首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 627 毫秒
1.
Sortases catalyze the covalent anchoring of proteins to the cell surface on Gram-positive bacteria. Bioinformatic analysis suggests the presence of structural genes encoding sortases and their substrates in the Bacillus subtilis genome. In this study, a β-lactamase reporter was fused to the cell wall anchoring domain from a putative sortase substrate, YhcR. Covalent anchoring of this fusion protein to the cell wall was confirmed by using the eight-protease-deficient B. subtilis strain WB800 as the host. Inactivation of yhcS abolished the cell wall anchoring reaction. The amounts of fusion protein anchored to the cell wall were proportional to the levels of YhcS. These data demonstrate that YhcS and YhcR are the sortase and sortase substrate, respectively, in B. subtilis. Furthermore, yhcS is not essential for the survival of B. subtilis under the cultivation condition tested. YhcR fusions were distributed helically in the lateral cell wall. Interestingly, when viewed with an epifluorescence microscope, YhcS also appeared to form short helical arcs. This is the first report to illustrate such distribution of sortases in a rod-shaped bacterium. Models for the spatial distribution of both the sortase and its substrate are discussed. The amount of the reporters displayed on the surface was unambiguously quantified via a unique strategy. Under optimal conditions with the overproduction of YhcS, 47,300 YhcR fusions could be displayed per cell. Displayed reporters were biologically functional and surface accessible. Characterization of the sortase-substrate system allowed the successful development of a YhcR-based covalent surface display system. This system may have various biotechnological applications.  相似文献   

2.
Gram-positive bacteria code for one or more enzymes termed sortases which catalyze the covalent anchoring of substrate proteins on their cell wall. They recognize an amino acid sequence designated sorting motif, present close to the C-terminal end of the substrate proteins, cleave within this motif and catalyze anchoring of the polypeptide chain to the peptide crossbridge linking the peptidoglycan strands in a transpeptidation reaction. Bacillus subtilis has been reported to code for two different sortases but the sorting sequences recognized by them are yet unknown. To be able to immobilize proteins on the surface of B. subtilis cells, we introduced the srtA gene coding for sortase A of Listeria monocytogenes with the known sorting motif (LPXTG) into B. subtilis. L. monocytogenes and B. subtilis share the same peptide crossbridge. Next, we fused the coding region of an alpha-amylase gene to the C-terminal region of Staphylococcus aureus fibronectin binding protein B containing the sorting motif. Covalent linkage could be proven by treatment of the cells with lysozyme and by immunofluorescence microscopy. Up to 240,000 molecules of alpha-amylase could be immobilized per cell, 24 times more than previously reported for other bacterial species. To study the influence of the distance between the sorting motif and the C-terminus of alpha-amylase on the activity of the enzyme, the length of the spacer was varied. It turned out that the highest activity was measured with a spacer length of 123 amino acid residues.  相似文献   

3.
In a continuing effort to identify ribonucleases that may be involved in mRNA decay in Bacillus subtilis, fractionation of a protein extract from a triple-mutant strain that was missing three previously characterized 3'-to-5' exoribonucleases (polynucleotide phosphorylase [PNPase], RNase R, and YhaM) was undertaken. These experiments revealed the presence of a high-molecular-weight nuclease encoded by the yhcR gene that was active in the presence of Ca(2+) and Mn(2+). YhcR is a sugar-nonspecific nuclease that cleaves endonucleolytically to yield nucleotide 3'-monophosphate products, similar to the well-characterized micrococcal nuclease of Staphylococcus aureus. YhcR appears to be located principally in the cell wall and is likely to be a substrate for a B. subtilis sortase. Zymogram analysis suggests that YhcR is the major Ca(2+)-activated nuclease of B. subtilis. In addition to having a unique overall domain structure, YhcR contains a hitherto unknown structural domain that we have named "NYD," for "new YhcR domain."  相似文献   

4.
The covalent anchoring of surface proteins to the cell wall envelope of Gram-positive bacteria occurs by a universal mechanism requiring sortases, extracellular transpeptidases that are positioned in the plasma membrane. Surface protein precursors are first initiated into the secretory pathway of Gram-positive bacteria via N-terminal signal peptides. C-terminal sorting signals of surface proteins, bearing an LPXTG motif or other recognition sequences, provide for sortase-mediated cleavage and acyl enzyme formation, a thioester linkage between the active site cysteine residue of sortase and the C-terminal carboxyl group of cleaved surface proteins. During cell wall anchoring, sortase acyl enzymes are resolved by the nucleophilic attack of peptidoglycan substrates, resulting in amide bond formation between the C-terminal end of surface proteins and peptidoglycan cross-bridges within the bacterial cell wall envelope. The genomes of Gram-positive bacteria encode multiple sortase genes. Recent evidence suggests that sortase enzymes catalyze protein anchoring reactions of multiple different substrate classes with different sorting signal motif sequences, protein linkage to unique cell wall anchor structures as well as protein polymerization leading to the formation of pili on the surface of Gram-positive bacteria.  相似文献   

5.
The important human pathogen Streptococcus pyogenes (group A streptococcus GAS), requires several surface proteins to interact with its human host. Many of these are covalently linked by a sortase enzyme to the cell wall via a C-terminal LPXTG motif. This motif is followed by a hydrophobic region and charged C terminus, which are thought to retard the protein in the cell membrane to facilitate recognition by the membrane-localized sortase. Previously, we identified two sortase enzymes in GAS. SrtA is found in all GAS strains and anchors most proteins containing LPXTG, while SrtB is present only in some strains and anchors a subset of LPXTG-containing proteins. We now report the presence of a third sortase in most strains of GAS, SrtC. We show that SrtC mediates attachment of a protein with a QVPTGV motif preceding a hydrophobic region and charged tail. We also demonstrate that the QVPTGV sequence is a substrate for anchoring of this protein by SrtC. Furthermore, replacing this motif with LPSTGE, found in the SrtA-anchored M protein of GAS, leads to SrtA-dependent secretion of the protein but does not lead to its anchoring by SrtA. We conclude that srtC encodes a novel sortase that anchors a protein containing a QVPTGV motif to the surface of GAS.  相似文献   

6.
Cell wall-anchored surface proteins of gram-positive pathogens play important roles during the establishment of many infectious diseases, but the contributions of surface proteins to the pathogenesis of anthrax have not yet been revealed. Cell wall anchoring in Staphylococcus aureus occurs by a transpeptidation mechanism requiring surface proteins with C-terminal sorting signals as well as sortase enzymes. The genome sequence of Bacillus anthracis encodes three sortase genes and eleven surface proteins with different types of cell wall sorting signals. Purified B. anthracis sortase A cleaved peptides encompassing LPXTG motif-type sorting signals between the threonine (T) and the glycine (G) residues in vitro. Sortase A activity could be inhibited by thiol-reactive reagents, similar to staphylococcal sortases. B. anthracis parent strain Sterne 34F(2), but not variants lacking the srtA gene, anchored the collagen-binding MSCRAMM (microbial surface components recognizing adhesive matrix molecules) BasC (BA5258/BAS4884) to the bacterial cell wall. These results suggest that B. anthracis SrtA anchors surface proteins bearing LPXTG motif sorting signals to the cell wall envelope of vegetative bacilli.  相似文献   

7.
Surface proteins of Staphylococcus aureus are covalently linked to the bacterial cell wall by a mechanism requiring a COOH-terminal sorting signal with a conserved LPXTG motif. Cleavage between the threonine and the glycine of the LPXTG motif liberates the carboxyl of threonine to form an amide bond with the amino of the pentaglycine cross-bridge in the staphylococcal peptidoglycan. We asked whether antibiotic cell wall synthesis inhibitors interfere with the anchoring of surface proteins. Penicillin G, a transpeptidation inhibitor, had no effect on surface protein anchoring, whereas vancomycin and moenomycin, inhibitors of cell wall polymerization into peptidoglycan strands, slowed the sorting reaction. Cleavage of surface protein precursors did not require a mature assembled cell wall and was observed in staphylococcal protoplasts. A search for chemical inhibitors of the sorting reaction identified methanethiosulfonates and p-hydroxymercuribenzoic acid. Thus, sortase, the enzyme proposed to cleave surface proteins at the LPXTG motif, appears to be a sulfhydryl-containing enzyme that utilizes peptidoglycan precursors but not an assembled cell wall as a substrate for the anchoring of surface protein.  相似文献   

8.
Many surface proteins of pathogenic gram-positive bacteria are linked to the cell wall envelope by a mechanism requiring a C-terminal sorting signal with an LPXTG motif. Surface proteins of Streptococcus pneumoniae harbor another motif, YSIRK-G/S, which is positioned within signal peptides. The signal peptides of some, but not all, of the 20 surface proteins of Staphylococcus aureus carry a YSIRK-G/S motif, whereas those of surface proteins of Listeria monocytogenes and Bacillus anthracis do not. To determine whether the YSIRK-G/S motif is required for the secretion or cell wall anchoring of surface proteins, we analyzed variants of staphylococcal protein A, an immunoglobulin binding protein with an LPXTG sorting signal. Deletion of the YSIR sequence or replacement of G or S significantly reduced the rate of signal peptide processing of protein A precursors. In contrast, cell wall anchoring or the functional display of protein A was not affected. The fusion of cell wall sorting signals to reporter proteins bearing N-terminal signal peptides with or without the YSIRK-G/S motif resulted in hybrid proteins that were anchored in a manner similar to that of wild-type protein A. The requirement of the YSIRK-G/S motif for efficient secretion implies the existence of a specialized mode of substrate recognition by the secretion pathway of gram-positive cocci. It seems, however, that this mechanism is not essential for surface protein anchoring to the cell wall envelope.  相似文献   

9.
YfkN isolated from the culture supernatant of Bacillus subtilis in the exponential phase of growth is a protein of 143.5 kDa that derives from a putative large precursor of 159.6 kDa processed at both the N- and C-terminal ends. Pulse-chase experiments indicated that the release occurs slowly with a half-time longer than 30 min, suggesting that the event is coupled with wall turnover. YfkN exhibits 2',3' cyclic nucleotide phosphodiesterase, 2' (or 3') nucleotidase and 5' nucleotidase activities. In vitro the protein is reduced by subtilisin digestion to a shorter polypeptide (68 kDa), displaying phosphodiesterase activity but devoid of any 5'nucleotidase activity. This proteolytic processing led us to localize the potential active sites of the various nucleotidase activities. When bacteria were grown in low phosphate medium, the exocellular production of the enzyme was enhanced, suggesting that it plays a role in phosphate metabolism. Comparison with nucleotidase databases suggests that yfkN resulted from gene fusion.  相似文献   

10.
Aucher W  Davison S  Fouet A 《PloS one》2011,6(11):e27411
LPXTG proteins, present in most if not all Gram-positive bacteria, are known to be anchored by sortases to the bacterial peptidoglycan. More than one sortase gene is often encoded in a bacterial species, and each sortase is supposed to specifically anchor given LPXTG proteins, depending of the sequence of the C-terminal cell wall sorting signal (cwss), bearing an LPXTG motif or another recognition sequence. B. anthracis possesses three sortase genes. B. anthracis sortase deleted mutant strains are not affected in their virulence. To determine the sortase repertoires, we developed a genetic screen using the property of the gamma phage to lyse bacteria only when its receptor, GamR, an LPXTG protein, is exposed at the surface. We identified 10 proteins that contain a cell wall sorting signal and are covalently anchored to the peptidoglycan. Some chimeric proteins yielded phage lysis in all sortase mutant strains, suggesting that cwss proteins remained surface accessible in absence of their anchoring sortase, probably as a consequence of membrane localization of yet uncleaved precursor proteins. For definite assignment of the sortase repertoires, we consequently relied on a complementary test, using a biochemical approach, namely immunoblot experiments. The sortase anchoring nine of these proteins has thus been determined. The absence of virulence defect of the sortase mutants could be a consequence of the membrane localization of the cwss proteins.  相似文献   

11.
To analyze a cotG-based Bacillus subtilis spore display system directly, GFP(uv) was expressed on the surface of Bacillus subtilis spores. When GFP(uv) was fused to the C-terminal of the cotG structural gene and expressed, the existence of a CotG-GFP(uv) fusion protein on the B. subtilis spore was confirmed by flow cytometry confocal microscopic analysis. When the cotG anchoring motif was deleted, no fluorescence emission was observed under flow cytometry and confocal microscopic analysis from the purified spore, confirming the essential role of CotG as an anchoring motif. This GFP(uv) displaying spore might be used for another signaling application triggered by intracellular or extracellular stimuli.  相似文献   

12.
During infection of their hosts, Gram-positive bacteria express surface proteins that serve multiple biological functions. Surface proteins harbouring a C-terminal sorting signal with an LPXTG motif are covalently linked to the cell wall peptidoglycan by a transamidase named sortase. Two genes encoding putative sortases, termed srtA and srtB, were identified in the genome of the intracellular pathogenic bacterium Listeria monocytogenes. Inactivation of srtA abolishes anchoring of the invasion protein InlA to the bacterial surface. It also prevents the proper sorting of several other peptidoglycan-associated LPXTG proteins. Three were identified by a mass spectrometry approach. The DeltasrtA mutant strain is defective in entering epithelial cells, similar to a DeltainlA mutant. In contrast to a DeltainlA mutant, the DeltasrtA mutant is impaired for colonization of the liver and spleen after oral inoculation in mice. Thus, L. monocytogenes srtA is required for the cell wall anchoring of InlA and, presumably, for the anchoring of other LPXTG-containing proteins that are involved in listerial infections.  相似文献   

13.
Assembly of pili in Gram-positive bacteria and their attachment to the cell wall envelope are mediated by sortases. In Bacillus cereus and its close relative Bacillus anthracis, the major pilin protein BcpA is cleaved between the threonine and the glycine of its C-terminal LPXTG motif sorting signal by the pilin-specific sortase D. The resulting acyl enzyme intermediate is relieved by the nucleophilic attack of the side-chain amino group of lysine within the YPKN motif of another BcpA subunit. Cell wall anchoring of assembled BcpA pili requires sortase A, which also cleaves the LPXTG sorting signal of BcpA between its threonine and glycine residues. We show here that sortases A and D require only the C-terminal sorting signal of BcpA for substrate cleavage. Unlike sortase D, which accepts the YPKN motif as a nucleophile, sortase A forms an amide bond between the BcpA C-terminal carboxyl group of threonine and the side-chain amino group of diaminopimelic acid within the cell wall peptidoglycan of bacilli. These results represent the first demonstration of a cell wall anchor structure for pili, which are deposited by sortase A into the envelope of many different microbes.  相似文献   

14.
Staphylococcus aureus sortase anchors surface proteins to the cell wall envelope by cleaving polypeptides at the LPXTG motif. Surface proteins are linked to the peptidoglycan by an amide bond between the C-terminal carboxyl and the amino group of the pentaglycine cross-bridge. We find that purified recombinant sortase hydrolyzed peptides bearing an LPXTG motif at the peptide bond between threonine and glycine. In the presence of NH(2)-Gly(3), sortase catalyzed exclusively a transpeptidation reaction, linking the carboxyl group of threonine to the amino group of NH(2)-Gly(3). In the presence of amino group donors the rate of sortase mediated cleavage at the LPXTG motif was increased. Hydrolysis and transpeptidation required the sulfhydryl of cysteine 184, suggesting that sortase catalyzed the transpeptidation reaction of surface protein anchoring via the formation of a thioester acyl-enzyme intermediate.  相似文献   

15.
The interaction of Streptococcus pyogenes (group A streptococcus [GAS]) with its human host requires several surface proteins. In this study, we isolated mutations in a gene required for the surface localization of protein F by transposon mutagenesis of the M6 strain JRS4. This gene (srtA) encodes a protein homologous to Staphylococcus aureus sortase, which covalently links proteins containing an LPXTG motif to the cell wall. The GAS srtA mutant was defective in anchoring the LPXTG-containing proteins M6, protein F, ScpA, and GRAB to the cell surface. This phenotype was complemented when a wild-type srtA gene was provided in trans. The surface localization of T6, however, was unaffected by the srtA mutation. The M1 genome sequence contains a second open reading frame with a motif characteristic of sortase proteins. Inactivation of this gene (designated srtB) in strain JRS4 affected the surface localization of T6 but not M6, protein F, ScpA, or GRAB. This phenotype was complemented by srtB in trans. An srtA probe hybridized with DNA from all GAS strains tested (M types 1, 3, 4, 5, 6, 18, 22, and 50 and nontypeable strain 64/14) and from streptococcal groups C and G, while srtB hybridized with DNA from only a few GAS strains. We conclude that srtA and srtB encode sortase enzymes required for anchoring different subsets of proteins to the cell wall. It seems likely that the multiple sortase homologs in the genomes of other gram-positive bacteria have a similar substrate-specific role.  相似文献   

16.
The cell wall envelope of staphylococci and other Gram-positive pathogens is coated with surface proteins that interact with human host tissues. Surface proteins of Staphylococcus aureus are covalently linked to the cell wall envelope by a mechanism requiring C-terminal sorting signals with an LPXTG motif. Sortase (SrtA) cleaves surface proteins between the threonine (T) and the glycine (G) of the LPXTG motif and catalyzes the formation of an amide bond between threonine at the C-terminal end of polypeptides and cell wall cross-bridges. The active site architecture and catalytic mechanism of sortase A has hitherto not been revealed. Here we present the crystal structures of native SrtA, of an active site mutant of SrtA, and of the mutant SrtA complexed with its substrate LPETG peptide and describe the substrate binding pocket of the enzyme. Highly conserved proline (P) and threonine (T) residues of the LPXTG motif are held in position by hydrophobic contacts, whereas the glutamic acid residue (E) at the X position points out into the solvent. The scissile T-G peptide bond is positioned between the active site Cys(184) and Arg(197) residues and at a greater distance from the imidazolium side chain of His(120). All three residues, His(120), Cys(184), and Arg(197), are conserved in sortase enzymes from Gram-positive bacteria. Comparison of the active sites of S. aureus sortase A and sortase B provides insight into substrate specificity and suggests a universal sortase-catalyzed mechanism of bacterial surface protein anchoring in Gram-positive bacteria.  相似文献   

17.
Staphylococcus aureus sortase A cleaves surface protein precursors bearing C-terminal LPXTG motif sorting signals between the threonine and glycine residues. Using lipid II precursor as cosubstrate, sortase A catalyzes the amide linkage between the carboxyl group of threonine and the amino group of pentaglycine cross-bridges, thereby tethering C-terminal ends of surface proteins to the bacterial cell wall envelope. Staphylococcal sortase B also anchors its only known substrate, the IsdC precursor with a C-terminal NPQTN motif sorting signal, to the cell wall envelope. Herein, we determined the cell wall anchor structure of IsdC. The sorting signal of IsdC is cleaved between threonine and asparagine of the NPQTN motif, and the carboxyl group of threonine is amide-linked to the amino group of pentaglycine crossbridges. In contrast to sortase A substrates, the anchor structure of IsdC displays shorter glycan strands and significantly less cell wall cross-linking. A model is proposed whereby sortases A and B recognize unique features of sorting signals and peptidoglycan substrates to deposit proteins with distinct topologies in the cell wall envelope.  相似文献   

18.
Bacillus anthracis, the spore-forming agent of anthrax, requires iron for growth and is capable of scavenging heme-iron during infection. We show here that the B. anthracis iron-regulated surface determinants (isd) locus encompasses isdC, specifying a heme-iron binding surface protein. Anchoring of IsdC to the cell wall envelopes of vegetative bacilli requires srtB, which encodes sortase B. Purified sortase B cleaves IsdC between the threonine and the glycine of its NPKTG motif sorting signal. B. anthracis variants lacking either isdC or srtB display defects in heme-iron scavenging, suggesting that IsdC binding to heme-iron in the cell wall envelope contributes to bacterial uptake of heme.  相似文献   

19.
Design of a Protein-Targeting System for Lactic Acid Bacteria   总被引:24,自引:0,他引:24       下载免费PDF全文
We designed an expression and export system that enabled the targeting of a reporter protein (the staphylococcal nuclease Nuc) to specific locations in Lactococcus lactis cells, i.e., cytoplasm, cell wall, or medium. Optimization of protein secretion and of protein cell wall anchoring was performed with L. lactis cells by modifying the signals located at the N and C termini, respectively, of the reporter protein. Efficient translocation of precursor (approximately 95%) is obtained using the signal peptide from the lactococcal Usp45 protein and provided that the mature protein is fused to overall anionic amino acids at its N terminus; those residues prevented interactions of Nuc with the cell envelope. Nuc could be covalently anchored to the peptidoglycan by using the cell wall anchor motif of the Streptococcus pyogenes M6 protein. However, the anchoring step proved to not be totally efficient in L. lactis, as considerable amounts of protein remained membrane associated. Our results may suggest that the defect is due to limiting sortase in the cell. The optimized expression and export vectors also allowed secretion and cell wall anchoring of Nuc in food-fermenting and commensal strains of Lactobacillus. In all strains tested, both secreted and cell wall-anchored Nuc was enzymatically active, suggesting proper enzyme folding in the different locations. These results provide the first report of a targeting system in lactic acid bacteria in which the final location of a protein is controlled and biological activity is maintained.  相似文献   

20.
Surface proteins of Staphylococcus aureus are anchored to the cell wall peptidoglycan by a mechanism requiring a C-terminal sorting signal with an LPXTG motif. Surface proteins are first synthesized in the bacterial cytoplasm and then transported across the cytoplasmic membrane. Cleavage of the N-terminal signal peptide of the cytoplasmic surface protein P1 precursor generates the extracellular P2 species, which is the substrate for the cell wall anchoring reaction. Sortase, a membrane-anchored transpeptidase, cleaves P2 between the threonine (T) and the glycine (G) of the LPXTG motif and catalyzes the formation of an amide bond between the carboxyl group of threonine and the amino group of cell wall cross-bridges. We have used metabolic labeling of staphylococcal cultures with [(32)P]phosphoric acid to reveal a P3 intermediate. The (32)P-label of immunoprecipitated surface protein is removed by treatment with lysostaphin, a glycyl-glycine endopeptidase that separates the cell wall anchor structure. Furthermore, the appearance of P3 is prevented in the absence of sortase or by the inhibition of cell wall synthesis. (32)P-Labeled cell wall anchor species bind to nisin, an antibiotic that is known to form a complex with lipid II. Thus, it appears that the P3 intermediate represents surface protein linked to the lipid II peptidoglycan precursor. The data support a model whereby lipid II-linked polypeptides are incorporated into the growing peptidoglycan via the transpeptidation and transglycosylation reactions of cell wall synthesis, generating mature cell wall-linked surface protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号