首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
鸭病毒性肠炎病毒强毒株的形态发生学与超微病理学研究   总被引:6,自引:1,他引:5  
应用透射电镜和超薄切片技术,研究鸭病毒性肠炎病毒(duck enteritis virus,DEV)CH强毒株人工感染成年鸭后,病毒在宿主细胞内的形态发生及各组织器官的超微结构变化.结果表明,感染后不同时间剖杀及发病后死亡鸭的肝、肠、脾、胸腺、法氏囊等组织器官中,均观察到典型的疱疹病毒粒子.病毒主要的靶细胞为淋巴细胞、网状内皮细胞、成纤维细胞、巨噬细胞、血管内皮细胞、肠道上皮细胞、肠道平滑肌细胞和肝细胞等.DEV的核衣壳有空心型、致密核心型、双环型和内壁附有颗粒型四种形态,存在胞核和胞浆两种装配方式.病毒核衣壳可在核内获得皮层,通过核内膜获得囊膜成为成熟病毒;也可通过内外核膜进入胞浆,在其中获得皮层,然后在各种质膜上获得囊膜,最后成熟病毒释放到细胞外.伴随着病毒的复制、装配和成熟,细胞中出现多种核内和胞浆包涵体、核内致密病毒核酸颗粒、微管和中空短管以及胞浆内膜包裹的电子致密小体、双层管等病毒相关结构.超微研究表明,组织细胞有坏死和凋亡两种变化.坏死细胞肿胀甚至破裂,线粒体肿胀空泡化,粗面内质网扩张,核糖体脱落,有的细胞器甚至完全崩解,染色质或固缩或溶解.凋亡细胞则染色质聚集,胞浆凝聚深染,细胞膜上有大量空泡,并有凋亡小体形成.细胞坏死与凋亡往往同时存在,疾病发生过程中,脾、胸腺、法氏囊以及小肠固有层中的淋巴细胞凋亡数量明显增多.  相似文献   

2.
鸭肠炎病毒CHv强毒株超微结构研究   总被引:4,自引:0,他引:4  
将鸭成纤维细胞培养的鸭肠炎病毒(DEV),经超声处理、高速冷冻差速离心后,采用酒石酸钾—甘油非线性密度梯度超速离心,收集病毒蛋白带,3%磷钨酸负染后观察病毒粒子形态。结果表明:病毒粒子主要集中在40%~50%酒石酸钾—甘油缓冲液交界层。电镜下,病毒粒子纯净,具有疱疹病毒典型形态结构,剖面六角,外观轮廓清楚。成熟病毒粒子直径约150~266nm,病毒囊膜、核衣壳和核心清晰可见;囊膜外层较内层着色略深,且可见尚未形成完整囊膜的柄状拖尾结构。多数病毒粒子以单核衣壳为主,一定数量的病毒具有双核衣壳,偶见三核衣壳,核衣壳直径为100~150nm,呈现致密圆形、半圆形或马蹄形等类型。在核衣壳外和囊膜之间可见明显的亮晕。核心DNA电子染色较深,集中分布,直径40~65nm。本文获得的清晰DEV负染超微结构照片,为该病毒结构生物学的研究提供了重要依据。  相似文献   

3.
本文首次报道了鹅源鸭瘟病毒(DPV—Ⅰ)和鸭胚化小鹅瘟病毒(GPV—Ⅰ)能同时在同一鸭胚内复制增殖,未发现干扰作用,在理论上说明某些不相关的两种病毒可在同一宿主增殖,实践上为利用同一鸭胚研制二联疫苗提供了依据。研究结果表明:1.DPV—Ⅰ和GPV—Ⅰ联合感染同一鸭胚后,其尿囊液在电镜下见两种病毒,DPV—Ⅰ呈园形或椭园形,有囊膜,直径为38—109nm,GPV-Ⅰ呈园形,无囊膜,直径为18—25nm;2.含毒尿囊液使鸭胚成纤维细胞(DEF)单层发生细胞病变作用(CPE),证实存在DPV-Ⅰ,而用小鹅瘟微量免疫扩散(MID)试验,又能检出GPV-Ⅰ抗原;3.含毒尿囊液免疫鹅的血清中存在抗两种病毒的(?)和抗体和GPV沉淀抗体;4.含毒尿囊液免疫的成鹅对DPV强毒攻击有相当免疫力,免疫鹅血清能中和GPV,使其失去对鸭胚的致病力;5.GPV-Ⅰ单独或与DPV-Ⅰ联合感染DEF单层后,均未见在细胞上复制。  相似文献   

4.
新型鸭呼肠孤病毒的分离与鉴定   总被引:1,自引:0,他引:1  
本研究从临床表现为出血性坏死性肝炎的病死鸭肝脾中分离到病毒。病原特性鉴定显示,分离毒能致死番鸭胚和鸡胚;人工感染1日龄雏番鸭、雏半番鸭均能复制出与临床自然发病鸭相同的临床症状和病理变化,并能回收到病毒。分离毒能在MDEF等多种细胞中增殖并产生细胞病变。电镜下病毒在细胞浆中呈大量散在、成堆和晶格状排列,病毒粒子呈球形、无囊膜、双层衣壳、直径70nm左右。在SDS-PAGE中具有禽呼肠孤病毒10个RNA片段的特征,但M1-3和S1-4片段的迁移率明显不同于番鸭呼肠孤病毒(MDRV)。分离毒S3基因全序列与禽呼肠孤病毒(ARV)、火鸡呼肠孤病毒(TRV)和MDRV的核苷酸同源性分别为60%~60.2%,61.9%,62.3%~62.7%,氨基酸同源性分别为68.2%~69%,68.2%,69.3%~70.1%;S3基因编码的σB蛋白属于单独的进化分支,提示分离毒S3基因具有不同于ARV和MDRV的特征。结果表明鸭出血性坏死性肝炎的病原是一种属于呼肠孤病毒科正呼肠孤病毒属新型鸭呼肠孤病毒。  相似文献   

5.
本文用超薄切片电镜技术对水痘一带状疱疹病毒(VZV)分离株J_1的核衣壳进行了形态学研究。结果表明,在病毒感染后5小时即可观察到细胞核内大量的病毒核心相关颗粒和少量核衣壳。在细胞核内和细胞浆内均可见到病毒基质或毒浆结构。VZVJ_1株具有三种类型的核衣壳,命名为A型、B型、C型核衣壳。A型具有电子致密核心,B型的核心呈颗粒状,C型具有电子透明核心。三种核衣壳大小一致,直径75—100nm,核心为35—55nm。将VZV的核衣壳与疱疹病毒科其它成员作了比较分析,并对各种核衣壳在病毒成熟过程中的作用进行了探讨。  相似文献   

6.
用负染法和超薄切片法研究了我国首次分离的IBR病毒的形态结构及其在犊牛肾细胞内发育的基本过程。病毒直径为1 60--230nm,成熟病毒由直径为50—60nm的核心、直径为100—110nm的衣壳和囊膜三部分构成。在负染的样品中,可以观察到呈三重对称和二重对称的核壳体及其衣粒的构型,从而推算出病毒衣壳由162个农粒构成。该病毒具有典型疱疹病毒科的发育与成熟方式。此外,它可能与鸭瘟病毒一样,还具有一条细胞质内的发生途径。  相似文献   

7.
为阐明水痘-带状疱疹病毒济南分离株(VZVJ1)在兔脑神经细胞(RNC)中的形态与形态发生特征,我们利用超薄切片电子显微镜技术对感染VZVJ1的RNC进行了观察研究。结果表明RNC在感染VZVJI6h后核内可见散在的核衣壳,12h后细胞核和细胞质内核衣壳明显增多,24h达高峰,而细胞核和细胞质内的成熟病毒颗粒较少见。病毒大小、形态基本一致,呈圆形或椭圆形,核心直径30~50nm,核衣壳74~96nm,成熟病毒110~180nm。核衣壳内有3种类型的核心,即电子致密核心、部分致密核心和电子透明核心。细胞核和细胞质内均可见核心样电子致密体和布纹样结构。在细胞质内还可见少量“繁殖复合体”,由膜性结构包绕多个囊泡构成。提示VZVJ1在RNC中的形态发生不同于其它性质的细胞。  相似文献   

8.
从自然发病与人工感染发病蚌分离的三角帆蚌瘟病病毒(HcPV)呈球形、类球形,大小差异悬殊,直径45--296nm。病毒颗粒外被一层表面突起和类脂质的囊膜。核衣壳呈串珠状,直径10一12nm,卷曲于细胞浆内,可超过1000nm。超薄切片中病毒颗粒积聚于细胞浆与内质网中。超微病变的主要特征:内质网高度扩张,核糖体增殖并凝聚,胞浆内出现包裹着病毒的层卷状结构。病毒核酸对RNA酶敏感,对DNA酶不敏感,经聚丙烯酰胺凝歧电泳,出现。条大分子带与1条低分子带。HcPV的上述特征与嵌砂样病毒基本吻合。因此认为三角帆蚌瘟病的病原是一种嵌砂样病毒。  相似文献   

9.
风疹病毒分离株在BHK21细胞中的形态与形态发生   总被引:6,自引:1,他引:5  
利用超薄切片电子显微镜技术对本室分离的风疹病病毒(RV)JR_(23)株在BHK_(21),细胞中的形态及形态发生过程进行了研究,同时与RV标准野毒株Gos-10作了比较。结果表明,RVJR_(23)株感染BHK_(21),细胞后6h开始于细胞浆内观察到病毒颗粒,96h达到高峰。病毒颗粒呈图形,有双层脂质包膜包绕,直径45~75nm,核衣壳25~35nm。细胞浆内见到大量病毒相关颗粒,直径20~30nm。病毒包膜来自于细胞浆中的空泡膜或细胞膜。被RV感染的细胞浆中还观察到“繁殖复合体”,由膜性结构包绕着许多类似病毒颗粒的囊泡构成。丙株RV在形态与形态发生方面未发现差异。  相似文献   

10.
核型多角体病毒有单核衣壳包埋型和多核衣壳包埋型之分,单核衣壳包埋型是在一个病毒囊膜内只包含一个核衣壳,而多核衣壳包埋型的特点是在一个病毒囊膜内包含有2个以上的核衣壳,由于多个核衣壳成束地被包装在同一个病毒囊膜内,又称病毒束[1,2]。Hunter等表明在干果斑螟核型多角体病毒中,病毒囊膜内包含2~23个核衣壳[3]。Fraser将苜蓿丫纹夜蛾核型多角体病毒接种于秋粘虫细胞系,超薄切片电镜观察,病毒囊膜内包含的核衣壳数变动于2~17粒,但未研究其核衣壳在病毒囊膜内的排列结构[4]。本研究用苜蓿丫纹…  相似文献   

11.
通过光镜、电镜、DNA Ladder法、流式细胞术、荧光染色对鸭呼肠孤病毒(DRV)诱导鸭胚原代成纤维细胞(DEF)凋亡情况进行检测.结果显示,光镜可见细胞形态学上出现细胞皱缩,染色质浓染边移;电镜观察到细胞胞浆浓缩,细胞核染色质凝聚、部分形成凋亡小体;荧光染色结果显示,在感染后24h有激发绿色荧光的凋亡细胞出现,随着时间的推移,激发红色荧光的死亡细胞数量增多;DNA Ladder检测到感染后24~144h的DNA样品呈梯形条带;流式细胞术于感染后24h检测到凋亡细胞,其数量在72~96h达到高峰,144h开始下降.研究结果表明,DRV在DEF增殖的过程中具有诱导宿主细胞凋亡的作用.  相似文献   

12.
13.
原位杂交检测人工感染鸭体内鸭瘟病毒的复制   总被引:1,自引:0,他引:1  
鸭瘟(Duck plague,DP)是由鸭瘟病毒(Duck plague virus,DPV)引起的鸭、鹅和天鹅的一种急性败血性传染病,发病率和死亡率甚高,是养鸭业的一大危害[1-2].  相似文献   

14.
目的:建立在鸭胚成纤维细胞(DEF)中进行RNA干扰(RNAi)的技术平台,为鸭基因组功能的研究提供新的技术手段。方法:以绿色荧光蛋白(GFP)基因为报告基因,脂质体转染化学合成的GFP特异小干扰RNA(GFP-siRNA),用流式细胞仪测定GFP-siRNA对重组腺病毒(Adv-GFP)介导的GFP基因在DEF中表达的干扰效果。结果:200MOI(感染复数)Adv-GFP介导的GFP基因在DEF中表达效率最高,为31.20%±3.1l%,对DEF的活力无明显影响;GFP-siRNA能有效干扰GFP基因在DEF中的表达,相对抑制率为98.56%。结论:在DEF中进行RNAi是可行的,Adv-GFP是介导外源基因在DEF中表达较为理想的载体;首次建立了在DEF中进行RNAi的技术平台,为鸭基因组的功能等研究提供了新的技术手段。  相似文献   

15.
Duck virus enteritis (DVE) also known as duck plague, is a viral infection of ducks caused by duck enteritis virus (DEV). The control of the disease is mainly done by vaccination with a chicken embryo-adapted live virus that is known to be poorly immunogenic and affords partial protection. Further, the risk of harboring other infectious agents in the embryo particularly the deadly and zoonotic avian influenza virus is also high. In this paper, we report propagation of a chicken embryo-adapted vaccine strain of duck enteritis virus in duck embryo fibroblast (DEF) cell line. Thirty serial passages were done in DEF cell that made the vaccine virus further attenuated which was tested in ducks. The growth behaviors of the virus in DEF cells were studied and at 30th passage level the virus titre was found to be 106.8 TCID50/ml. Ducks were immunized with this virus and challenged after 21 days with high dose of virulent DEV. All the immunized ducks withstood challenge with no clinical symptoms in any of the ducks while all the control ducks died. DEF cell which is free from other infectious agents appears to be a good system for cultivation of duck enteritis virus vaccine strain.  相似文献   

16.
17.
目的:建立一种快速、简便、特异性高的鸭瘟病毒(DPV)环介导等温扩增(LAMP)检测方法。方法:根据Gen Bank中DPVUI6基因的保守序列设计一套特异性引物,并对反应条件进行优化,建立DPV的LAMP可视化检测方法。结果:建立的LAMP方法对其他鸭常见病原体无扩增反应;可通过肉眼观察颜色直接判定结果;敏感性可达0.1fg,是常规PCR方法的100倍;扩增反应只须在常规水浴锅中进行,可在1 h内完成。结论:建立的DPV LAMP方法简便、快速、灵敏、特异,可用于DPV感染的快速检测。  相似文献   

18.
许斌  周双宬  黄玉仙  瞿涤 《病毒学报》2006,22(5):369-374
通过建立鸭原代肝细胞-DHBV感染模型研究氧化苦参碱抗DHBV的作用。分别在DHBV感染前、感染同时以及感染后给药,利用打点杂交、Southern印迹核酸杂交和荧光定量PCR方法分别检测培养细胞上清及细胞内病毒核酸,观察氧化苦参碱在病毒感染的各个环节所起的抗病毒作用。实验结果显示:1mg/mL氧化苦参碱处理细胞后,鸭原代肝细胞培养上清及细胞内的DHBV核酸明显低于病毒感染对照组,病毒抑制率达91.6%;在病毒感染同时加药对病毒的抑制率可达98.5%;感染后持续用药能使不同培养天数的鸭肝细胞内的DHBV核酸降低60.5%~96.6%;氧化苦参碱与DHBV共孵育后,可以使病毒感染力下降69.6%。结果说明氧化苦参碱可以在DHBV感染鸭原代肝细胞的多个环节,包括病毒吸附、进入细胞及细胞内复制等方面发挥抗病毒作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号