首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
We have constructed an expression system for heterologous proteins which uses the molecular machinery responsible for the high level production of bacteriorhodopsin in Halobacterium salinarum. Cloning vectors were assembled that fused sequences of the bacterio-opsin gene (bop) to coding sequences of heterologous genes and generated DNA fragments with cloning sites that permitted transfer of fused genes into H. salinarum expression vectors. Gene fusions include: (i) carboxyl-terminal-tagged bacterio-opsin; (ii) a carboxyl-terminal fusion with the catalytic subunit of the Escherichia coli aspartate transcarbamylase; (iii) the human muscarinic receptor, subtype M1; (iv) the human serotonin receptor, type 5HT2c; and (v) the yeast alpha mating factor receptor, Ste2. Characterization of the expression of these fusions revealed that the bop gene coding region contains previously undescribed molecular determinants which are critical for high level expression. For example, introduction of immunogenic and purification tag sequences into the C-terminal coding region significantly decreased bop gene mRNA and protein accumulation. The bacteriorhodopsin-aspartate transcarbamylase fusion protein was expressed at 7 mg per liter of culture, demonstrating that E. coli codon usage bias did not limit the system's potential for high level expression. The work presented describes initial efforts in the development of a novel heterologous protein expression system, which may have unique advantages for producing multiple milligram quantities of membrane-associated proteins.  相似文献   

2.
We have cloned the Escherichia coli lipoprotein structural gene (lpp) into a shuttle vector and studied its expression in both E. coli and in Bacillus subtilis. Using in vitro gene fusion techniques, the lpp gene was placed under the control of the promoter for the erythromycin-resistance (ery) gene. This fusion gene directed the synthesis of Braun's prolipoprotein which can be subsequently processed into the mature lipoprotein. In addition to the prolipoprotein, two ery-lpp hybrid proteins containing a 45- and a 22-amino acid extension preceding the NH2 terminus of prolipoprotein, respectively, are also synthesized in E. coli. The synthesis of these three proteins appears to involve the utilization of three distinct translation initiation sites. In B. subtilis, only two proteins are synthesized, the hybrid protein with a 45-amino acid extension and the prolipoprotein. In both E. coli and B. subtilis, the precursor forms of the hybrid proteins are lipid-modified, and they are processed to mature lipoprotein in vivo. These results indicate that internalized signal sequence containing the prolipoprotein modification and processing site (Leu-Ala-Glys-Cys) can function normally and permit the modification of hybrid proteins to lipid-modified precursors which can be subsequently processed by the globomycin-sensitive prolipoprotein signal peptidase.  相似文献   

3.
A DNA sequence of 532 base pairs encompassing the entire Morganella morganii lipoprotein gene (lpp) was determined. Sequence comparisons of the M. morganii lpp gene with the lpp genes from Escherichia coli, Serratia marcescens, and Erwinia amylovora reveal that the M. morganii lpp gene is more distantly related to the E. coli lpp gene than any of the other lpp genes examined. Between the E. coli and M. morganii lpp genes, the following homologies were found: 44% in the promoter region (bases, -45 to -1), 88% in the 5'-end untranslated region of the mRNA, 58% in the signal sequence coding region, 75% in the coding region for the first 51 and 43% for the last 7 amino acid residues. Upstream of the promoter region and downstream of the termination codon, there are extensive insertions, deletions, and base substitutions. In spite of the differences in the DNA sequences, the lipoprotein structure was found to be highly conserved except for the carboxyl-terminal sequence of 7 amino residues. The coding region of the M. morganii lpp gene including the signal sequence was inserted into an expression cloning vector so that the production of the M. morganii lipoprotein could be induced in E. coli by a lac inducer, isopropyl-beta-D-thioglactoside. It was found that when induced, the M. morganii prolipoprotein was apparently secreted normally across the E. coli cytoplasmic membrane, modified with glycerol and palmitic acid, processed to the mature lipoprotein, and assembled in the E. coli outer membrane. The bound form covalently linked to the peptidoglycan was also found.  相似文献   

4.
The purified messenger ribonucleic acid (mRNA) for the lipoprotein of the Escherichia coli outer membrane was hybridized with fragments obtained by digestion of E. coli chromosomal deoxyribonucleic acid (DNA) with eight different restriction enzymes. For each restriction enzyme digestion, one specific fragment separated by agarose gel electrophoresis was found to hybridize with the lipoprotein mRNA. From the analysis of restriction fragments generated by double digestions with various combinations of restriction enzymes, cleavage sites for the restriction enzymes near the locus of the lipoprotein structural gene (lpp) were mapped. No restriction fragments of DNA from the E. coli lpp-2 mutant hybridized with the lipoprotein mRNA, confirming that the mutant has a deletion mutation in the vicinity of the lpp gene.  相似文献   

5.
B Nilsson  L Abrahmsn    M Uhln 《The EMBO journal》1985,4(4):1075-1080
Two improved plasmid vectors, containing the gene coding for staphylococcal protein A and adapted for gene fusions, have been constructed. These vectors allow fusion of any gene to the protein A moiety, giving fusion proteins which can be purified, in a one-step procedure by IgG affinity chromatography. One vector, pRIT2, is designed for temperature-inducible expression of intracellular fusion proteins in Escherichia coli and the other pRIT5, is a shuttle vector designed for secretion. The latter gives a periplasmatic fusion protein in E. coli and an extracellular protein in Gram-positive hosts such as Staphylococcus aureus. The usefulness of these vectors is exemplified by fusion of the protein A gene and the E. coli genes encoding the enzymes beta-galactosidase and alkaline phosphatase. High amounts of intact fusion protein are produced which can be immobilized on IgG-Sepharose in high yield (95-100%) without loss of enzymatic activity. Efficient secretion in both E. coli and S. aureus, was obtained for the alkaline phosphatase hybrid, in contrast to beta-galactosidase which was only expressed efficiently using the intracellular system. More than 80% of the protein A alkaline-phosphatase hybrid protein can be eluted from IgG affinity columns without loss of enzymatic activity.  相似文献   

6.
Expression of the bacterio-opsin gene in Escherichia coli has been described in the accompanying papers. We now describe rapid and efficient methods for the purification of the E. coli-expressed bacterio-opsin. Bacterio-opsin can be extracted from E. coli membranes in a denatured form by using an organic solvent containing chloroform, methanol, water, and triethylamine. The bacterio-opsin, enriched to 30-50% in the extract, can be further purified to 90% by ion-exchange chromatography on DEAE-Trisacryl or hydroxylapatite chromatography in organic solvents or by preparative sodium dodecyl sulfate gel electrophoresis. In appropriate aqueous phospholipid/detergent mixtures, up to 80% of purified protein refolds and binds retinal covalently to regenerate the bacteriorhodopsin chromophore. When reconstituted into phospholipid vesicles, bacteriorhodopsin from E. coli shows the expected proton pumping activity in response to illumination.  相似文献   

7.
8.
9.
A M Myers  A Tzagoloff  D M Kinney  C J Lusty 《Gene》1986,45(3):299-310
We report yeast/Escherichia coli shuttle vectors suitable for fusing yeast promoter and coding sequences to the lacZ gene of E. coli. The vectors contain a region of multiple unique restriction sites including EcoRI, KpnI, SmaI, BamHI, XbaI, SalI, PstI, SphI and HindIII. The region with the unique cloning sites has been introduced in both orientations with respect to lacZ and occurs proximal to the eighth codon of the gene. All the restriction sites have been phased to three different reading frames. Two series of vectors have been constructed. The first series (YEp) has two origins of replication (ori), i.e., of the yeast 2 mu circle and of the ColE1 plasmid of E. coli, and can therefore replicate autonomously in both organisms. These shuttle vectors also have the ApR gene of E. coli and either the yeast LEU2 or URA3 genes to allow for selection of both E. coli and yeast transformants. The second series of vectors (YIp) are identical in all respects to the YEp vectors except that they lack the 2 mu ori. The YIp vectors can be used to integrate lacZ fusions into yeast chromosomal DNA. None of the vectors express beta-galactosidase (beta Gal) in yeast or E. coli in the absence of inserted yeast promoter sequences. The 5'-nontranslated sequences and parts of the coding sequences of various yeast genes have been cloned into representative lacZ fusion vectors. In-frame gene fusions can be detected by beta Gal activity when either yeast or E. coli clones are plated on media containing XGal indicator. Quantitative determinations of promoter activity were made by colorimetric assay of beta Gal activity in whole cells. Fusion of the yeast CYC1 gene to lacZ in one of the vectors allowed detection of regulated expression of this gene when cells were grown under conditions of catabolite repression or derepression.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号