRF2-mediated trans and cis higher-order nucleic acid structures at telomeres.  相似文献   

13.
Binding of the telomerase ribonucleoprotein from the ciliate Euplotes aediculatus to telomeric DNA in vitro has been examined by electron microscopy (EM). Visualization of the structures that formed revealed a globular protein complex that localized to the DNA end containing the E. aediculatus telomere consensus 3'-single-strand T(4)G(4)T(4)G(4)T(4)G(2) overhang. Gel filtration confirmed that purified E. aediculatus telomerase is an active dimer in solution, and comparison of the size of the DNA-associated complex with apoferritin suggests that E. aediculatus telomerase binds to a single telomeric 3'-end as a dimer. Up to 43% of the telomerase-DNA complexes appeared by EM to involve tetramers or larger multimers of telomerase in association with two or more DNA ends. These data provide the first direct evidence that telomerase is a functional dimer and suggest that two telomerase ribonucleoprotein particles cooperate to elongate each Euplotes telomere in vivo.  相似文献   

14.
15.
Telomerase synthesizes telomeric DNA repeats onto chromosome termini from an intrinsic RNA template. The processive synthesis of DNA repeats relies on a unique, yet poorly understood, mechanism whereby the telomerase RNA template translocates and realigns with the DNA primer after synthesizing each repeat. Here, we provide evidence that binding of the realigned RNA/DNA hybrid by the active site is an essential step for template translocation. Employing a template-free human telomerase system, we demonstrate that the telomerase active site directly binds to RNA/DNA hybrid substrates for DNA polymerization. In telomerase processivity mutants, the template-translocation efficiency correlates with the affinity for the RNA/DNA hybrid substrate. Furthermore, the active site is unoccupied during template translocation as a 5 bp extrinsic RNA/DNA hybrid effectively reduces the processivity of the template-containing telomerase. This suggests that strand separation and template realignment occur outside the active site, preceding the binding of realigned hybrid to the active site. Our results provide new insights into the ancient RNA/DNA hybrid binding ability of telomerase and its role in template translocation.  相似文献   

16.
Telomerase is a promising "universal" anticancer target. It has been demonstrated that inhibition of telomerase leads to mortalization and death of previously immortal cell lines. We are interested in targeting telomerase by binding to the RNA/DNA duplex that forms during its catalytic cycle. The RNA strand of this duplex is a component of telomerase and acts as a template to direct the synthesis of the single-stranded DNA telomere. We have hypothesized that molecules that bind to this duplex will inhibit the enzyme by either preventing strand dissociation or by sufficiently distorting the substrate, thereby causing a misalignment of key catalytic residues. To test this hypothesis we have examined the activity of telomerase in the presence of a range of intercalating molecules, known for their broad duplex binding properties. Of the nine compounds we examined, four show promising lead activity in the low micromolar range. A kinetic analysis of the telomeric products suggests that these compounds do not act by stabilizing G-quartets, thereby supporting the telomeric RNA/DNA heteroduplex as the site of action. We anticipate using these lead compounds as the basis for combinatorial variation to increase the affinity and specificity for the target telomerase.  相似文献   

17.
Est1 is a component of yeast telomerase, and est1 mutants have senescence and telomere loss phenotypes. The exact function of Est1 is not known, and it is not homologous to components of other telomerases. We previously showed that Est1 protein coimmunoprecipitates with Tlc1 (the telomerase RNA) as well as with telomerase activity. Est1 has homology to Ebs1, an uncharacterized yeast open reading frame product, including homology to a putative RNA recognition motif (RRM) of Ebs1. Deletion of EBS1 results in short telomeres. We created point mutations in a putative RRM of Est1. One mutant was unable to complement either the senescence or the telomere loss phenotype of est1 mutants. Furthermore, the mutant protein no longer coprecipitated with the Tlc1 telomerase RNA. Mutants defective in the binding of Tlc1 RNA were nevertheless capable of binding single-stranded TG-rich DNA. Our data suggest that an important role of Est1 in the telomerase complex is to bind to the Tlc1 telomerase RNA via an RRM. Since Est1 can also bind telomeric DNA, Est1 may tether telomerase to the telomere.  相似文献   

18.
Poly(C)-binding proteins (PCBPs) constitute a family of nucleic acid-binding proteins that play important roles in a wide spectrum of regulatory mechanisms. The diverse functions of PCBPs are dependent on the ability of the PCBPs to recognize poly(C) sequences with high affinity and specificity. PCBPs contain three copies of KH (hnRNP K homology) domains, which are responsible for binding nucleic acids. We have determined the NMR structure of the first KH domain (KH1) from PCBP2. The PCBP2 KH1 domain adopts a structure with three alpha-helices packed against one side of a three-stranded antiparallel beta-sheet. Specific binding of PCBP2 KH1 to a number of poly(C) RNA and DNA sequences, including the C-rich strand of the human telomeric DNA repeat, the RNA template region of human telomerase, and regulatory recognition motifs in the poliovirus-1 5'-untranslated region, was established by monitoring chemical shift changes in protein (15)N-HSQC spectra. The nucleic acid binding groove was further mapped by chemical shift perturbation upon binding to a six-nucleotide human telomeric DNA. The binding groove is an alpha/beta platform formed by the juxtaposition of two alpha-helices, one beta-strand, and two flanking loops. Whereas there is a groove in common with all of the DNA and RNA binders with a hydrophobic floor accommodating a three-residue stretch of C residues, nuances in recognizing flanking residues are provided by hydrogen bonding partners in the KH domain. Specific interactions of PCBP2 KH1 with telomeric DNA and telomerase RNA suggest that PCBPs may participate in mechanisms involved in the regulation of telomere/telomerase functions.  相似文献   

19.
20.
TEP1 is a protein component of two ribonucleoprotein complexes: vaults and telomerase. The vault-associated small RNA, termed vault RNA (VR), is dependent upon TEP1 for its stable association with vaults, while the association of telomerase RNA with the telomerase complex is independent of TEP1. Both of these small RNAs have been shown to interact with amino acids 1–871 of TEP1 in an indirect yeast three-hybrid assay. To understand the determinants of TEP1–RNA binding, we generated a series of TEP1 deletions and show by yeast three-hybrid assay that the entire Tetrahymena p80 homology region of TEP1 is required for its interaction with both telomerase and VRs. This region is also sufficient to target the protein to the vault particle. Electrophoretic mobility shift assays using the recombinant TEP1 RNA-binding domain (TEP1–RBD) demonstrate that it binds RNA directly, and that telomerase and VRs compete for binding. VR binds weakly to TEP1–RBD in vitro, but mutation of VR sequences predicted to disrupt helices near its central loop enhances binding. Antisense oligonucleotide-directed RNase H digestion of endogenous VR indicates that this region is largely single stranded, suggesting that TEP1 may require access to the VR central loop for efficient binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号