首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The role of glutathione in copper metabolism and toxicity   总被引:17,自引:0,他引:17  
Cellular copper metabolism and the mechanism of resistance to copper toxicity were investigated using a wild type hepatoma cell line (HAC) and a copper-resistant cell line (HAC600) that accumulates copper and has a highly elevated level of metallothionein (MT). Of the enzymes involved in reactive oxygen metabolism, only glutathionine peroxidase was elevated (3-4-fold) in resistant cells, suggestive of an increase in the cellular flux of hydrogen peroxide. A majority of the cytoplasmic copper (greater than 60%) was isolated from both cell lines as a GSH complex. Kinetic studies of 67Cu uptake showed that GSH bound 67Cu before the metal was complexed by MT. Depletion of cellular GSH with buthionine sulfoximine inhibited the incorporation of 67Cu into MT by greater than 50%. These results support a model of copper metabolism in which the metal is complexed by GSH soon after entering the cell. The complexed metal is then transferred to MT where it is stored. This study also indicates that resistance to metal toxicity in copper-resistant hepatoma cells is due to increases in both cellular GSH and MT. Furthermore, it is suggested that elevated levels of GSH peroxidase allows cells to more efficiently accommodate an increased cellular hydrogen peroxide flux that may occur as a consequence of elevated levels of cytoplasmic copper.  相似文献   

4.
5.
A A Daffada  S P Young 《FEBS letters》1999,457(2):214-218
During the acute phase response, cytokines induce hepatic metallothionein and ceruloplasmin synthesis and the uptake of metals. We have investigated how copper and cytokines may interact in controlling ceruloplasmin (CP) and metallothionein mRNA in liver cells. We found that IL-1alpha, IL-1beta and IL-6 increased both metallothionein-1 (MT-1) and metallothionein-2 (MT-2) mRNA in HepG2 cells. The time and pattern of induction was different, both IL-1alpha and IL-1beta inducing two peaks of MT-1 and MT-2, with that of MT-2 being much larger. IL-6 induced only low levels of both MT-1 and MT-2 mRNA. CP mRNA was also increased after 16 h by IL-1beta, whereas IL-1alpha induced two CP peaks at 8 and 20 h, while IL-6 had little effect. Copper administration gave rise to substantially increased MT-1 mRNA, a slightly lower increase in MT-2 and also a significant increase in CP mRNA with similar kinetics. These parallel increases in MT and CP mRNA suggest that the coordinated expression of these proteins may be important for their synthesis during the acute phase response.  相似文献   

6.
The gene encoding metallothionein, a low mol. wt. metal binding and stress response protein, is expressed in white adipose tissue. In the present study, metallothionein (MT-1) gene expression and factors regulating metallothionein production have been examined in adipocytes induced to differentiate from fibroblastic preadipocytes in primary cell culture. On the induction of differentiation, the metallothionein-1 gene was strongly expressed in the cells and metallothionein released into the medium. A peak in metallothionein-1 mRNA level and metallothionein secretion occurred at 2 and 10 days post-differentiation, respectively, with a decrease in protein release after this time. The metallothionein-1 gene was expressed in the adipocytes prior to the adipsin and lipoprotein lipase genes, suggesting that it is an early marker of adipocyte differentiation. The addition of the glucocorticoid, dexamethasone, led to a substantial increase in metallothionein-1 mRNA in the cells and metallothionein secretion. Insulin and leptin also stimulated metallothionein production, although the effect was small. Neither noradrenaline nor the beta3-adrenoceptor agonist, BRL 37 344, altered metallothionein release but forskolin and bromo-cAMP were stimulatory, markedly increasing both metallothionein-1 level and metallothionein secretion. It is suggested that metallothionein is a novel secretory product of the differentiated white adipocyte and that its production is regulated particularly by glucocorticoids and through a cAMP-dependent pathway.  相似文献   

7.
8.
9.
It is well known that excess dietary histidine induces the metabolic changes in copper and zinc. Therefore, this study was carried out to clarify whether excess dietary histidine alters the gene expressions of metallothionein-1 and metallothionein-2 in the liver and kidney. Male rats were fed the control (ad libitum and pair-fed) or histidine-excess (50 g of L-histidine per kg of diet) diet for 0, 1 and 3 days. The levels of liver metallothionein-1 and metallothionein-2 mRNA were markedly lower in the rats fed the histidine-excess diet as compared to those of the control (ad libitum and pair-fed) diet, when fed for 1 or 3 days. The levels of renal metallothionein-1 and metallothionein-2 mRNA in the rats fed the histidine-excess diet were higher or tended to be higher as compared with the rats fed the control (ad libitum and pair-fed) diet when fed for 1 or 3 days, respectively. At the same time, hepatic copper content was decreased and renal zinc content was increased by dietary histidine. It thus appears, that such a response on the level of liver metallothionein mRNA might be related to the contents of liver copper, but of kidney metallothionein mRNA might be due to the content of zinc.  相似文献   

10.
Heme-hemopexin-mediated induction of metallothionein gene expression.   总被引:2,自引:0,他引:2  
  相似文献   

11.
Recombinant DNA probes complementary to Chinese hamster metallothionein (MT)-1 and MT-2 mRNAs were used to compare MT gene copy numbers, zinc-induced MT mRNA levels, and uninduced MT mRNA levels in cadmium-resistant (Cdr) Chinese hamster ovary cell lines. Quantitative hybridization analyses determined that the MT-1 and MT-2 genes are each present at approximately single-copy levels in the genome of cell line Cdr2C10 and are coordinately amplified approximately 7, 3, and 12 times over the Cdr2C10 value in the genomes of cell lines Cdr20F4, Cdr30F9, and Cdr200T1, respectively. The maximum zinc-induced MT-1 mRNA concentrations in cell lines Cdr20F4, Cdr30F9, and Cdr200T1 were equal to 1, 3, and 15 times that measured in Cdr2C10, respectively. Similarly, the maximum zinc-induced MT-2 mRNA concentrations were equal to 1, 3, and 14 times that measured in Cdr2C10, respectively, and in each instance they were 90 to 150 times greater than their respective concentrations in uninduced cells. Thus, relative MT gene numbers are closely correlated with both zinc-induced and uninduced MT mRNA levels in Cdr2C10, Cdr30F9, and Cdr200T1, but not in Cdr20F4. Each of the latter two lines possesses structurally altered chromosomes whose breakpoints are near the MT locus. Nonetheless, the ratio of the levels of MT-1 to MT-2 mRNAs was constant in each of the four cell lines, including Cdr20F4. These results demonstrate that MT-1 and MT-2 mRNAs are induced coordinately in each Cdr cell line. Therefore, the coordination of the induction of MT-1 and MT-2 mRNA is independent of MT gene amplification, MT gene rearrangement, and the relative inducibilities of amplified MT genes. However, MT mRNA and protein levels each indicate that MT-1 and MT-2 expression is non-coordinate in uninduced cells. Thus, regulation of MT expression may involve two different mechanisms which are differentially operative in induced and uninduced cells.  相似文献   

12.
13.
A sensitive method for determination of metallothionein (MT) isoform levels in rat liver by ion-exchange high-performance liquid chromatography and atomic absorption spectrometry was developed. Critical steps in sample preparation, like MT extraction, MT saturation with Cd and protein separation, were optimized. This method is capable of measuring levels of 2.0 μg/g liver for metallothionein-1 (MT-1) and 1.3 μg/g liver for metallothionein-2 (MT-2), respectively, with a high recovery of 103% on average. The method described, thus, proved suitable for analyzing metallothionein isoform concentrations even in untreated animals. The ratio of MT-1 to MT-2 was found to be 1:1 on average. MT decomposition during storage was very high in whole livers, but could be reduced by about 80% when extracted liver samples were used.  相似文献   

14.
Metallothionein-1 (MT-1) cDNA clones were isolated from a common carp (Cyprinus carpio) uninduced hepatopancreas cDNA library. Northern blot assay using the common carp (cc) MT-1 cDNA as a probe showed high fold induction of ccMT mRNA levels in the intestine and kidney following exposure to Cd2+ and Zn2+. Using polymerase chain reaction (PCR), primers designed from the cDNA sequences allowed the isolation of ccMT-1 gene fragments including the 5'-flanking region. The 600 bp 5'-flanking region of ccMT-1 gene carries four putative metal regulatory regions, one AP1, two SP1, one c-Jun site, and a TATA box. The 5'-flanking region of the ccMT-1 gene obtained was a functional promoter responding to the administration of various metal ions as well as hydrogen peroxide (H2O2) and lipopolysaccharide (LPS). When tested in primary cultures of cc hepatocytes, Zn2+ had the highest fold (20 times) induction of the 600 bp cloned ccMT-1 gene promoter, followed by Cu2+, Hg2+, Ni2+ and Pb2+ (4-5-fold inductions); H2O2 and LPS had a 6-7-fold induction. In conclusion, the ccMT-1 is a constitutively expressed MT and its gene promoter is inducible by various metal ions and chemical agents.  相似文献   

15.
16.
Soy-protein isolate (SPI) enhances liver cell damage in Long-Evans rats with a cinnamon-like coat color (LEC rats), which have a defect in Atp7b, the Wilson disease gene. Animals administered an SPI-diet from an age of six weeks died significantly earlier than those administered a control-diet, AIN-93G, from severe liver cell damage associated with jaundice. Since the liver copper level was higher with the SPI-diet than the control-diet, one of the reasons for SPI-toxicity to LEC rats might be due to the higher uptake of copper into liver cells. In the present study, liver levels of glutathione, and liver and intestinal mRNA and protein levels were determined for metallothionein, MT-1 and MT-2. Furthermore, liver and intestinal mRNA expression for the high affinity copper transporter, Ctr1, was determined. None of the parameters showed any significant differences between the SPI-diet and control-diet groups, except for Ctr1 mRNA levels in the liver. It is thus suggested that SPI enhances liver cell copper uptake through induction of Ctr1 expression and this might be the mechanism underlying increased liver damage in LEC rats.  相似文献   

17.
Cloning and expression of a yeast copper metallothionein gene   总被引:12,自引:0,他引:12  
T R Butt  E Sternberg  J Herd  S T Crooke 《Gene》1984,27(1):23-33
  相似文献   

18.
Metallothionein-3 (MT-3), or neuronal growth inhibitory factor, which exhibits growth inhibitory activity, is a brain-specific metallothionein. In this study, the effect of nitric oxide (NO) on metal release (using Cd2+ as a probe) from MT-3 was examined by 113Cd and 2D [1H–15N] heteronuclear single-quantum coherence NMR spectroscopy. The exposure of human MT-3 to NO leads to a nonselective release of the three metals from the β-domain. In contrast to metallothionein-1 and metallothionein-2, two of the bound metals in the α-domain were also partially released, with the domain structure remaining almost unchanged. Further addition of NO resulted in the complete release of metals and concomitant unfolding of the protein. The preference of release of the two metals in the α-domain was attributed to the presence of two slightly different coordination environments for the four cadmium/zinc atoms.  相似文献   

19.
Expression of the gene encoding metallothionein, a low molecular-weight cysteine-rich, stress-response and metal-binding protein was examined in human adipose tissue. The mRNA for MT-2A, a major metallothionein isoform in humans, was detected in subcutaneous fat using a specific antisense oligonucleotide probe. The level of MT-2A mRNA was significantly higher in a group of obese subjects than in a lean group, paralleling a similar increase in ob mRNA. A two-week period on a diet of 800 calories/day did not lead to any significant change in MT-2 mRNA levels. Separation of mature adipocytes from the cells of the stromal vascular fraction indicated that in human adipose tissue the metallothionein (MT-2A) gene is expressed both in adipocytes and in other cells of the tissue.  相似文献   

20.
Oz G  Zangger K  Armitage IM 《Biochemistry》2001,40(38):11433-11441
The brain specific member of the metallothionein (MT) family of proteins, metallothionein-3, inhibits the growth and survival of neurons, in contrast to the ubiquitous mammalian MT isoforms, MT-1 and MT-2, that are found in most tissues and are thought to function in metal ion homeostasis and detoxification. Solution NMR was utilized to determine the structural and dynamic differences of MT-3 from MT-1 and 2. The high-resolution solution structure of the C-terminal alpha-domain of recombinant mouse MT-3 revealed a tertiary fold very similar to MT-1 and 2, except for a loop that accommodates an acidic insertion relative to these isoforms. This loop was distinguished from the rest of the domain by dynamics of the backbone on the nano- to picosecond time-scale shown by (15)N relaxation studies and was identified as a possible interaction site with other proteins. The N-terminal beta-domain contains the region responsible for the growth inhibitory activity, a CPCP tetrapeptide close to the N-terminus. Because of exchange broadening of a large number of the NMR signals from this domain, homology modeling was utilized to calculate models for the beta-domain and suggested that while the backbone fold of the MT-3 beta-domain is identical to MT-1 and 2, the second proline responsible for the activity, Pro9, may show structural heterogeneity. (15)N relaxation analyses implied fast internal motions for the beta-domain. On the basis of these observations, we conclude that the growth inhibitory activity exhibited by MT-3 is a result of a combination of local structural differences and global dynamics in the beta-domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号