首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
The vascular pathogen Xanthomonas oryzae pv. oryzae ( Xoo ) and nonvascular pathogen Xanthomonas oryzae pv. oryzicola ( Xoc ) cause bacterial blight (BB) and bacterial leaf streak (BLS) diseases of rice, respectively. We have previously identified the avirulence gene avrXa27 from Xoo PXO99A, which specifically induces the expression of the rice resistance gene Xa27 , ultimately leading to resistance against BB disease in rice. In this study, we have generated a transgenic rice line (L24) that expresses avrXa27 constitutively under the control of the PR1 promoter, and have examined its role in the host–pathogen interaction. L24 is not more susceptible to BB, indicating that avrXa27 does not contribute to virulence. AvrXa27 retains avirulence activity in L24 and, after crossing with a line containing Xa27 , progeny display phenotypic changes including inhibition of tillering, delay in flowering, stiff leaves, early leaf senescence and activation of pathogenesis-related ( PR ) genes. On challenge with a variety of compatible strains of Xoo and Xoc strain L8, lines with both avrXa27 and Xa27 also show enhanced resistance to bacterial infection. The induction of Xa27 and subsequent inhibition of Xoc growth in Xa27 plants are observed on inoculation with Xoc L8 harbouring avrXa27 . Our results indicate that the heterologous expression of avrXa27 in rice containing Xa27 triggers R gene-specific resistance and, at the same time, confers enhanced resistance to compatible strains of Xoo and Xoc . The expression of AvrXa27 and related proteins in plants has the potential to generate broad resistance in plants.  相似文献   

2.
avrXa7 is a member of the avrBs3/pthA gene family. The gene is a critical type III effector in several strains of Xanthomonas oryzae pv. oryzae (virulence activity), and in the presence of the Xa7 host gene for resistance, controls the elicitation of resistance in rice (avirulence activity). The ability of strains containing avrXa7 to adapt to the presence of Xa7 in the host population is dependent, in part, on the genetic plasticity of avrXa7. The potential for the conversion of avrXa7 to a virulence effector without Xa7-dependent elicitor activity was examined. Internal reorganization of avrXa7 by artificially deleting a portion of the central repetitive region resulted in gene pthXo4, which retained virulence activity and lost Xa7-dependent avirulence activity. Similarly, spontaneous rearrangements between repetitive regions of avrXa7 during bacterial culture gave rise to gene pthXo5, which also had virulence activity without Xa7-dependent avirulence activity. pthXo5 appeared to be the result of recombination between avrXa7 and a related gene in the genome. Loss of avirulence activity and retention of virulence activity also resulted from replacement of a portion of the C-terminal coding region of avrXa7 with the corresponding sequence from avrBs3. The results demonstrated the potential for a critical virulence effector to lose avirulence activity while retaining effector function. The results also demonstrated that features of both repetitive and nonrepetitive C-terminal regions of AvrXa7 are involved in avirulence specificity.  相似文献   

3.
Xanthomonas oryzae pv. oryzae and the closely related X. oryzae pv. oryzicola cause bacterial blight and bacterial leaf streak of rice, respectively. Although many rice resistance (R) genes and some corresponding avirulence (avr) genes have been characterized for bacterial blight, no endogenous avr/R gene interactions have been identified for leaf streak. Genes avrXa7 and avrXa10 from X. oryzae pv. oryzae failed to elicit the plant defense-associated hypersensitive reaction (HR) and failed to prevent development of leaf streak in rice cultivars with the corresponding R genes after introduction into X. oryzae pv. oryzicola despite the ability of this pathovar to deliver an AvrXa10:Cya fusion protein into rice cells. Furthermore, coinoculation of X. oryzae pv. oryzicola inhibited the HR of rice cultivar IRBB10 to X. oryzae pv. oryzae carrying avrXa10. Inhibition was quantitative and dependent on the type III secretion system of X. oryzae pv. oryzicola. The results suggest that one or more X. oryzae pv. oryzicola type III effectors interfere with avr/R gene-mediated recognition or signaling and subsequent defense response in the host. Inhibition of R gene-mediated defense by X. oryzae pv. oryzicola may explain, in part, the apparent lack of major gene resistance to leaf streak.  相似文献   

4.
5.
AvrXa7 is a member of the avBs3/pthA gene family and the only known type III secretion system effector gene from Xanthomonas oryzae pv. oryzae with a major contribution to bacterial growth and lesion formation in bacterial blight disease of rice. We examined the general requirement for effectors of the AvrBs3/PthA family in bacterial blight of rice by identifying effectors from diverse strains of the pathogen. Inactivation of single effector genes in representative strains from Japan, Korea, and the Philippines resulted in severely limited growth in plants. Five strains harbored one gene of the avrBs3/pthA family, while one strain had two genes with the equivalent virulence activity of avrXa7. Sequence analysis revealed three genes with unique repeat arrangements in comparison to avrXa7. Comparison of the repetitive regions revealed a potential motif for the group that was also present in the repetitive region of avrBs3. However, the repetitive region of avrBs3 could not support virulence activity but, in combination with the C-terminal coding region of avrXa7, triggered a Xa7-dependent avirulence reaction. The results revealed diverse members of the avrBs3/pthA gene family with virulence activity in X. oryzae pv. oryzae and supported the hypothesis that bacterial blight disease of rice is highly dependent on a single class of type III effectors. The results also indicated that avrXa7 avirulence specificity is separable from virulence activity.  相似文献   

6.
Xanthomonas oryzae pv. oryzae (Xoo) Philippine race 6 (PR6) is unable to cause bacterial blight disease on rice lines containing the rice resistance gene Xa21 but is virulent on non-Xa21 rice lines, indicating that PR6 carries avirulence (avrXa21) determinants required for recognition by XA21. Here we show that two Xoo genes, raxP and raxQ, are required for AvrXa21 activity. raxP and raxQ, which reside in a genomic cluster of sulphur assimilation genes, encode an ATP sulphurylase and APS (adenosine-5'-phosphosulphate) kinase. These enzymes function together to produce activated forms of sulphate, APS and PAPS (3'-phosphoadenosine-5'-phosphosulphate). Xoo PR6 strains carrying disruptions in either gene, PR6DeltaraxP or PR6DeltaraxQ, are unable to produce APS and PAPS and are virulent on Xa21-containing rice lines. RaxP and RaxQ are similar to the bacterial symbiont Sinorhizobium meliloti host specificity proteins, NodP and NodQ and the Escherichia coli cysteine synthesis proteins CysD, CysN and CysC. The APS and PAPS produced by RaxP and RaxQ are used for both cysteine synthesis and sulphation of other molecules. Mutation in Xoo xcysI, a homologue of Escherichia coli cysI that is required for cysteine synthesis, blocked APS- or PAPS-dependent cysteine synthesis but did not affect AvrXa21 activity, suggesting that AvrXa21 activity is related to sulphation rather than cysteine synthesis. Taken together, these results demonstrate that APS and PAPS production plays a critical role in determining avirulence of a phytopathogen and reveal a commonality between symbiotic and phytopathogenic bacteria.  相似文献   

7.
利用in vivo转座技术构建了白叶枯病抗性基因Xa23鉴别菌株的突变体库,特异性引物PCR扩增和转座子插入位点旁侧序列分析结果表明转座子插入到白叶枯病菌的基因组中。经人工接种鉴定,筛选到4个毒力发生变化的突变体。为进一步克隆Xa23无毒基因提供了条件。  相似文献   

8.
Races of Xanthomonas oryzae pv. oryzae, the causal agent of bacterial blight of rice, interact with cultivars of rice in a gene-for-gene specific manner. Multiple DNA fragments of various sizes from all strains of X. o. pv. oryzae hybridized with avrBs3, an avirulence gene from Xanthomonas campestris pv. vesicatoria, in Southern blots; this suggests the presence of several homologs and possibly a gene family. A genomic library of a race 2 strain of X. o. pv. oryzae, which is avirulent on rice cultivars carrying resistance genes xa-5, Xa-7, and Xa-10, was constructed. Six library clones, which hybridized to avrBs3, altered the interaction phenotype with rice cultivars carrying either xa-5, Xa-7, or Xa-10 when present in a virulent race 6 strain. Two avirulence genes, avrXa7 and avrXa10, which correspond to resistance genes Xa-7 and Xa-10, respectively, were identified and partially characterized from the hybridizing clones. On the basis of transposon insertion mutagenesis, sequence homology, restriction mapping, and the presence of a repeated sequence, both genes are homologs of avirulence genes from dicot xanthomonad pathogens. Two BamHI fragments that are homologous to avrBs3 and correspond to avrXa7 and avrXa10 contain a different number of copies of a 102-bp direct repeat. The DNA sequence of avrXa10 is nearly identical to avrBs3. We suggest that avrXa7 and avrXa10 are members of an avirulence gene family from xanthomonads that control the elicitation of resistance in mono- and dicotyledonous plants.  相似文献   

9.
Xanthomonas oryzae pv. oryzae is the causal agent of bacterial leaf blight, one of the most serious diseases in rice. X. oryzae pv. oryzae Philippine race 6 (PR6) strains are unable to establish infection in rice lines expressing the resistance gene Xa21. Although the pathogen-associated molecule that triggers the Xa21-mediated defense response (AvrXa21) is unknown, six rax (required for AvrXa21 activity) genes encoding proteins involved in sulfur metabolism and Type I secretion were recently identified. Here, we report on the identification of two additional rax genes, raxR and raxH, which encode a response regulator and a histidine protein kinase of two-component regulatory systems, respectively. Null mutants of PR6 strain PXO99 that are impaired in either raxR, raxH, or both cause lesions significantly longer and grow to significantly higher levels than does the wild-type strain in Xa21-rice leaves. Both raxR and raxH mutants are complemented to wild-type levels of AvrXa21 activity by introduction of expression vectors carrying raxR and raxH, respectively. These null mutants do not affect AvrXa7 and AvrXa10 activities, as observed in inoculation experiments with Xa7- and Xa10-rice lines. Western blot and raxR/gfp promoter-reporter analyses confirmed RaxR expression in X. oryzae pv. oryzae. The results of promoter-reporter studies also suggest that the previously identified raxSTAB operon is a target for RaxH/RaxR regulation. Characterization of the RaxH/RaxR system provides new opportunities for understanding the specificity of the X. oryzae pv. oryzae-Xa21 interaction and may contribute to the identification of AvrXa21.  相似文献   

10.
水稻抗白叶枯病基因Xa21的研究进展   总被引:6,自引:0,他引:6  
白辉  李莉云  刘国振 《遗传》2006,28(6):745-753
Xa21是最早克隆的水稻抗病基因,作为类受体激酶类广谱抗病基因它受到广泛的关注。转基因Xa21材料,很可能成为世界上第一个被批准进行大田释放的水稻转基因材料。本文在简要回顾Xa21的发现、定位和克隆过程之后,总结了目前Xa21基因的抗病作用机理和育种应用研究现状,包括XA21蛋白质激酶的生化特性、AvrXa21的鉴别、Xa21介导的抗病途径、抗病机理等,并对今后的研究进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号