首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sonic disrupted mitoplasts from 3-methylcholanthrene (MCA) treated rats can catalyze the formation of benzo(a)pyrene (BaP) adducts with calf thymus DNA in the presence of an NADPH generating system. The mitoplasts used in this study contained less than 1% microsomal marker enzymes: rotenone insensitive NADPH cytochrome c reductase and glucose-6-phosphatase. The rates of BaP metabolism and DNA adduct formation per nanomole cytochrome P-450 were different for MCA induced mitochondrial and microsomal enzymes. The major B(a)P DNA adducts formed in incubations with lysed mitoplasts were derived from reaction of 9-OH-B(a)P-4,5 oxide with deoxyguanosine. The results suggest a potential role of mitochondrial monooxygenase activity in the covalent binding of B(a)P to mitochondrial DNA.  相似文献   

2.
The involvement of cytochrome P-450 isozymes in the activation of benzo[a]pyrene (BP) by human placental and liver microsomes was studied in vitro using monoclonal antibodies (Mab) toward the major 3-methylcholanthrene (MC)-inducible and phenobarbital-inductible rat liver P-450 isozymes (Mab 1-7-1 and Mab 2-66-3, respectively). Microsomes from human placenta and liver and rat liver were incubated with BP and DNA, and BP-diolepoxide-DNA (BPDE-DNA) adducts were measured by synchronous fluorescence spectrophotometry (SFS). The only BP metabolite giving the same fluorescence peak as chemically modified BPDE-DNA was BP-7,8-dihydrodiol. Five (smokers) out of 29 human placentas (smokers and nonsmokers), and five out of nine human livers were able to metabolically activate BP to BPDE-DNA adducts in this system. The Mab 1-7-1 totally inhibited the formation of BPDE-DNA adducts in placental microsomal incubations. Inhibition using rat or human liver microsomes was 50-60% and about 90%, respectively. The Mab 2-66-3 had no effect in any of the microsome types. Adduct formation was inhibited more strongly and at lower concentrations of Mab 1-7-1 compared with the inhibition of AHH activity. This study is a clear indication of the major role of P-450IA1 (P-450c) in human placenta and probably P-450IA2 (P-450d) in human liver in BP activation, while other isozymes also take part in the activation in rat liver. Furthermore, this clearly indicates that AHH activity and BP activation are not necessarily associated.  相似文献   

3.
Activation of the moderate carcinogen 6-methylbenzo[a]pyrene (6-CH(3)BP) by one-electron oxidation to form DNA adducts was studied. Iodine oxidation of 6-CH(3)BP in the presence of dGuo produces BP-6-CH(2)-N(2)dGuo, BP-6-CH(2)-N7Gua and a mixture of 6-CH(3)BP-(1&3)-N7Gua, whereas in the presence of Ade the adducts BP-6-CH(2)-N1Ade, BP-6-CH(2)-N3Ade, BP-6-CH(2)-N7Ade and 6-CH(3)BP-(1&3)-N1Ade are obtained. Furthermore, for the first time an aromatic hydrocarbon radical cation afforded an adduct with dThd, the stable adduct BP-6-CH(2)-N3dThd. Formation of these adducts indicates that the 6-CH(3)BP radical cation has charge localized at the 6, 1 and 3 position. When 6-CH(3)BP was activated by horseradish peroxidase in the presence of DNA, two depurinating adducts were identified, BP-6-CH(2)-N7Gua (48%) and 6-CH(3)BP-(1&3)-N7Gua (23%), with 29% unidentified stable adducts. In the binding of 6-CH(3)BP catalyzed by rat liver microsomes, the same two depurinating adducts, BP-6-CH(2)-N7Gua (22%) and 6-CH(3)BP-(1&3)-N7Gua (10%), were identified, with 68% unidentified stable adducts. In 6-CH(3)BP-treated mouse skin, the two depurinating adducts, BP-6-CH(2)-N7Gua and 6-CH(3)BP-(1&3)-N7Gua, were identified. Although quantitation of these two adducts was not possible due to coelution of metabolites on HPLC, they appeared to be the major adducts found in mouse skin. These results show that 6-CH(3)BP forms depurinating adducts only with the guanine base of DNA, both in vitro and in mouse skin. The weaker reactivity of 6-CH(3)BP radical cation vs. BP radical cation could account for the weaker tumor-initiating activity of 6-CH(3)BP in comparison to that of BP.  相似文献   

4.
Basal levels of aryl hydrocarbon hydroxylase, epoxide hydrolase and glutathione S-transferase enzyme activities, cytochrome P-450 content and inducibility of enzymes with phenobarbital were found to be similar in the microsomes of D. simulans mutant strain 364yv, which is sensitive to the toxic and mutagenic effects of benzo[a]pyrene (BP), and of the wild resistant Turku strain. In contrast, increases in the rate of BP turnover per molecule of cytochrome P-450, intensity of the hemoprotein band with apparent molecular weight 56,000 and the yield of BP 7,8-dihydrodiol and 9,10-dihydrodiol occurred only in microsomes of BP-pretreated 364yv flies but not of Turku ones. It is likely that BP induces an aberrant form of cytochrome P-450 in 364yv flies with a rare mutation in one of the P-450 regulating genes.  相似文献   

5.
The stereoselectivity of the oxidation of 7,8-dihydrobenzo[a]pyrene (H2BP) to 9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (H4BP-epoxide) by prostaglandin H (PGH) synthase and cytochrome P-450 has been studied using microsomal preparations from ram seminal vesicles and rat liver. Incubations were performed in the presence of polyguanylic acid and the adducts formed between H4BP-epoxide and guanosine were isolated following the recovery and hydrolysis of the poly(G). When (+/-)-H4BP-epoxide was reacted with poly(G), four diastereomeric adducts were formed by the cis and trans addition of the exocyclic amino group of guanine to the benzylic carbon of the epoxide enantiomers. Each diastereomer was identified by a combination of ultraviolet, nuclear magnetic resonance, circular dichroism, and mass spectroscopy. Under comparable conditions, ram seminal vesicle microsomes in the presence of arachidonic acid triggered the binding of H2BP to poly(G) to a greater extent than rat liver microsomes from untreated and phenobarbital- and methylcholanthrene pretreated animals in the presence of NADPH. Quantitation of the (-)-cis- and (+)-cis-guanosine adducts revealed the degree of stereoselectivity of epoxidation. The ratio of (-)/(+) adducts was 54:46 for PGH synthase and 89:11 (control), 62:38 (phenobarbital), and 69:31 (methylcholanthrene) for cytochrome P-450-catalyzed reactions. PGH synthase catalyzed the epoxidation of H2BP with little or no stereoselectivity in contrast to cytochrome P-450. The utility of the poly(G) binding technique for the elucidation of the stereoselective generation of chiral electrophiles is discussed along with the mechanistic implications of the results.  相似文献   

6.
The in vivo formation of benzo[alpha]pyrene (BP) metabolite-DNA adducts in several tissues of mice and rabbits was examined. Included were tissues with widely divergent xenobiotic metabolizing capabilities such as liver and brain. The major adduct identified in each tissue was the (+)-7 beta,8 alpha-dihydroxy-9 alpha,10 alpha-epoxy-7,8,9,10-tetrahydro-BP (BPDEI)-deoxyguanosine adduct. A 7 beta,8 alpha-dihydroxy-9 beta,10 beta-epoxy-7,8,9,10-tetrahydro-BP (BPDEII)-deoxyguanosine adduct, a (-)-BPDEI-deoxyguanosine adduct and an unidentified adduct were also observed. These adducts were present in all of the tissues of the mice and in the lungs of the rabbits; only BPDEI and BPDEII were seen in the rest of the rabbit tissues. In all of the tissues studied, the DNA adduct levels were unexpectedly similar. For example, the BPDEI-DNA adduct levels in muscle and brain of mice were approx. 50% of those in lung and liver at each oral BP dose examined. After an i.v. dose of BP in rabbits, the BPDEI adduct levels in lung were three times those in brain or liver and twice those in muscle. The binding of BP metabolites to protein was also determined in these tissues. The tissue-to-tissue variation in protein binding levels of BP metabolites was greater than that for BPDEI-DNA adducts. There are several possible explanations for the in vivo binding of BP metabolites to DNA and protein of various tissues. First, oxidative metabolism of BP in each of the examined tissues might account for the observed binding. Second, reactive metabolites could be formed in tissues such as liver and lung and be transported to cells in tissues such as muscle and brain where they bind to DNA and protein. In any case, the tissue-to-tissue variations in protein and DNA binding of BP-derived radioactivity do not correlate with differences in cytochrome P-450 activity.  相似文献   

7.
The metabolism of benzo[a]pyrene (BP) in regenerating rat liver and the induction of enzyme-altered foci (EAF) in the liver of partially hepatectomized rats, treated with BP and promoted with 2-acetylaminofluorene (2-AAF)/CCl4 was investigated. The aim was to examine factors that might be of importance for the tumorigenicity of BP in the regenerating rat liver, such as cytochrome P-450 activity and glutathione levels. In regenerating rat liver, obtained 18 h after partial hepatectomy (PH), the amount of microsomal cytochrome P-450 was reduced by 20% whereas the level of glutathione was elevated by 15% and the cytosolic glutathione transferase activity towards chlorodinitrobenzene and (+/-)-7 beta,8 alpha-dihydroxy-9 alpha, 10 alpha-epoxy-7,8,9,10-tetrahydro-BP (BPDE) was unaffected. Microsomes from these animals had a reduced capacity to activate (-)-trans-7,8-dihydroxy-7,8-dihydro-BP (BPD) to DNA-binding products but the pattern of BP metabolites was similar to that observed with control rat liver microsomes. Treatment of rats with 3-methylcholanthrene (MC, 50 mg/kg body wt.) increased cytochrome P-450 levels and glutathione transferase activity towards both substrates. Regenerating livers from these animals retained their cytochrome P-450 level and enzymatic activity towards BP and BPD. Regenerating rat liver microsomes from MC-treated animals were about 35 times more efficient in activating BPD than microsomes from uninduced, partially hepatectomized animals. Intraperitoneal administration of BP (50 mg/kg body wt.) 18 h after PH induced EAF in rats subsequently promoted with 2-AAF/CCl4. Pretreatment of rats with MC 66 h before PH and 84 h before BP administration, increased the number of EAF. In accordance with results by Tsuda et al. (Cancer Res., 40 (1980) 1157-1164), these studies demonstrate that BP is tumorigenic in regenerating rat liver, despite a reduced ability of the liver to activate this compound. Furthermore, MC, an inducer of certain cytochrome P-450 species ("aryl hydrocarbon hydroxylase"), potentiates the effect of BP.  相似文献   

8.
D A Haugen  M J Peak 《Mutation research》1983,116(3-4):257-269
We observed that complex mixtures of aromatic compounds isolated from a coal-derived oil suppressed the mutagenic activity of the indirect mutagens benzo[a]pyrene, 7,12-dimethylbenz[a]anthracene, 2-aminofluorene, and 2-acetylaminofluorene as measured in the Salmonella/microsome mutagenicity assay, using strain TA98 and metabolic activation with Aroclor-induced rat-liver S9 or microsomes. The mixture also inhibited S9-dependent benzo[a]pyrene metabolism and covalent binding to DNA in a cell-free system. The mixture did not suppress the activity of either the direct acting mutagens 2-nitrofluorene and benzo[a]pyrene diol-epoxide, or of the indirect mutagen N-hydroxy-2-acetylaminofluorene which requires a microsomal deacetylase for metabolic activation. Spectrophotometric measurements showed that components of the mixture bound to microsomal cytochrome P-450. The mixture did not inhibit microsomal NADPH-cytochrome c (P-450) reductase. These observations show that the mixtures inhibited metabolic activation by the microsomal monooxygenase system, probably by binding of unidentified components to cytochrome P-450. The resulting inhibition of mutagenesis may have implications for risk estimates for the mixtures we examined as well as for other types of complex mixtures for which similar inhibitory effects have been observed.  相似文献   

9.
Minor adducts, derived from the covalent binding of anti-benzo[a]pyrene-7,8-dihydroxy-9,10-epoxide to cellular DNA, may play an important role in generating mutations and initiating cancer. We have applied a combined NMR-computational approach including intensity based refinement to determine the solution structure of the minor (+)-cis-anti-[BP]dA adduct positioned opposite dT in the d(C1-T2-C3-T4-C5-[BP]A6-C7-T8-T9-C10-C11). (d(G12-G13-A14-A15-G16-T17-G18-A19-G20+ ++-A21-G22) 11-mer duplex. The BP ring system is intercalated toward the 5'-side of the [BP]dA6 lesion site without disrupting the flanking Watson-Crick dC5.dG18 and [BP]dA6.dT17 base pairs. This structure of the (+)-cis-anti-[BP]dA.dT 11-mer duplex, containing a bay region benzo[a]pyrenyl [BP]dA adduct, is compared with the corresponding structure of the (+)-trans-anti-[BPh]dA.dT 11-mer duplex (Cosman et al., Biochemistry 32, 12488-12497, 1993), which contains a fjord region benzo[c]phenanthrenyl [BPh]dA adduct with the same R stereochemistry at the linkage site. The carcinogen intercalates toward the 5'-direction of the modified strand in both duplexes (the adduct is embedded within the same sequence context) with the buckling of the Watson-Crick [BP]dA6.dT17 base pair more pronounced in the (+)-cis-anti-[BP]dA.dT 11-mer duplex compared to its Watson-Crick [BPh]dA.dT17 base pair in the (+)-trans-anti-[BPh]dA.dT 11-mer duplex. The available structural studies of covalent polycyclic aromatic hydrocarbon (PAH) carcinogen-DNA adducts point toward the emergence of a general theme where distinct alignments are adopted by PAH adducts covalently linked to the N(6) of adenine when compared to the N(2) of guanine in DNA duplexes. The [BPh]dA and [BP]dA N(6)-adenine adducts intercalate their polycyclic aromatic rings into the helix without disruption of their modified base pairs. This may reflect the potential flexibility associated with the positioning of the covalent tether and the benzylic ring of the carcinogen in the sterically spacious major groove. By contrast, such an intercalation without modified base pair disruption option appears not to be available to [BP]dG N(2)-guanine adducts where the covalent tether and the benzylic ring are positioned in the more sterically crowded minor groove. In the case of [BP]dG adducts, the benzopyrenyl ring is either positioned in the minor groove without base pair disruption, or if intercalated into the helix, requires disruption of the modified base pair and displacement of the bases out of the helix.  相似文献   

10.
Covalent binding of benzo(a)pyrene (BP) metabolites to DNA was investigated in hepatocytes and liver microsomes (MC-microsomes) isolated from 3-methylcholanthrene-treated rats. The major DNA adducts formed during BP metabolism in both hepatocytes and incubations of calf thymus DNA with MC-microsomes were adducts of anti and syn isomers of trans-7,8,-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene (diol-epoxides) and of epoxide derivatives of BP-9-phenol (phenol-oxides). Diol-epoxide adducts predominated over phenol-oxide adducts in hepatocytes, while the reverse was found in microsomal incubations. In hepatocytes, both diol-epoxide and phenol-oxide adducts increased with increasing BP concentration; the ratio of diol-epoxide adduct to phenol-oxide adduct decreased from 6:1 to 3:1 between 30 and 100 μm BP. In microsomal incubations, decreases in DNA concentration or addition of the hepatocyte L15 medium produced larger decreases in phenol-oxide adducts than in diol-epoxide adducts. The effects of the inhibitors salicylamide, diethylmaleate, and 3,3,3,-trichloropropene oxide on formation of BP-DNA adducts are interpreted in terms of changes in precursor formation and metabolism and reductions in hepatocyte glutathione levels. Addition of 1.5 mg/ml exogenous DNA to hepatocyte incubations produced no change in covalent binding to cellular DNA, even though extracellular BP-DNA adducts accounted for 97% of the total adducts formed. Both the relative amounts of diol-epoxide and phenol-oxide adducts and the total adducts per milligram of DNA were indistinguishable with respect to extracellular and intracellular DNA. Modification of extracellular DNA by diol-epoxides was at least as efficient as modification of calf thymus DNA in incubations with MC-microsomes. It is concluded that BP diol-epoxides and phenol-oxides can leave the cell or enter the nucleus with equal facility but are more effective in binding to DNA in the cell in which they are generated.  相似文献   

11.
Incubation of R(+)-[14C]pulegone with rat liver microsomes in the presence of NADPH resulted in covalent binding of radioactive material to macromolecules. Covalent binding was much higher in phenobarbital-treated microsomes as compared to 3-methylcholanthrene treated or control microsomes. The Km and Vmax of covalent binding was 0.4 mM and 1.7 nmol min-1 mg-1, respectively. Covalent binding was drastically inhibited (93%) in the presence of piperonyl butoxide. Antibodies to phenobarbital-induced cytochrome P-450 and NADPH-cytochrome P-450 reductase inhibited covalent binding to an extent of 72% and 47%, respectively. Cysteine and semicarbazide also inhibited NADPH dependent binding of radiolabel from R(+)-[14C]pulegone to microsomal proteins. The results suggest the involvement of liver microsomal cytochrome P-450 in the bioactivation of R(+)-pulegone to reactive metabolite(s) which might be responsible for covalent binding to macromolecules resulting in toxicity.  相似文献   

12.
The presence of high levels, as well as tissue-specific forms, of cytochrome P450 enzymes in mammalian olfactory mucosa (OM) has important implications in the bioactivation and toxicity of xenobiotics entering the tissue. Previous studies have shown that coumarin, a known olfactory toxicant in rats, is bioactivated by OM microsomal P450s to a number of products, presumably via coumarin-3,4-epoxide and other epoxide intermediates. The aim of the current study was to obtain direct evidence for the formation of such reactive intermediates in rat OM through the detection of protein covalent binding and glutathione (GSH) adduct formation. Protein covalent binding experiments with [14C]coumarin (10 μM) displayed a 7–9-fold higher NADPH-dependent radioactivity binding in rat OM microsomes (2.5 nmol/mg/30 min) compared to those in rat and human liver microsomes; the binding value in rat OM microsomes was substantially but not completely reduced by the addition of GSH (5 mM). LC/MS analyses detected a number of GSH adducts in GSH-supplemented coumarin metabolism reaction in rat OM microsomes; 3-glutathionyl coumarin was found to be the major one, indicating 3,4-epoxidation as the main bioactivation pathway. Additional GSH adducts were identified, presumably forming via the same pathway or epoxidation on the benzene moiety. Our findings provide direct evidence for the formation of multiple coumarin reactive intermediates in rat OM, leading to protein covalent binding and GSH conjugation.  相似文献   

13.
1. The in vitro metabolism of [3H]benzo[a]pyrene (BP) and [14C]benzo[a]pyrene-7,8-dihydrodiol (BP-7,8-diol) by liver of brown bullhead (Ictalurus nebulosus) was characterized, as was the formation and persistence of BP-DNA adducts in vivo. 2. Compared to rat liver microsomes, bullhead liver microsomes produced relatively larger amounts of BP-7,8-diol (predominantly the [-] enantiomer) and smaller amounts of of BP-7,8-diol (predominantly the [-] enantiomer) and smaller amounts of BP-4,5-diol. 3. BP phase I metabolites were efficiently converted by freshly isolated bullhead hepatocytes to conjugates, predominantly glucuronides. 4. BP-7,8-diol was metabolized by hepatocytes 4-fold more rapidly than was BP and was converted to approximately equal amounts of glucuronides, glutathione conjugates and sulfates. 5. BP-DNA adducts formed in bullhead liver with a lag time of several days and maximum adduct formation at 25-30 days. The major adduct was anti-BPDE-deoxyguanosine.  相似文献   

14.
The effect of flavone and 7,8-benzoflavone on the metabolism of benzo[a]pyrene to fluorescent phenols by five cytochrome P-450 isozymes obtained from rabbit liver microsomes was determined. Benzo[a]pyrene metabolism was stimulated more than 5-fold by the addition of 600 microM flavone to a reconstituted monooxygenase system consisting of NADPH, cytochrome P-450 reductase, dilauroylphosphatidylcholine, and cytochrome P-450LM3c or cytochrome P-450LM4. In contrast, an inhibitory effect of flavone on benzo[a]pyrene metabolism was observed when cytochrome P-450LM2, cytochrome P-450LM3b, or cytochrome P-450LM6 was used in the reconstituted system. 7,8-Benzoflavone (50-100 microM) stimulated benzo[a]pyrene metabolism by the reconstituted monooxygenase system about 10-fold when cytochrome P-450LM3c was used, but benzo[a]pyrene hydroxylation was strongly inhibited when 7,8-benzoflavone was added to the cytochrome P-450LM6-dependent system. Smaller effects of 7,8-benzoflavone were observed on the metabolism of benzo[a]pyrene by the cytochrome P-450LM2-, cytochrome P-450LM3b-, and cytochrome P-450LM4-dependent monooxygenase systems. These results demonstrate that the activating and inhibiting effects of flavone and 7,8-benzoflavone on benzo[a]pyrene metabolism depend on the type of cytochrome P-450 used in the reconstituted monooxygenase system.  相似文献   

15.
The metabolic activation of [14C]phenol resulting in covalent binding to proteins has been studied in rat liver microsomes. The covalent binding was dependent on microsomal enzymes and NADPH and showed saturation kinetics for phenol with a Km-value of 0.04 mM. The metabolites hydroquinone and catechol were formed at rates which were 10 or 0.7 times that of the binding rate of metabolically activated phenol. The effects of cytochrome P-450 inhibitors and cytochrome P-450 inducers on the metabolism and binding of phenol to microsomal proteins, suggest that cytochrome P-450 isoenzyme(s) other than P-450 PB-B or P-450 beta NF-B catalyses the metabolic activation of phenol. Furthermore, reconstituted mixed-function oxidase systems containing cytochrome P-450 PB-B and P-450 beta NF-B were (on basis of cytochrome P-450 content) 6 and 11 times less active in catalysing the formation of hydroquinone than microsomes. The isolated metabolites hydroquinone and catechol bound more extensively to microsomal proteins than phenol and the binding of these was not stimulated by NADPH. The binding occurring during the metabolism of phenol could be predicted by the rates of formation of hydroquinone and catechol and the rates by which the isolated metabolites were bound to proteins.  相似文献   

16.
The interaction of rat liver microsomal cytochrome P-450c with potential benzo[a]pyrene (BP) metabolites has been compared with the binding of BP by optical and fluorescence spectroscopy. Fluorescence quenching of the phenolic derivatives of BP derives from 1:1 complex formation with P-450c, is a function of the position of the hydroxyl substituent, and correlates with the concomitant increase in high-spin cytochrome observed in parallel optical titrations. The proportion of high-spin cytochrome seen when P-450c was reconstituted in dilauroylphosphatidylcholine vesicles (60 micrograms/mL) ranged from about 7% for the 3- and 7-phenols to 75% for 11- and 12-phenols. BP and all 12 methyl-BP derivatives have comparable high affinities for P-450c (50-70% high spin). Kd determinations with purified P-450c indicated very strong binding of BP phenols that induce high-spin complexes (4-, 5-, 9-, 10-, 11-, and 12-phenols; Kd = 3-25 nM). Inhibition of n-octylamine binding by the 3- and 7-phenols indicated weak interactions (Kd = 80-90 nM), even though low-spin complexes were formed. Inhibition of BP metabolism catalyzed by P-450c with BP phenols correlated with their respective dissociation constants. These results suggest that phenolic substitution at certain positions on BP (1, 2, 3, 7, or 8) interferes with binding to the active site while substitutions at the other positions either enhance or have no effect on binding. BP dihydrodiols [including the (+)- and (-)-BP 7,8-dihydrodiols] were relatively ineffective in forming high-spin complexes (approximately 20%), and fluorescence quenching of dihydrodiols by P-450c also saturated at low levels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
A major form of pulmonary cytochrome P-450 (pulmonary P-450MC) was purified approximately 165-fold from lung microsomes of 3-methylcholanthrene (MC)-treated hamsters. The purified preparation contained 14.2 nmol of cytochrome P-450 (P-450) per mg protein and was essentially free from NADPH-cytochrome P-450 (cytochrome c)-reductase (NADPH-reductase) and epoxide hydrolase. Pulmonary P-450MC exhibits an absorption maximum at 446.5 nm in the difference spectrum of reduced hemoprotein-CO complex, and a low-spin state of ferric iron in the heme. By sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis, the molecular weight of pulmonary P-450MC was estimated to be 56,000. In a reconstituted system, pulmonary P-450MC efficiently catalyzed benzo(a)pyrene (BP) hydroxylation, but showed low activities for 7-ethoxycoumarin O-deethylation and benzphetamine N-demethylation. In Ouchterlony double diffusion analysis, hamster pulmonary P-450MC reacted to the antibody prepared against rat hepatic P-450MC to form a faint precipitation line with a spur, indicating that the two P-450MCs have a common antigenic site but are not immunologically identical. When incubated with [14C]BP in a reconstituted system containing NADPH-reductase and epoxide hydrolase, hamster pulmonary P-450MC formed much higher amounts of BP diols, especially 7,8-diol, than were formed by rat pulmonary P-450MC.  相似文献   

18.
In vitro incubation of rat liver micro-somes with [14C]-furan in the presence of NADPH resulted in the covalent incorporation of furan-derived radioactivity in microsomal protein. Compared to microsomes from untreated rats a two- to threefold increase in binding was observed with microsomes from phenobarbital-treated rats and a four- to five-fold increase was observed with microsomes from rats pretreated with imidazole or pyrazole. Covalent binding was reduced with microsomes from rats pretreated with β-naphthoflavone. Chemicals containing an amine group (semicarbazide), those in which the amine group is blocked but have a free thiol group (N-acetylcysteine), and those which have both an amine and a thiol group (glutathione) effectively blocked binding of [14C]-furan to microsomal protein. A decrease in cytochrome P-450 (P-450) content and decreases in the activities of P-450-dependent aniline hydroxylase, 7-ethoxycoumarin-O-deethylase (BCD), and 7-ethoxyresorufin-O-deethylase (ERD) was observed 24 hours after a single oral administration of 8 or 25 mg/kg of furan, suggesting that the reactive intermediate formed during P-450 catalyzed metabolism could be binding with nucleophilic groups within the P-450. In vitro studies indicated a significant decrease in the activity of aniline hydroxylase in pyrazole microsomes and BCD in phenobarbital microsomes without any significant change in the CO-binding spectrum of P-450 or in the total microsomal heme content, suggesting that furan inhibits the P-450s induced by PB and pyrazole. An almost equal distribution of furan-derived radioactivity in the heme and protein fractions of the CO-binding particles after In vitro treatment of microsomes with furan suggests binding of furan metabolites with heme and apoprotein of P-450, and, probably, due to this interaction, furan is acting as a suicide inhibitor of P-450.  相似文献   

19.
The feasibility of obtaining a conjugated benz(a)pyrene-protein antigen in the liver cytochrome P-450 system was studied. Covalent binding of benz(a)pyrene (BP) to albumin was performed with the use of liver microsomal fractions of 3-methylcholanthrene-induced rabbits. It was demonstrated that BP oxidation in liver microsomes is accompanied by covalent binding of [14C]BP to exogenous rabbit albumin. Immunization of rabbits with the obtained conjugate results in the development of a specific immune response to BP, and the appearance of specific antibodies and lymphocytes specifically binding [14C]BP in the blood.  相似文献   

20.
The fractionation of the liver of goldfish (Carassius auratus) was studied, and the properties of the microsomal fraction were examined. The microsomal fraction contained cytochrome P-450 and catalyzed the oxidation of aminopyrine, aniline, 7-ethoxycoumarin and benzo(a)pyrene. The oxidation activities were significantly lower than those of rat liver microsomes. The titration of cytochrome P-450 by potassium cyanide indicated the presence of multiple forms of cytochrome P-450 in goldfish liver microsomes. Feeding of goldfish with 3-methylcholanthrene-containing food greatly induced benzo(a)pyrene hydroxylation activity of the liver microsomes. The Soret peak of the carbon monoxide compound of cytochrome P-450 was shifted from 450 to 448 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号