首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To evaluate the effect of endurance training on ventilatory function in older individuals, 1) 14 master athletes (MA) [age 63 +/- 2 yr (mean +/- SD); maximum O2 uptake (VO2max) 52.1 +/- 7.9 ml . kg-1 . min-1] were compared with 14 healthy male sedentary controls (CON) (age 63 +/- 3 yr; VO2max of 27.6 +/- 3.4 ml . kg-1 . min-1), and 2) 11 sedentary healthy men and women, age 63 +/- 2 yr, were reevaluated after 12 mo of endurance training that increased their VO2max 25%. MA had a significantly lower ventilatory response to submaximal exercise at the same O2 uptake (VE/VO2) and greater maximal voluntary ventilation (MVV), maximal exercise ventilation (VEmax), and ratio of VEmax to MVV than CON. Except for MVV, all of these parameters improved significantly in the previously sedentary subjects in response to training. Hypercapnic ventilatory response (HCVR) at rest and the ventilatory equivalent for CO2 (VE/VCO2) during submaximal exercise were similar for MA and CON and unaffected by training. We conclude that the increase in VE/VO2 during submaximal exercise observed with aging can be reversed by endurance training, and that after training, previously sedentary older individuals breathe at the same percentage of MVV during maximal exercise as highly trained athletes of similar age.  相似文献   

2.
We examined the hemodynamic factors associated with the lower maximal O2 consumption (VO2max) in older formerly elite distance runners. Heart rate and VO2 were measured during submaximal and maximal treadmill exercise in 11 master [66 +/- 8 (SD) yr] and 11 young (32 +/- 5 yr) male runners. Cardiac output was determined using acetylene rebreathing at 30, 50, 70, and 85% VO2max. Maximal cardiac output was estimated using submaximal stroke volume and maximal heart rate. VO2max was 36% lower in master runners (45.0 +/- 6.9 vs. 70.4 +/- 8.0 ml.kg-1.min-1, P less than or equal to 0.05), because of both a lower maximal cardiac output (18.2 +/- 3.5 vs. 25.4 +/- 1.7 l.min-1) and arteriovenous O2 difference (16.6 +/- 1.6 vs. 18.7 +/- 1.4 ml O2.100 ml blood-1, P less than or equal to 0.05). Reduced maximal heart rate (154.4 +/- 17.4 vs. 185 +/- 5.8 beats.min-1) and stroke volume (117.1 +/- 16.1 vs. 137.2 +/- 8.7 ml.beat-1) contributed to the lower cardiac output in the older athletes (P less than or equal 0.05). These data indicate that VO2max is lower in master runners because of a diminished capacity to deliver and extract O2 during exercise.  相似文献   

3.
On the basis of cross-sectional data, we previously reported that the absolute, but not the relative (%), rate of decline in maximal oxygen consumption (VO(2 max)) with age is greater in endurance-trained compared with healthy sedentary women. We tested this hypothesis by using a longitudinal approach. Eight sedentary (63 +/- 2 yr at follow-up) and 16 endurance-trained (57 +/- 2) women were reevaluated after a mean follow-up period of 7 yr. At baseline, VO(2 max) was ~70% higher in endurance-trained women (48.1 +/- 1.7 vs. 28.1 +/- 0.8 ml. kg(-1). min(-1). yr(-1)). At follow-up, body mass, fat-free mass, maximal respiratory exchange ratio, and maximal rating of perceived exertion were not different from baseline in either group. The absolute rate of decline in VO(2 max) was twice as great (P < 0.01) in the endurance-trained (-0.84 +/- 0.15 ml. kg(-1). min(-1). yr(-1)) vs. sedentary (-0.40 +/- 0.12 ml. kg(-1). min(-1). yr(-1)) group, but the relative rates of decline were not different (-1.8 +/- 0.3 vs. -1.5 +/- 0.4% per year). Differences in rates of decline in VO(2 max) were not related to changes in body mass or maximal heart rate. However, among endurance-trained women, the relative rate of decline in VO(2 max) was positively related to reductions in training volume (r = 0.63). Consistent with this, the age-related reduction in VO(2 max) in a subgroup of endurance-trained women who maintained or increased training volume was not different from that of sedentary women. These longitudinal data indicate that the greater decrease in maximal aerobic capacity with advancing age observed in middle-aged and older endurance-trained women in general compared with their sedentary peers is due to declines in habitual exercise in some endurance-trained women. Endurance-trained women who maintain or increase training volume demonstrated age-associated declines in maximal aerobic capacity not different from healthy sedentary women.  相似文献   

4.
Many older athletes are capable of endurance performances equal to those of young runners who have higher maximal O2 uptakes (VO2max). To determine whether this is a result of differences in skeletal muscle characteristics, gastrocnemius muscle biopsy samples were obtained from eight master athletes [aged 63 +/- 6 (SD) yr] and eight young (aged 26 +/- 3 yr) runners. The young runners were matched with the master athletes for 10-km running performance and for their volume, pace, and type of training. Despite similar 10-km run times, VO2max was 11% lower (P less than 0.05) in the master athletes. Fiber type distribution did not differ between groups, with both groups having 60% type I and very few type IIb fibers. Succinate dehydrogenase and beta-hydroxyacyl-CoA dehydrogenase activities, however, were 31 and 24% higher in the master athletes compared with the matched young runners, whereas lactate dehydrogenase activity was 46% lower (all P less than 0.05). The capillary-to-fiber ratio was also greater in the master athletes; however, capillary density was similar in the two groups, because of the master athletes' 34% larger (P less than 0.05) type I fibers. These differences in skeletal muscle characteristics may explain the master athletes' ability to perform as well as some young runners despite having a lower VO2max.  相似文献   

5.
Stroke volume (SV) increases above the resting level during exercise and then declines at higher intensities of exercise in sedentary subjects. The purpose of this study was to determine whether an attenuation of the decline in SV at higher exercise intensities contributes to the increase in maximal cardiac output (Qmax) that occurs in response to endurance training. We studied six men and six women, 25 +/- 1 (SE) yr old, before and after 12 wk of endurance training (3 days/wk running for 40 min, 3 days/wk interval training). Cardiac output was measured at rest and during exercise at 50 and 100% of maximal O2 uptake (Vo2max) by the C2H2-rebreathing method. VO2max was increased by 19% (from 2.7 +/- 0.2 to 3.2 +/- 0.3 l/min, P less than 0.001) in response to the training program. Qmax was increased by 12% (from 18.1 +/- 1 to 20.2 +/- 1 l/min, P less than 0.01), SV at maximal exercise was increased by 16% (from 97 +/- 6 to 113 +/- 8 ml/beat, P less than 0.001) and maximal heart rate was decreased by 3% (from 185 +/- 2 to 180 +/- 2 beats/min, P less than 0.01) after training. The calculated arteriovenous O2 content difference at maximal exercise was increased by 7% (14.4 +/- 0.4 to 15.4 +/- 0.4 ml O2/100 ml blood) after training. Before training, SV at VO2max was 9% lower than during exercise at 50% VO2max (P less than 0.05). In contrast, after training, the decline in SV between 50 and 100% VO2max was only 2% (P = NS). Furthermore, SV was significantly higher (P less than 0.01) at 50% VO2max after training than it was before. Left ventricular hypertrophy was evident, as determined by two-dimensional echocardiography at the completion of training. The results indicate that in young healthy subjects the training-induced increase in Qmax is due in part to attenuation of the decrease in SV as exercise intensity is increased.  相似文献   

6.
We hypothesized that abnormal endothelium-dependent vasodilation (EDD) found in older otherwise healthy subjects can be attenuated with long-term endurance training. Ten endurance-trained men, 68.5 +/- 2.3 yr old, and 10 healthy sedentary men, 64.7 +/- 1.4 yr old, were studied. Aerobic exercise capacity (VO(2 max)), fasting plasma cholesterol, insulin, and homocysteine concentrations were measured. Master athletes had higher VO(2 max) (42 +/- 2.3 vs. 27 +/- 1.4 ml. kg(-1). min(-1), P < 0.001), slightly higher total cholesterol (226 +/- 8 vs. 199 +/- 8 mg/dl, P = 0.05), similar insulin, and higher homocysteine (10.7 +/- 1.3 vs. 9.2 +/- 1.4 micromol/ml, p = 0.02) concentrations. Brachial arterial diameter, determined with vascular ultrasound, during the hyperemic response was greater in the master athletes than in controls (P = 0.005). Peak vasodilatory response was 109.1 +/- 2 vs. 103.6 +/- 2% (P < 0.05) in the athletes and controls, respectively. Endothelium-independent vasodilation in response to nitroglycerin was similar between the two groups. The increased arterial diameter during the hyperemic response correlated significantly with the VO(2 max) in the entire population (r = 0.66, P < 0.002). Our results suggest that long-term endurance exercise training in older men is associated with systemic enhanced EDD, which is even detectable in the conduit arteries of untrained muscle.  相似文献   

7.
This study assessed the hemodynamic responses to exercise of master athletes (56 +/- 5 yr of age) who placed in the top 10% of their age groups in local 10-km competitive events, competitive young runners (26 +/- 3 yr), young runners matched in training and performance to the master athletes (25 +/- 3 yr), and healthy older sedentary subjects (58 +/- 5 yr). The maximal O2 consumption (VO2max) of the master athletes was 9 and 19% lower than that of the matched young and competitive young runners, respectively. When compared at the same relative submaximal work rates, these three groups had similar stroke volumes and arteriovenous O2 (aVO2) differences, though the master athletes had lower VO2, cardiac output, and heart rate, and higher vascular resistance. The older sedentary group had a lower stroke volume, aVO2 difference, and higher vascular resistance than the master athletes. Maximal stroke volume and estimated aVO2 difference were the same in the three groups of athletes; the lower maximal heart rate of the master athletes appears to account for their lower VO2max. The older sedentary subjects' VO2max was 47% lower than that of the master athletes; this difference was almost equally the result of a lower stroke volume and a lower a-VO2 difference. Thus these older athletes did not exhibit the decline in maximum stroke volume and aVO2 difference that occurs with aging in sedentary individuals; they also appear to have retained a greater peripheral vasodilatory response than their sedentary peers.  相似文献   

8.
To determine whether the reduced blood lactate concentrations [La] during submaximal exercise in humans after endurance training result from a decreased rate of lactate appearance (Ra) or an increased rate of lactate metabolic clearance (MCR), interrelationships among blood [La], lactate Ra, and lactate MCR were investigated in eight untrained men during progressive exercise before and after a 9-wk endurance training program. Radioisotope dilution measurements of L-[U-14C]lactate revealed that the slower rise in blood [La] with increasing O2 uptake (VO2) after training was due to a reduced lactate Ra at the lower work rates [VO2 less than 2.27 l/min, less than 60% maximum VO2 (VO2max); P less than 0.01]. At power outputs closer to maximum, peak lactate Ra values before (215 +/- 28 mumol.min-1.kg-1) and after training (244 +/- 12 mumol.min-1.kg-1) became similar. In contrast, submaximal (less than 75% VO2max) and peak lactate MCR values were higher after than before training (40 +/- 3 vs. 31 +/- 4 ml.min-1.kg-1, P less than 0.05). Thus the lower blood [La] values during exercise after training in this study were caused by a diminished lactate Ra at low absolute and relative work rates and an elevated MCR at higher absolute and all relative work rates during exercise.  相似文献   

9.
To determine whether aerobic conditioning alters the orthostatic responses of older subjects, cardiovascular performance was monitored during graded lower body negative pressure in nine highly trained male senior athletes (A) aged 59-73 yr [maximum O2 uptake (VO2 max) = 52.4 +/- 1.7 ml.kg-1 x min-1] and nine age-matched control subjects (C) (VO2 max = 31.0 +/- 2.9 ml.kg-1 x min-1). Cardiac volumes were determined from gated blood pool scintigrams by use of 99mTc-labeled erythrocytes. During lower body negative pressure (0 to -50 mmHg), left ventricular end-diastolic and end-systolic volume indexes and stroke volume index decreased in both groups while heart rate increased. The decreases in cardiac volumes and mean arterial pressure and the increase in heart rate between 0 and -50 mmHg were significantly less in A than in C. For example, end-diastolic volume index decreased by 32 +/- 4 ml in C vs. 14 +/- 2 ml in A (P < 0.01), mean arterial pressure declined 7 +/- 5 mmHg in C and increased by 5 +/- 3 mmHg in A (P < 0.05), and heart rate increased 13 +/- 3 beats/min in C and 7 +/- 1 beats/min in A (P < 0.05). These data suggest that increased VO2 max among older men is associated with improved orthostatic responses.  相似文献   

10.
Many well-trained elite older runners have performances comparable to those of much younger nonelite runners. We sought to determine whether the physiological determinants of endurance performance in two groups of such athletes were the same. Eight master athletes (age 56 +/- 5 yr) were matched on the basis of 10-km performance and training to younger runners (age 25 +/- 3 yr). The master athletes had a 9% lower maximum O2 uptake (VO2max) (P less than 0.05) than the matched young runners, despite the similarity in their performance. Running economy was not different between these groups. However, the master athletes attained a 2.5-mM blood lactate level during steady-state exercise at a higher percentage of their VO2max (P less than 0.05), although both groups attained this lactate level at the same running speed and VO2. Thus, despite having significantly lower VO2max values, the older athletes were able to perform as well as the younger runners because they were able to work closer to their VO2max for the duration of the race.  相似文献   

11.
Before the start and after 4, 8, and 12 wk of a treadmill training program male rats were randomly selected and tested for running performance, maximum O2 consumption (VO2 max), running economy (VO2 submax), and skeletal muscle oxidative capacity (QO2). Data were compared with values from untrained weight-matched control rats. Maximum running time to exhaustion increased significantly (P less than 0.01) by 4 wk and again at 12 wk (P less than 0.01). Submaximal running endurance increased by 120 (4 wk), 320 (8 wk), and 372% (12 wk) (P less than 0.01). VO2 max was increased only at 12 wk (86.0 +/- 2.7 vs. 75.5 +/- 1.9 ml O2.kg-1.min-1); VO2 submax was decreased at 4 and 8 wk but not at 12 wk. Soleus QO2 was unchanged after 4 wk of training and increased by 50% at 8 wk and by 77% at 12 wk. This study is the first to show a dissociation in both the time course and the magnitude of longitudinal changes in VO2 max, VO2 submax, QO2, and maximal and submaximal running performance. We conclude that factors other than those measured explain the improvement in running performance that resulted from endurance training in these rats.  相似文献   

12.
Seven endurance-trained subjects [maximal O2 consumption (VO2max) 64 +/- 1 (SE) ml.min-1.kg-1] were subjected to three sequential hyperinsulinemic euglycemic clamps 15 h after having performed their last training session (T). Results were compared with findings in seven untrained subjects (VO2max 44 +/- 2 ml.min-1.kg-1) studied both at rest (UT) and after 60 min of bicycle exercise at 150 W (UT-ex). In T and UT-ex compared with UT, sensitivity for insulin-mediated whole-body glucose uptake was higher [insulin concentrations eliciting half-maximal glucose uptake being 44 +/- 2 (T) and 43 +/- 4 (UT-ex) vs. 52 +/- 3 microU/ml (UT), P less than 0.05] and responsiveness was higher [13.4 +/- 1.2 (T) and 10.9 +/- 0.7 (UT-ex) vs. 9.5 +/- 0.7 mg.min-1.kg-1 (UT), P less than 0.05]. Furthermore, responsiveness was higher (P less than 0.05) in T than in UT-ex. Insulin-stimulated O2 uptake and maximal glucose oxidation rate were higher in T than in UT and UT-ex. Insulin-stimulated conversion or glucose to glycogen and muscle glycogen synthase was higher in T than in UT and UT-ex. However, glycogen storage in vastus lateralis muscle was found only in UT-ex. No change in any glucoregulatory hormone or metabolite could explain the increased insulin action in trained subjects. It is concluded that physical training induces an adaptive increase in insulin responsiveness of whole-body glucose uptake, which does not reflect increased glycogen deposition in muscle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
To quantify the relative contributions of convective and peripheral diffusive components of O2 transport to the increase in leg O2 uptake (VO2leg) at maximum O2 uptake (VO2max) after 9 wk of endurance training, 12 sedentary subjects (age 21.8 +/- 3.4 yr, VO2max 36.9 +/- 5.9 ml.min-1.kg-1) were studied. VO2max, leg blood flow (Qleg), and arterial and femoral venous PO2, and thus VO2leg, were measured while the subjects breathed room air, 15% O2, and 12% O2. The sequence of the three inspirates was balanced. After training, VO2max and VO2leg increased at each inspired O2 concentration [FIO2; mean over the 3 FIO2 values 25.2 +/- 17.8 and 36.5 +/- 33% (SD), respectively]. Before training, VO2leg and mean capillary PO2 were linearly related through the origin during hypoxia but not during room air breathing, suggesting that, at 21% O2, VO2max was not limited by O2 supply. After training, VO2leg and mean capillary PO2 at each FIO2 fell along a straight line with zero intercept, just as in athletes (Roca et al. J. Appl. Physiol. 67: 291-299, 1989). Calculated muscle O2 diffusing capacity (DO2) rose 34% while Qleg increased 19%. The relatively greater rise in DO2 increased the DO2/Qleg, which led to 9.9% greater O2 extraction. By numerical analysis, the increase in Qleg alone (constant DO2) would have raised VO2leg by 35 ml/min (mean), but that of DO2 (constant Qleg) would have increased VO2leg by 85 ml/min, more than twice as much. The sum of these individual effects (120 ml/min) was less (P = 0.013) than the observed rise of 164 ml/min (mean). This synergism (explained by the increase in DO2/Qleg) seems to be an important contribution to increases in VO2max with training.  相似文献   

14.
To determine the relation between habitual endurance exercise status and the age-associated decline in maximal aerobic capacity [i.e., maximal O(2) consumption (Vo(2 max))] in men, we performed a well-controlled cross-sectional laboratory study on 153 healthy men aged 20-75 yr: 64 sedentary and 89 endurance trained. Vo(2 max) (ml. kg(-1). min(-1)), measured by maximal treadmill exercise, was inversely related to age in the endurance-trained (r = -0.80) and sedentary (r = -0.74) men but was higher in the endurance-trained men at any age. The rate of decline in Vo(2 max) with age (ml. kg(-1). min(-1)) was greater (P < 0.001) in the endurance-trained than in the sedentary men. Whereas the relative rate of decline in Vo(2 max) (percent decrease per decade from baseline levels in young adulthood) was similar in the two groups, the absolute rate of decline in Vo(2 max) was -5.4 and -3.9 ml. kg(-1). min(-). decade(-1) in the endurance-trained and sedentary men, respectively. Vo(2 max) declined linearly across the age range in the sedentary men but was maintained in the endurance-trained men until approximately 50 yr of age. The accelerated decline in Vo(2 max) after 50 yr of age in the endurance-trained men was related to a decline in training volume (r = 0.46, P < 0.0001) and was associated with an increase in 10-km running time (r = -0.84, P < 0.0001). We conclude that the rate of decline in maximal aerobic capacity during middle and older age is greater in endurance-trained men than in their sedentary peers and is associated with a marked decline in O(2) pulse.  相似文献   

15.
To find out whether endurance training influences the kinetics of the increases in heart rate (fc) during exercise driven by the sympathetic nervous system, the changes in the rate of fc adjustment to step increments in exercise intensities from 100 to 150 W were followed in seven healthy, previously sedentary men, subjected to 10-week training. The training programme consisted of 30-min cycle exercise at 50%-70% of maximal oxygen uptake (VO2max) three times a week. Every week during the first 5 weeks of training, and then after the 10th week the subjects underwent the submaximal three-stage exercise test (50, 100 and 150 W) with continuous fc recording. At the completion of the training programme, the subjects' VO2max had increased significantly (39.2 ml.min-1.kg-1, SD 4.7 vs 46 ml.min-1.kg-1, SD 5.6) and the steady-state fc at rest and at all submaximal intensities were significantly reduced. The greatest decrease in steady-state fc was found at 150 W (146 beats.min-1, SD 10 vs 169 beats.min-1, SD 9) but the difference between the steady-state fc at 150 W and that at 100 W (delta fc) did not decrease significantly (26 beats.min-1, SD 7 vs 32 beats.min-1, SD 6). The time constant (tau) of the fc increase from the steady-state at 100 W to steady-state at 150 W increased during training from 99.4 s, SD 6.6 to 123.7 s, SD 22.7 (P less than 0.01) and the acceleration index (A = 0.63.delta fc.tau-1) decreased from 0.20 beats.min-1.s-1, SD 0.05 to 0.14 beats.min-1.s-1, SD 0.04 (P less than 0.02). The major part of the changes in tau and A occurred during the first 4 weeks of training. It was concluded that heart acceleration following incremental exercise intensities slowed down in the early phase of endurance training, most probably due to diminished sympathetic activation.  相似文献   

16.
The purpose of this investigation was to determine whether sweat lactate secretion during exercise [approximately 70% maximum O2 consumption (VO2max), 60 min] differed in active vs. sedentary female subjects. Sweat rate, total sweat lactate secretion, and sweat lactate concentration were monitored in a group of sedentary (VO2max = 41.0 +/- 1.62 ml X kg-1 X min-1) and active (VO2max = 51.2 +/- 3.20 ml X kg-1 X min-1) women. Sweat rate was significantly (P less than 0.05) greater in the active subjects. There was a significant difference between groups in total amount of sweat lactate secreted (P less than 0.05), with the active group secreting less lactate (29.8 +/- 5.03 mmol, mean +/- SE) than the sedentary group (50.2 +/- 6.61 mmol). Concomitant with the lower total sweat lactate secretion in the active subjects was a significantly (P less than 0.05) more dilute sweat lactate concentration (42.6 +/- 14.08 vs. 100.4 +/- 32.37 mM). In these female subjects, sweat lactate concentration was inversely correlated (r = -0.79, P less than 0.01, n = 10) to sweat rate. It is concluded that total sweat lactate loss is significantly less in active than in sedentary women and that the active subjects secrete a greater quantity of lactate dilute sweat.  相似文献   

17.
There are conflicting reports in the literature which imply that the decrement in maximal aerobic power experienced by a sea-level (SL) resident sojourning at high altitude (HA) is either smaller or larger for the more aerobically "fit" person. In the present study, data collected during several investigations conducted at an altitude of 4300 m were analyzed to determine if the level of aerobic fitness influenced the decrement in maximal oxygen uptake (VO2max) at HA. The VO2max of 51 male SL residents was measured at an altitude of 50 m and again at 4300 m. The subjects' ages, heights, and weights (mean +/- SE) were 22 +/- 1 yr, 177 +/- 7 cm and 78 +/- 2 kg, respectively. The subjects' VO2max ranged from 36 to 60 ml X kg -1 X min -1 (mean +/- SE = 48 +/- 1) and the individual values were normally distributed within this range. Likewise, the decrement in VO2max at HA was normally distributed from 3 ml X kg-1 X min-1 (9% VO2max at SL) to 29 ml X kg-1 X min-1 (54% VO2max at SL), and averaged 13 +/- 1 ml X kg-1 X min-1 (27 +/- 1% VO2max at SL). The linear correlation coefficient between aerobic fitness and the magnitude of the decrement in VO2max at HA expressed in absolute terms was r = 0.56, or expressed as % VO2max at SL was r = 0.30; both were statistically significant (p less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Endurance training of older men: responses to submaximal exercise.   总被引:2,自引:0,他引:2  
The purpose of this study was to quantify the exercise response of older subjects on a time-to-fatigue (TTF) submaximal performance test before and after a training program. Eight older men (67.4 +/- 4.8 yr) performed two maximal treadmill tests to determine maximum oxygen uptake (VO2max) and ventilation threshold (TVE) and a constant-load submaximal exercise treadmill test that required an oxygen uptake (VO2) between TVE and VO2max. The submaximal test, performed at the same absolute work rate before and after the training program, was performed to volitional fatigue to measure endurance time. The men trained under supervision at an individualized pace representing approximately 70% of VO2max (80% maximum heart rate) for 1 h, four times per week for 9 wk. Significant increases were demonstrated for VO2max (ml.kg-1.min-1; 10.6%); maximal ventilation (VE, l/min; 11.6%), and TVE (l/min; 9.8%). Weight decreased 2.1%. Performance time on the TTF test increased by 180% (7.3 +/- 3.0 to 20.4 +/- 13.5 min). The similar end points for VO2, VE, and heart rate during the TTF and maximal treadmill tests established that the TTF test was stopped because of physiological limitations. The increase in performance time among the subjects was significantly correlated with improvements in VO2max and TVE, with the submaximal work rate representing a VO2 above TVE by 88% of the difference between TVE and VO2max pretraining and 73% of this difference on posttraining values.  相似文献   

19.
Recent evidence suggests that heavy exercise may lower the percentage of O2 bound to hemoglobin (%SaO2) by greater than or equal to 5% below resting values in some highly trained endurance athletes. We tested the hypothesis that pulmonary gas exchange limitations may restrict VO2max in highly trained athletes who exhibit exercise-induced hypoxemia. Twenty healthy male volunteers were divided into two groups according to their physical fitness status and the demonstration of exercise-induced reductions in %SaO2 less than or equal to 92%: 1) trained (T), mean VO2max = 56.5 ml.kg-1.min-1 (n = 13) and 2) highly trained (HT) with maximal exercise %SaO2 less than or equal to 92%, mean VO2max = 70.1 ml.kg-1.min-1 (n = 7). Subjects performed two incremental cycle ergometer exercise tests to determine VO2max at sea level under normoxic (21% O2) and mild hyperoxic conditions (26% O2). Mean %SaO2 during maximal exercise was significantly higher (P less than 0.05) during hyperoxia compared with normoxia in both the T group (94.1 vs. 96.1%) and the HT group (90.6 vs. 95.9%). Mean VO2max was significantly elevated (P less than 0.05) during hyperoxia compared with normoxia in the HT group (74.7 vs. 70.1 ml.kg-1.min-1). In contrast, in the T group, no mean difference (P less than 0.05) existed between treatments in VO2max (56.5 vs. 57.1 ml.kg-1.min-1). These data suggest that pulmonary gas exchange may contribute significantly to the limitation of VO2max in highly trained athletes who exhibit exercise-induced reductions in %SaO2 at sea level.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The relationship between aerobic fitness as measured by maximal O2 uptake (VO2max) and the cardiovascular response to laboratory stressors was examined in two experiments. First, 34 male college students were screened on the basis of their heart rate (HR) response to a reaction time-shock avoidance (RT-AV) task. The six individuals showing an average HR increase of 45 beats/min (reactives) and the six subjects showing an average increase of 8 beats/min (nonreactives) did not differ in VO2max (47.7 +/- 2 vs. 48.7 +/- 1 ml.kg-1.min-1, respectively). However, a statistically significant association between a reported family history of hypertension and peak HR response to RT-AV was seen. In the second series of experiments, the plasma catecholamine and cardiovascular responses of eight elite endurance-trained athletes (VO2max 70.6 +/- 1 ml.kg-1.min-1) and eight untrained volunteers (VO2max 45.5 +/- 1 ml.kg-1.min-1) were compared on the following: RT-AV, reaction time for monetary reward (RT-AP), cold pressor, isometric handgrip, and orthostatic challenge (standing). The trained group exhibited a significantly lower mean HR at rest (P less than 0.05), otherwise there were no significant differences between the two groups. The results indicate that although individual differences (e.g., family history of hypertension and high resting HR) can be related to the potential for cardiovascular responses to novel laboratory challenges, the contribution of fitness to this characteristic is much less clear. Further exploration of questions pertaining to fitness and stress should focus on individuals with a predisposition to stress reactivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号