首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
AIMS: To evaluate the antimicrobial activity in peptone yeast extract glucose (PYG) broth and ultra-high temperature (UHT) milk of bovine lactoferrin hydrolysate (LFH) with pepsin against the foodborne pathogens Salmonella Stanley, Escherichia coli, Listeria monocytogenes and Staphylococcus aureus. METHODS AND RESULTS: The LFH was suspended in PYG and the minimum inhibitory concentration for each pathogen determined. The LFH was also suspended in UHT milk adjusted to pH 4 or 7, samples incubated at 4 or 35 degrees C and the change in bacterial cell population determined. Experiments in UHT milk were conducted using L. monocytogenes and E. coli O157:H7. At pH 4 LFH reduced the population of E. coli O157:H7 and L. monocytogenes by approx. 2 log; however, only E. coli O157:H7 was inhibited in samples adjusted to pH 7. The addition of EDTA (10 mg ml(-1)) to UHT milk supplemented with LFH did not markedly influence the growth of E. coli O157:H7 or L. monocytogenes. CONCLUSIONS: The results suggest that, under low pH and refrigeration conditions, LFH can limit the growth or reduce the population of pathogenic bacteria in a dairy product. SIGNIFICANCE AND IMPACT OF THE STUDY: Natural preservatives that are active against Gram-negative and Gram-positive bacteria are desirable to the food industry. This study demonstrates that LFH is effective in a complex food system. Moreover, the LFH used was not purified, making its use by industry more attractive.  相似文献   

2.
The antibacterial activity of p -aminobenzoic acid against Listeria monocytogenes, Salmonella enteritidis and Escherichia coli was compared with the activity of commonly used acidulants: formic, propionic, acetic, lactic and citric acids. Viable count evaluations and MIC determinations indicated that p -aminobenzoic acid caused greater inhibitory effects than the other organic acids. The activity of p -aminobenzoic acid on the growth of the test organisms at selected pH values indicated that p -aminobenzoic acid was more active at low pH than at high pH. Uptake studies showed that the uptake of p -aminobenzoic acid by E. coli was markedly decreased as the pH values increased. Electron micrographs of E. coli cells grown in the presence of p -aminobenzoic acid indicate that p -aminobenzoic acid caused marked damage to the cell envelope. It is suggested that p -aminobenzoic acid has at least two mechanisms of action: one mechanism in common with other organic acids and the other mechanism by interfering with the synthesis of the peptidoglycan layer by an action on the dihydrofolate reductase enzyme.  相似文献   

3.
C Johansen  T Gill    L Gram 《Applied microbiology》1996,62(3):1058-1064
Protamine, which is an antibacterial basic peptide, was shown to alter the cell morphology of Listeria monocytogenes and Shewanella putrefaciens. Atomic force microscopy revealed that protamine smoothed the surface of cells, formed holes in the cell envelope, and caused fusion of S. putrefaciens cells. Immunoelectron microscopy of protamine-treated cells of both L. monocytogenes and S. putrefaciens showed great damage to the cell wall and condensation of the cytoplasm. Respiration of the cells was decreased due to treatment with sublethal concentrations of protamine, probably due to leakage or loss of cell envelope potential. It was concluded that protamine disrupted the outer surface structure and condensed the cytoplasm of sensitive cells and, in sublethal concentrations, altered membrane structures, thereby eliminating respiration.  相似文献   

4.
AIMS: The goal of this study was to determine whether nisin and lactoferrin would act synergistically to inhibit the growth of Listeria monocytogenes and Escherichia coli O157:H7. METHODS AND RESULTS: Lactoferrin and nisin separately or in combination were suspended in peptone yeast glucose broth and following inoculation with L. monocytogenes or E. coli O157:H7 growth inhibition of each pathogen was determined. At 1000 microg ml(-1) lactoferrin L. monocytogenes was effectively inhibited. However, E. coli O157:H7 initially was inhibited and then grew to cell density similar to the control. A combination of 500 microg ml(-1) of lactoferrin and 250 IU ml(-1) of nisin effectively inhibited the growth of E. coli O157:H7, whereas, 250 microg ml(-1) of lactoferrin and 10 IU ml(-1) of nisin were inhibitory to L. monocytogenes. CONCLUSIONS: The results suggest that lactoferrin and nisin act synergistically to inhibit the growth of L. monocytogenes and E. coli O157:H7. SIGNIFICANCE AND IMPACT OF THE STUDY: Natural preservatives that are active against gram-positive and gram-negative pathogens are desirable to the food industry and consumers. This study demonstrates that lactoferrin and nisin work synergistically reducing the levels required independently inhibiting growth of two major foodborne pathogens. Previous reported results indicated a low level of antimicrobial activity; however, this work was not performed in low divalent cation concentration media. It has been suggested that nondivalent cation-limiting medium such as trypticase soy broth (TSB), can reduce or completely eliminate the inhibitory activity. Further knowledge of these interactions can increase the understanding of the antimicrobial activity of lactoferrin. This should make the use of these compounds by industry more attractive.  相似文献   

5.
High pH has been shown to rapidly destroy gram-negative food-borne pathogens; however, the mechanism of destruction has not yet been elucidated. Escherichia coli O157:H7, Salmonella enteritidis ATCC 13706, and Listeria monocytogenes F5069 were suspended in NaHCO3-NaOH buffer solutions at pH 9, 10, 11, or 12 to give a final cell concentration of approximately 5.2 x 10(8) CFU/ml and then held at 37 or 45 degrees C. At 0, 5, 10, and 15 min the suspensions were sterilely filtered and each filtrate was analyzed for material with A260. Viability of the cell suspensions was evaluated by enumeration on nonselective and selective agars. Cell morphology was evaluated by scanning electron microscopy and transmission electron microscopy. A260 increased dramatically with pH and temperature for both E. coli and S. enteritidis; however, with L. monocytogenes material with A260 was not detected at any of the pHs tested. At pH 12, numbers of E. coli and S. enteritidis decreased at least 8 logs within 15 s, whereas L. monocytogenes decreased by only 1 log in 10 min. There was a very strong correlation between the initial rate of release of material with A260 and death rate of the gram-negative pathogens (r = 0.997). At pH 12, gram-negative test cells appeared collapsed and showed evidence of lysis while gram-positive L. monocytogenes did not, when observed by scanning and transmission electron microscopy. It was concluded that destruction of gram-negative food-borne pathogens by high pH involves disruption of the cytoplasmic membrane.  相似文献   

6.
The inactivation kinetics of Listeria monocytogenes in a phosphate buffer (PB) was determined at different hypochlorite concentrations, pH values and temperatures. D-values, using a linear regression, of L. monocytogenes in PB (pH 6.5) were 23.54, 17.40, 14.24 and 12.00s at 5, 10, 50 and 100 mg l(-1) hypochlorite, respectively, at 30 degrees C. The k-values ranged from 0.098 to 0.192s(-1) and 0.007 to 0.018s(-1) for hypochlorite concentrations (from 5 to 100 mg l(-1)) in PB (pH 6.5) and PB containing 0.1% peptone (pH 6.5), respectively, at 30 degrees C. D-values of L. monocytogenes exposed to hypochlorite were decreased with decreasing pH of PB (pH from 8.5 to 4.5). Hypochlorite showed higher antimicrobial activity at higher temperature. Not only the effect of hypochlorite concentration on the inactivation of L. monocytogenes but also other parameters like temperature, pH and suspending solutions effect the inactivation rates.  相似文献   

7.
AIMS: The efficacy of antimicrobial ice was evaluated for the reduction of foodborne pathogens on the surface of fish. METHODS AND RESULTS: Antimicrobial ice containing chlorine dioxide (ClO2) was utilized to control foodborne pathogens in laboratory media and on fish skin. Escherichia coli O157:H7, Salmonella serotype Typhimurium and Listeria monocytogenes strains were treated with antimicrobial ice for 30 min on plates of selective agar and for 120 min on fish skin at room temperature, and then incubated for enumeration. After treatment with 100 ppm ClO2 for 30 min, 5.4, 4.4 and 3.2 log10 reduction was obtained with E. coli O157:H7, Salm. Typhimurium and L. monocytogenes on laboratory media, respectively. When antimicrobial ice (100 ppm ClO2) was applied to fish skin for 120 min, total reduction of E. coli O157:H7, Salm. Typhimurium and L. monocytogenes was 4.8, 2.6 and 3.3 log10, respectively. CONCLUSION: The initial load of foodborne pathogens was reduced by antimicrobial ice and the lowered microbial level was maintained during treatment. SIGNIFICANCE AND IMPACT OF THE STUDY: The application of antimicrobial ice is a simple and effective method for the safe preservation of fish.  相似文献   

8.
AIMS: The aim of the study was to evaluate the effect of habituation at different pH conditions on the acid resistance of Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella enterica serotype Typhimurium, and to identify potential differences between the adaptive responses of the three pathogens. METHODS: Stationary phase cells of L. monocytogenes, E. coli O157:H7 and S. Typhimurium, grown in glucose-free media, were exposed to pH 3.5 broth directly or after habituation for 90 min at various pH conditions from 4.0 to 6.0. Survivors at pH 3.5 were determined by plating on tryptic soy agar and incubating at 30 degrees C for 48 h. The kinetics (death rate) of the pathogens at pH 3.5 was calculated by fitting the data to an exponential model. RESULTS: Habituation to acidic environments provided protection of the pathogens against lethal acid conditions. This acid protection, however, was found to be pH dependent. For example, for E. coli O157:H7 an increased acid resistance was observed after habituation at a pH range from 4.0 to 5.5, while the maximum acid tolerance was induced at pH 5.0. Furthermore, the effect of low pH habituation was different among pathogens. For L. monocytogenes, E. coli O157:H7 and S. Typhimurium, the pH range within which habituation resulted to increased acid resistance was 5.0-6.0, 4.0-5.5 and 4.0-5.0, respectively, while the maximum acid tolerance was induced after habituation at pH 5.5, 5.0 and 4.5, respectively. SIGNIFICANCE: Acid stress conditions are common within current food processing technologies. The information on adaptive responses of L. monocytogenes, E. coli O157:H7 and S. Typhimurium after habituation to different pH environments provided in the present study, could lead to a more realistic evaluation of food safety concerns and to a better selection of processes in order to avoid adaptation phenomena and to minimize the potential for food safety risks.  相似文献   

9.
AIMS: A study was performed to determine D values of acid-adapted and unadapted cells of Salmonella, Escherichia coli O157:H7, and Listeria monocytogenes in cantaloupe juice and watermelon juice. METHODS AND RESULTS: Salmonella enterica serotype Poona, S. enterica serotype Saphra, two strains of E. coli O157:H7, and two strains of L. monocytogenes were grown in tryptic soy broth (TSB) and TSB supplemented with 1% glucose for 24 h at 37 degrees C. Decimal reduction times (D values) of cells suspended in unpasteurized cantaloupe juice and watermelon juice were determined. Acid-adapted cells of Salmonella and E. coli O157:H7, but not L. monocytogenes, had increased thermal tolerance compared with cells that were not acid-adapted. There was no correlation between soluble solids content of the two types of juice and thermal resistance. CONCLUSIONS: Growth of Salmonella and E. coli O157:H7 in cantaloupe juice, watermelon juice, or other acidic milieu, either in preharvest or postharvest environments, may result in cross protection to heat. The pasteurization conditions necessary to achieve elimination of pathogens from these juices would consequently have to be more severe if cells are habituated to acidic environments. SIGNIFICANCE AND IMPACT OF THE STUDY: Insights from this study provide guidance to developing pasteurization processes to eliminate Salmonella, E. coli O157:H7, and L. monocytogenes in cantaloupe juice and watermelon juice.  相似文献   

10.
At concentrations of 1-1.6 mug/ml, 5,8-dioxo-6-amino-7-chloroquinoline causes auxotrophy for leucine in Escherichia coli MRE 600. With increasing concentrations of this quinone additional amino acids are required for growth. The amount of leucine in the pool of free amino acids is not decreased after treatment of E. coli with the quinone. Transfer RNALeu, however, is charged with leucine less than 10% in quinone-treated cells of E. coli, whereas in control cells the degree of aminoacylation is about 85%. From these data we conclude that the quinone causes auxotrophy for leucine by interacting with the charging process of tRNALeu. Quinone was found to inhibit leucyl-tRNA synthetase activity in purified extracts of E. coli with E. coli tRNA as substrate.  相似文献   

11.
Increased antimicrobial activity was observed when Bacillus amyloliquefaciens LBM 5006 strain was cultivated in the presence of thermally inactivated cells of Escherichia coli, but not with Staphylococcus aureus, Listeria monocytogenes, or Bacillus cereus. E. coli also enhanced the antimicrobial activity when it was added to the medium in the form of living cells or as cell debris after cellular fractionation. No inducing activity was observed with addition of cell-free supernatant of E. coli cultures, suggesting that inducing factor is associated to the cells. Polyacrylamide gel electrophoresis revealed that additional peptide bands are secreted when B. amyloliquefaciens was cultivated in the presence of cell debris of E. coli. These results suggest that the presence of intact or inactivated E. coli enhanced the synthesis of antimicrobial peptides by B. amyloliquefaciens LBM 5006.  相似文献   

12.
Ammonia-induced cell envelope injury was examined in pure cultures of Escherichia coli and Enterobacter aerogenes. Cell injury, as determined by the ratio of colony-forming units on m-T7 agar to colony-forming units on m-Endo agar, increased with exposure to increasing concentrations of ammonia. Cell envelopes appeared to be the site of injury as indicated by increasing susceptibility to lysozyme with increasing ammonia concentration. Cells exposed to ammonia also exhibited more cellular leakage than control cells. Leakage from cells exposed to ammonia included proteins, and all leaked substances increased in concentration as ammonia concentrations increased. The concentration of 2-keto-3-deoxyoctonate (KDO) in the outer membrane of E. coli increased with ammonia exposure, while KDO concentration in the outer membrane of E. aerogenes decreased. The results suggest that exposure of E. coli cells to high concentrations of ammonia disrupts the outer membrane and lipopolysaccharide-associated proteins, while E. aerogenes cells are affected through the disruption of bonds between KDO and the outer membrane.  相似文献   

13.
The antimicrobial activity of C2-C18 fatty acids was determined in vitro in cultures of two strains of Escherichia coli grown on glucose. Antimicrobial activity was expressed as IC50 (a concentration at which only 50% of the initial glucose in the cultures was utilized). Utilization of glucose was inhibited by caprylic acid (IC50 0.30-0.85 g/L) and capric acid (IC50 1.25-2.03 g/L). Neither short-chain fatty acids (C2-C6) nor fatty acids with longer chain (C12-C18) influenced substrate utilization. Caproic acid, however, decreased cell yield in cultures of E. coli in a dose-dependent manner. No inhibition of glucose utilization was produced with unsaturated fatty acids, oleic and linoleic. Calcium ions added in excess reversed the antimicrobial effect of capric acid, but not that of caprylic acid. Antimicrobial activity of caprylic and capric acid decreased when the bacteria were grown in the presence of straw particles, or repeatedly subcultured in a medium containing these compounds at low concentrations. Counts of viable bacteria determined by plating decreased after incubation with caprylic and capric acid (30 min; 1 g/L) at pH 5.2 from > 10(9) to approximately 10(2)/mL. A reduction of a mere 0.94-1.96 log10 CFU was observed at pH 6.5-6.6. It can be concluded that caprylic acid, and to a lesser extent also capric acid, has a significant antimicrobial activity toward E. coli. Effects of other fatty acids were not significant or absent.  相似文献   

14.
We investigated the degree of physiological damage to bacterial cells caused by optical trapping using a 1,064-nm laser. The physiological condition of the cells was determined by their ability to maintain a pH gradient across the cell wall; healthy cells are able to maintain a pH gradient over the cell wall, whereas compromised cells are less efficient, thus giving rise to a diminished pH gradient. The pH gradient was measured by fluorescence ratio imaging microscopy by incorporating a pH-sensitive fluorescent probe, green fluorescent protein or 5(6)-carboxyfluorescein diacetate succinimidyl ester, inside the bacterial cells. We used the gram-negative species Escherichia coli and three gram-positive species, Listeria monocytogenes, Listeria innocua, and Bacillus subtilis. All cells exhibited some degree of physiological damage, but optically trapped E. coli and L. innocua cells and a subpopulation of L. monocytogenes cells, all grown with shaking, showed only a small decrease in pH gradient across the cell wall when trapped by 6 mW of laser power for 60 min. However, another subpopulation of Listeria monocytogenes cells exhibited signs of physiological damage even while trapped at 6 mW, as did B. subtilis cells. Increasing the laser power to 18 mW caused the pH gradient of both Listeria and E. coli cells to decrease within minutes. Moreover, both species of Listeria exhibited more-pronounced physiological damage when grown without shaking than was seen in cells grown with shaking, and the degree of damage is therefore also dependent on the growth conditions.  相似文献   

15.
Inhibition of acetohydroxy acid synthase by leucine   总被引:5,自引:0,他引:5  
The enzymatic reaction of acetohydroxy acid synthase in crude extracts of Escherichia coli K-12 is inhibited by leucine. Inhibition is most pronounced at low pH values and is low at pH values higher than 8.0. Both isoenzymes of acetohydroxy acid synthase present in E. coli K-12 (isoenzyme I and isoenzyme III) are inhibited by leucine. Isoenzyme I, which is responsible for the majority of acetohydroxy acid synthase activity in E. coli K-12 at physiological pH, is inhibited almost completely by 30 mM leucine at pH 6.25-7.0 and is not affected at all at pH values higher than 8.4. Inhibition of isoenzyme I by leucine is a mixed noncompetitive process. Leucine inhibition of isoenzyme III is pH-independent and reaches only 40% at 30 mM leucine. The inhibition of acetohydroxy acid synthase by leucine at physiological pH, observed in vitro in this study, correlates with the idea that acetohydroxy acid synthase is a target for the toxicity of the abnormally high concentrations of leucine in E. coli K-12.  相似文献   

16.
C Johansen  A Verheul  L Gram  T Gill    T Abee 《Applied microbiology》1997,63(3):1155-1159
The inhibitory effect of the cationic peptide protamine on Listeria monocytogenes, Escherichia coli, and Shewanella putrefaciens has been studied in detail. The addition of protamine (10 to 1,000 micrograms/ml) resulted in inhibition of oxygen consumption after less than 1 min and loss of intracellular carboxyfluorescein and ATP after 2 to 5 min. Maximum antibacterial activity was reached at alkaline pH and in the absence of divalent cations. The efficient permeabilization of cell envelopes of both gram-positive and gram-negative bacteria suggests that protamine causes a general disruption of the cell envelope, leading to a rapid and nonspecific efflux of low- and high-molecular-weight compounds.  相似文献   

17.
AIMS: To determine the effects of outer membrane (OM) permeabilizing agents on the antimicrobial activity of enterocin AS-48 against Escherichia coli O157:H7 CECT 4783 strain in buffer and apple juice. METHODS AND RESULTS: We determined the influence of pH, EDTA, sodium tripolyphosphate (STPP) and heat on E. coli O157:H7 CECT 4783 sensitivity to enterocin AS-48 in buffer and in apple juice. Enterocin AS-48 was not active against intact cells of E. coli O157:H7 CECT 4783 at neutral pH. However, cells sublethally injured by OM permeabilizing agents (EDTA, STPP, pH 5, pH 8.6 and heat) became sensitive to AS-48, decreasing the amount of bacteriocin required for inhibition of E. coli O157:H7 CECT 4783. CONCLUSIONS: The results presented indicate that enterocin AS-48 could potentially be applied with a considerably wider range of protective agents, such as OM permeabilizing agents, with increased efficacy in inhibiting E. coli O157:H7. SIGNIFICANCE AND IMPACT OF THE STUDY: Results from this study support the potential use of enterocin AS-48 to control E. coli O157:H7 in combination with other hurdles.  相似文献   

18.
The proton electrochemical gradient in Escherichia coli cells.   总被引:55,自引:0,他引:55  
The internal pH of Escherichia coli cells was estimated from the distribution of either 5,5-[14C]dimethyl-2,4-oxazolidinedione or [14C]methylamine. EDTA/valinomycin treatment of cells was employed to estimate delta psi from 86Rb+ distribution concomitant with the delta pH for calculation of delta muH. Respiring intact cells maintained an internal pH more alkaline by 0.63-0.75 unit than that of the milieu at extracellular pH 7, both in growth medium and KCl solutions. The delta pH decreased when respiration was inhibited by anaerobiosis or in the presence of KCN. The delta muH, established by EDTA/valinomycin-treated cells, was constant (122-129 mV) over extracellular potassium concentration of 0.01 mM-1 mM. At the lower potassium concentration delta psi (110-120 mV) was the predominant component, and at the higher concentration delta pH increased to 0.7 units (42 mV). At 150 mM potassium delta muH was reduced to 70 mV mostly due to a delta pH component of 0.89 (53 mV). The interchangeability of the delta muH components is consistent with an electronic proton pump and with potassium serving as a counter ion in the presence of valinomycin. Indeed both parameters of delta muH decreased in the presence of carbonylcyanide p-trifluoromethoxyphenylhydrazone. The highest delta pH of 2 units was observed in the intact cells at pH 6; increasing the extracellular pH decreased the delta pH to 0 at pH 7.65 and to -0.51 at pH 9. A similar pattern of dependence of delta pH on extracellular pH was observed in EDTA/valinomycin-treated cells but the delta psi was almost constant over the whole range of extracellular pH values (6-8) implying electroneutral proton movement. Potassium is specifically required for respiration of EDTA-treated E. coli K12 cells since other monovalent or divalent cations could not replace potassium and valinomycin was not required.  相似文献   

19.
Lactobacillus plantarum has been exposed to mild heat at temperatures between 48 and 56 °C in combination with low concentrations of the lantobiotic nisin in different sequential set-ups. Exposure to heat and nisin caused synergistic reductions of Lact. plantarum viability. Efficient antimicrobial action was dependent on the growth state of the culture as well as on levels and sequences of treatment applications. Listeria monocytogenes and Escherichia coli were treated at 55 °C in the presence of magainin II amide. Synergistic reductions in viable counts could be observed for L. monocytogenes and, after prolonged exposure, also for E. coli . The bacterial membrane could be identified by fluorometry and flow cytometry as an important target of applied treatment combinations.  相似文献   

20.
The effect of the acid and the osmotic stress on the heat resistance of Escherichia coli (EC1 and EC2) was studied at 63 degrees C in tryptic soy broth adjusted to various pHs (2.5, 4.5 and 6) and various NaCl concentrations (2, 4 and 8%). In the second study, the effect of pretreatment on thermotolerance of E. coli cells was determined. The heat resistance of both strains was low at pH 2.5, but strain EC1 was more resistant than strain EC2. On the contrary, the heat resistance increased with increasing the pH values. Addition of NaCl (2%) to TSB medium, was involved in the protection of cells against heat inactivation, this protective effect was, however, not observed by increasing the NaCl concentration up to 8%. The combined effect of the pH and NaCl on the thermal resistance of both strains was significantly lower at pH 2.5 and NaCl 8%, the number of viable cells decreased from approximately 10(8) CFU/ml to an undetectable number within 20 min for strain EC1 and 15 min for strain EC2, respectively. This study indicates that heat resistance of strain EC1 was enhanced after acid or thermal adaptation. Heat resistance of strain EC2 was, however, enhanced only after thermal adaptation. For both strains no relationship was found between salt adaptation and the ability to resist thermal stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号