首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
This study was performed in order to evaluate a new LED‐based 2D‐fluorescence spectrometer for in‐line bioprocess monitoring of Chinese hamster ovary (CHO) cell culture processes. The new spectrometer used selected excitation wavelengths of 280, 365, and 455 nm to collect spectral data from six 10‐L fed‐batch processes. The technique provides data on various fluorescent compounds from the cultivation medium as well as from cell metabolism. In addition, scattered light offers information about the cultivation status. Multivariate data analysis tools were applied to analyze the large data sets of the collected fluorescence spectra. First, principal component analysis was used to accomplish an overview of all spectral data from all six CHO cultivations. Partial least square regression models were developed to correlate 2D‐fluorescence spectral data with selected critical process variables as offline reference values. A separate independent fed‐batch process was used for model validation and prediction. An almost continuous in‐line bioprocess monitoring was realized because 2D‐fluorescence spectra were collected every 10 min during the whole cultivation. The new 2D‐fluorescence device demonstrates the significant potential for accurate prediction of the total cell count, viable cell count, and the cell viability. The results strongly indicated that the technique is particularly capable to distinguish between different cell statuses inside the bioreactor. In addition, spectral data provided information about the lactate metabolism shift and cellular respiration during the cultivation process. Overall, the 2D‐fluorescence device is a highly sensitive tool for process analytical technology applications in mammalian cell cultures.  相似文献   

2.
3.
Near‐infrared spectroscopy is considered to be one of the most promising spectroscopic techniques for upstream bioprocess monitoring and control. Traditionally the nature of near‐infrared spectroscopy has demanded multivariate calibration models to relate spectral variance to analyte concentrations. The resulting analytical measurements have proven unreliable for the measurement of metabolic substrates for bioprocess batches performed outside the calibration process. This paper presents results of an innovative near‐infrared spectroscopic monitor designed to follow the concentrations of glycerol and methanol, as well as biomass, in real time and continuously during the production of a monoclonal antibody by a Pichia pastoris high cell density process. A solid state instrumental design overcomes the ruggedness limitations of conventional interferometer‐based spectrometers. Accurate monitoring of glycerol, methanol, and biomass is demonstrated over 274 days postcalibration. In addition, the first example of feedback control to maintain constant methanol concentrations, as low as 1 g/L, is presented. Postcalibration measurements over a 9‐month period illustrate a level of reliability and robustness that promises its adoption for online bioprocess monitoring throughout product development, from early laboratory research and development to pilot and manufacturing scale operation. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:749–759, 2014  相似文献   

4.
In bioprocesses, specific process responses such as the biomass cannot typically be measured directly on‐line, since analytical sampling is associated with unavoidable time delays. Accessing those responses in real‐time is essential for Quality by Design and process analytical technology concepts. Soft sensors overcome these limitations by indirectly measuring the variables of interest using a previously derived model and actual process data in real time. In this study, a biomass soft sensor based on 2D‐fluorescence data and process data, was developed for a comprehensive study with a 20‐L experimental design, for Escherichia coli fed‐batch cultivations. A multivariate adaptive regression splines algorithm was applied to 2D‐fluorescence spectra and process data, to estimate the biomass concentration at any time during the process. Prediction errors of 4.9% (0.99 g/L) for validation and 3.8% (0.69 g/L) for new data (external validation), were obtained. Using principal component and parallel factor analyses on the 2D‐fluorescence data, two potential chemical compounds were identified and directly linked to cell metabolism. The same wavelength pairs were also important predictors for the regression‐model performance. Overall, the proposed soft sensor is a valuable tool for monitoring the process performance on‐line, enabling Quality by Design.  相似文献   

5.
Introduction – Although medicinal plants are widely used throughout the world, few studies have been carried out concerning the levels of heavy metal contaminants present. Such metals are highly toxic to living organisms even in low concentrations owing to their cumulative effect. The present paper describes the the development of a pre‐concentration flow injection analysis‐flame atomic absorption spectrometric system to determine the lead content in medicinal plants at the ppb level. Objective – To develop a pre‐concentration flow injection analysis‐flame atomic absorption spectrometric system to determine the lead content in medicinal plants at the ppb level. Methodology – A pre‐concentration flow system was coupled to a flame atomic absorption spectrometer. The plant samples were analysed after nitroperchloric digestion. The proposed system was optimised by evaluating the following parameters: nature, concentration and volume of the eluent solution, elution flow rate, elution efficiency, pre‐concentration flow rate and pre‐concentration time. Results – The proposed system exhibited good performance with high precision and repeatability (RSD ≤ 2.36%), excellent linearity (r = 0.9999), low sample consumption (10.5 mL per determination) and an analytical throughput of 55 samples/h. Lead concentrations ranged from 3.37 ± 0.25 to 7.03 ± 0.51 μg/g in dry material. This concentration interval is greater than that previously published in the literature. Conclusion – The inclusion of a pre‐concentration column in the flow manifold improved the sensitivity of the spectrometer. Thus, it was possible to determine the analyte at the ng/mL level in sample solutions of medicinal plants. This is a very important accomplishment, especially when the cumulative effect of heavy metals in living organisms is considered. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
There are many challenges associated with in situ collection of near infrared (NIR) spectra in a fermentation broth, particularly for highly aerated and agitated fermentations with filamentous organisms. In this study, antibiotic fermentation by the filamentous bacterium Streptomyces coelicolor was used as a model process. Partial least squares (PLS) regression models were calibrated for glucose and ammonium based on NIR spectra collected in situ. To ensure that the models were calibrated based on analyte‐specific information, semisynthetic samples were used for model calibration in addition to data from standard batches. Thereby, part of the inherent correlation between the analytes could be eliminated. The set of semisynthetic samples were generated from fermentation broth from five separate fermentations to which different amounts of glucose, ammonium, and biomass were added. This method has previously been used off line but never before in situ. The use of semisynthetic samples along with validation on an independent batch provided a critical and realistic evaluation of analyte‐specific models based on in situ NIR spectroscopy. The prediction of glucose was highly satisfactory resulting in a RMSEP of 1.1 g/L. The prediction of ammonium based on NIR spectra collected in situ was not satisfactory. A comparison with models calibrated based on NIR spectra collected off line suggested that this is caused by signal attenuation in the optical fibers in the region above 2,000 nm; a region which contains important absorption bands for ammonium. For improved predictions of ammonium in situ, it is suggested to focus efforts on enhancing the signal in that particular region. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

7.
The application feasibility of in‐situ or in‐line monitoring of S. cerevisiae ITV01 alcoholic fermentation process, employing Near‐Infrared Spectroscopy (NIRS) and Chemometrics, was investigated. During the process in a bioreactor, in the complex analytical matrix, biomass, glucose, ethanol and glycerol determinations were performed by a transflection fiber optic probe immersed in the culture broth and connected to a Near‐Infrared (NIR) process analyzer. The NIR spectra recorded between 800 and 2,200 nm were pretreated using Savitzky‐Golay smoothing and second derivative in order to perform a partial least squares regression (PLSR) and generate the calibration models. These calibration models were tested by external validation and then used to predict concentrations in batch alcoholic fermentations. The standard errors of calibration (SEC) for biomass, ethanol, glucose and glycerol were 0.212, 0.287, 0.532, and 0.296 g/L and standard errors of prediction (SEP) were 0.323, 0.369, 0.794, and 0.507 g/L, respectively. Calibration and validation criteria were defined and evaluated in order to generate robust and reliable models for an alcoholic fermentation process matrix. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:510–517, 2016  相似文献   

8.
Glycerol, a byproduct of the biodiesel industry, can be used by bacteria as an inexpensive carbon source for the production of value‐added biodegradable polyhydroxyalkanoates (PHAs). Burkholderia cepacia ATCC 17759 synthesized poly‐3‐hydroxybutyrate (PHB) from glycerol concentrations ranging from 3% to 9% (v/v). Increasing the glycerol concentration results in a gradual reduction of biomass, PHA yield, and molecular mass (Mn and Mw) of PHB. The molecular mass of PHB produced utilizing xylose as a carbon source is also decreased by the addition of glycerol as a secondary carbon source dependent on the time and concentration of the addition. 1H‐NMR revealed that molecular masses decreased due to the esterification of glycerol with PHB resulting in chain termination (end‐capping). However, melting temperature and glass transition temperature of the end‐capped polymers showed no significant difference when compared to the xylose‐based PHB. The fermentation was successfully scaled up to 200 L for PHB production and the yield of dry biomass and PHB were 23.6 g/L and 7.4 g/L, respectively. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

9.
A model‐based approach for optimization and cascade control of dissolved oxygen partial pressure (pO2) and maximization of biomass in fed‐batch cultivations is presented. The procedure is based on the off‐line model‐based optimization of the optimal feeding rate profiles and the subsequent automatic pO2 control using a proposed cascade control technique. During the model‐based optimization of the process, feeding rate profiles are optimized with respect to the imposed technological constraints (initial and maximal cultivation volume, cultivation time, feeding rate range, maximal oxygen transfer rate and pO2 level). The cascade pO2 control is implemented using activation of cascades for agitation, oxygen enrichment, and correction of the preoptimized feeding rate profiles. The proposed approach is investigated in two typical fed‐batch processes with Escherichia coli and Saccharomyces cerevisiae. The obtained results show that it was possible to achieve sufficiently high biomass levels with respect to the given technological constraints and to improve controllability of the investigated processes.  相似文献   

10.
Monitoring mammalian cell culture with UV–vis spectroscopy has not been widely explored. The aim of this work was to calibrate Partial Least Squares (PLS) models from off‐line UV–vis spectral data in order to predict some nutrients and metabolites, as well as viable cell concentrations for mammalian cell bioprocess using phenol red in culture medium. The BHK‐21 cell line was used as a mammalian cell model. Spectra of samples taken from batches performed at different dissolved oxygen concentrations (10, 30, 50, and 70% air saturation), in two bioreactor configurations and with two strategies to control pH were used to calibrate and validate PLS models. Glutamine, glutamate, glucose, and lactate concentrations were suitably predicted by means of this strategy. Especially for glutamine and glucose concentrations, the prediction error averages were lower than 0.50 ± 0.10 mM and 2.21 ± 0.16 mM, respectively. These values are comparable with those previously reported using near infrared and Raman spectroscopy in conjunction with PLS. However, viable cell concentration models need to be improved. The present work allows for UV–vis at‐line sensor development, decrease cost related to nutrients and metabolite quantifications and establishment of fed‐batch feeding schemes. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:241–248, 2014  相似文献   

11.
In this work, the dependency of the volumetric hydrogen production rate of ammonium‐limited Rhodobacter capsulatus chemostat cultures on their imposed biomass concentration and dilution rate was investigated. A deceleration‐stat experiment was performed by lowering the dilution rate from 1.0 d?1 to zero aimed at a constant biomass concentration of 4.0 g L?1 at constant incident light intensity. The results displayed a maximal volumetric hydrogen production rate of 0.6 mmol m?3 s?1, well below model predictions. Possibly the high cell density limited the average light availability, resulting in a sub‐optimal specific hydrogen production rate. To investigate this hypothesis, a gradient‐stat experiment was conducted at constant dilution rate of 0.4 d?1 at constant incident light intensity. The biomass concentration was increased from 0.7 to 4.0 g L?1 by increasing the influent ammonium concentration. Up to a biomass concentration of 1.5 g L?1, the volumetric hydrogen production rate of the system increased according to model predictions, after which it started to decline. The results obtained provide strong evidence that the observed decline in volumetric hydrogen production rate at higher biomass concentrations was at least partly caused by a decrease in light availability. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

12.
Human mesenchymal stem/stromal cells (MSCs) have received considerable attention in the field of cell‐based therapies due to their high differentiation potential and ability to modulate immune responses. However, since these cells can only be isolated in very low quantities, successful realization of these therapies requires MSCs ex‐vivo expansion to achieve relevant cell doses. The metabolic activity is one of the parameters often monitored during MSCs cultivation by using expensive multi‐analytical methods, some of them time‐consuming. The present work evaluates the use of mid‐infrared (MIR) spectroscopy, through rapid and economic high‐throughput analyses associated to multivariate data analysis, to monitor three different MSCs cultivation runs conducted in spinner flasks, under xeno‐free culture conditions, which differ in the type of microcarriers used and the culture feeding strategy applied. After evaluating diverse spectral preprocessing techniques, the optimized partial least square (PLS) regression models based on the MIR spectra to estimate the glucose, lactate and ammonia concentrations yielded high coefficients of determination (R2 ≥ 0.98, ≥0.98, and ≥0.94, respectively) and low prediction errors (RMSECV ≤ 4.7%, ≤4.4% and ≤5.7%, respectively). Besides PLS models valid for specific expansion protocols, a robust model simultaneously valid for the three processes was also built for predicting glucose, lactate and ammonia, yielding a R2 of 0.95, 0.97 and 0.86, and a RMSECV of 0.33, 0.57, and 0.09 mM, respectively. Therefore, MIR spectroscopy combined with multivariate data analysis represents a promising tool for both optimization and control of MSCs expansion processes. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:447–455, 2016  相似文献   

13.
This article presents a new evaluation procedure of 2‐D fluorescence spectra obtained during a yeast cultivation without performing a calibration measurement. The 2‐D fluorescence spectra are used to predict the process variables biomass, glucose and ethanol. The new calibration procedure uses a theoretical model of these process variables, i.e., differential equations, to replace any calibration measurement. The theoretical model parameters are identified simultaneously during the calculation of the chemometric models. The root mean square error of prediction of the chemometric models with respect to off‐line measurements are 1.5 g/L, 0.40 g/L and 0.56 g/L for glucose, biomass and ethanol, respectively.  相似文献   

14.
Lab and pilot scale batch cultivations of a CHO K1/dhfr? host cell line were conducted to evaluate on‐line multifrequency permittivity measurements as a process monitoring tool. The β‐dispersion parameters such as the characteristic frequency (fC) and the permittivity increment (Δεmax) were calculated on‐line from the permittivity spectra. The dual‐frequency permittivity signal correlated well with the off‐line measured biovolume and the viable cell density. A significant drop in permittivity was monitored at the transition from exponential growth to a phase with reduced growth rate. Although not reflected in off‐line biovolume measurements, this decrease coincided with a drop in OUR and was probably caused by the depletion of glutamine and a metabolic shift occurring at the same time. Sudden changes in cell density, cell size, viability, capacitance per membrane area (CM), and effects caused by medium conductivity (σm) could be excluded as reasons for the decrease in permittivity. After analysis of the process data, a drop in fC as a result of a fall in intracellular conductivity (σi) was identified as responsible for the observed changes in the dual‐frequency permittivity signal. It is hypothesized that the β‐dispersion parameter fC is indicative of changes in nutrient availability that have an impact on intracellular conductivity σi. On‐line permittivity measurements consequently not only reflect the biovolume but also the physiological state of mammalian cell cultures. These findings should pave the way for a better understanding of the intracellular state of cells and render permittivity measurements an important tool in process development and control. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

15.
Recently, it had been shown that Euglena gracilis was able to grow heterotrophically not only on synthetic media, but also on media based on potato liquor. Supplementation with glucose in both cases led to the accumulation of paramylon, a β‐1,3‐glucan. Thus, such a process may yield a valuable product accompanied by the revaluation of an otherwise annoying waste stream of the potato‐starch industry. Actually, process strategies have been evaluated in order to optimise the concentration of paramylon obtained at the end of the cultivation process. Therefore, cultivation processes based on fed‐batch and in particular repeated‐batch strategies have been studied. It is shown that repeated‐batch operation maybe particularly suited for such a process since E. gracilis seems to adapt gradually to the cultivation medium so that the concentration of media components may be increased step by step. Repeated‐batch cultivation of E. gracilis leads to biomass concentrations in access of 20 g/L with a consistent paramylon mass fraction of about 75%. Cultivations have been carried out at an operating temperature of 27.5°C. As had been found earlier already, pH control is not required during cultivation. On the basis of these results it is clear that repeated‐batch cultivation represent a simple and economic way for the production of paramylon by heterotrophic cultivation of E. gracilis.  相似文献   

16.
The glycosylation of therapeutic monoclonal antibodies (mAbs), a known critical quality attribute, is often greatly modified during the production process by animal cells. It is essential for biopharmaceutical industries to monitor and control this glycosylation. However, current glycosylation characterization techniques involve time‐ and labor‐intensive analyses, often carried out at the end of the culture when the product is already synthesized. This study proposes a novel methodology for real‐time monitoring of antibody glycosylation site occupancy using Raman spectroscopy. It was first observed in CHO cell batch culture that when low nutrient concentrations were reached, a decrease in mAb glycosylation was induced, which made it essential to rapidly detect this loss of product quality. By combining in situ Raman spectroscopy with chemometric tools, efficient prediction models were then developed for both glycosylated and nonglycosylated mAbs. By comparing variable importance in projection profiles of the prediction models, it was confirmed that Raman spectroscopy is a powerful method to distinguish extremely similar molecules, despite the high complexity of the culture medium. Finally, the Raman prediction models were used to monitor batch and feed‐harvest cultures in situ. For the first time, it was demonstrated that the concentrations of glycosylated and nonglycosylated mAbs could be successfully and simultaneously estimated in real time with high accuracy, including their sudden variations due to medium exchanges. Raman spectroscopy can thus be considered as a promising PAT tool for feedback process control dedicated to on‐line optimization of mAb quality. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:486–493, 2018  相似文献   

17.
Within the framework of process analytical technology, infrared spectroscopy (IR) has been used for characterization of biopharmaceutical production processes. Although noninvasive attenuated total reflection (ATR) spectroscopy can be regarded as gold standard within IR‐based process analytics, simpler and more cost‐effective mid‐infrared (MIR) instruments might improve acceptability of this technique for high‐level monitoring of small scale experiments as well as for academia where financial restraints impede the use of costly equipment. A simple and straightforward at‐line mid‐IR instrument was used to monitor cell viability parameters, activity of lactate dehydrogenase (LDH), amount of secreted antibody, and concentration of glutamate and lactate in a Chinese hamster ovary cell culture process, applying multivariate prediction models, including only 25–28 calibration samples per model. Glutamate amount could be predicted with high accuracy (R2 0.91 for independent test‐set) while antibody concentration achieved good prediction for concentrations >0.4 mg L?1. Prediction of LDH activity was accurate except for the low activity regime. The model for lactate monitoring was only moderately good and requires improvements. Relative cell viability between 20 and 95% could be predicted with low error (8.82%) in comparison to reference methods. An initial model for determining the number of nonviable cells displayed only acceptable accuracy and requires further improvement. In contrast, monitoring of viable cell number showed better accuracy than previously published ATR‐based results. These results prove the principal suitability of less sophisticated MIR instruments to monitor multiple parameters in biopharmaceutical production with relatively low investments and rather fast calibration procedures. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:578–584, 2015  相似文献   

18.
Novel high‐pressure biotechnical systems that were developed and applied for the study of anaerobic oxidation of methane (AOM) are described. The systems, referred to as high‐pressure continuous incubation system (HP‐CI system) and high‐pressure manifold‐incubation system (HP‐MI system), allow for batch, fed‐batch, and continuous gas‐phase free incubation at high concentrations of dissolved methane and were designed to meet specific demands for studying environmental regulation and kinetics as well as for enriching microbial biomass in long‐term incubation. Anoxic medium is saturated with methane in the first technical stage, and the saturated medium is supplied for biomass incubation in the second stage. Methane can be provided in continuous operation up to 20 MPa and the incubation systems can be operated during constant supply of gas‐enriched medium at a hydrostatic pressure up to 45 MPa. To validate the suitability of the high‐pressure systems, we present data from continuous and fed‐batch incubation of highly active samples prepared from microbial mats from the Black Sea collected at a water depth of 213 m. In continuous operation in the HP‐CI system initial methane‐dependent sulfide production was enhanced 10‐ to 15‐fold after increasing the methane partial pressure from near ambient pressure of 0.2 to 10.0 MPa at a hydrostatic pressure of 16.0 MPa in the incubation stage. With a hydraulic retention time of 14 h a stable effluent sulfide concentration was reached within less than 3 days and a continuing increase of the volumetric AOM rate from 1.2 to 1.7 mmol L?1 day?1 was observed over 14 days. In fed‐batch incubation the AOM rate increased from 1.5 to 2.7 and 3.6 mmol L?1 day?1 when the concentration of aqueous methane was stepwise increased from 5 to 15 mmol L?1 and 45 mmol L?1. A methane partial pressure of 6 MPa and a hydrostatic pressure of 12 MPa in manifold fed‐batch incubation in the HP‐MI system yielded a sixfold increase in the volumetric AOM rate. Over subsequent incubation periods AOM rates increased from 0.6 to 1.2 mmol L?1 day?1 within 26 days of incubation. No inhibition of biomass activity was observed in all continuous and fed‐batch incubation experiments. The organisms were able to tolerate high sulfide concentrations and extended starvation periods. Biotechnol. Bioeng. 2010; 105: 524–533. © 2009 Wiley Periodicals, Inc.  相似文献   

19.
Mammalian cell‐based bioprocesses are used extensively for production of therapeutic proteins. Off‐line monitoring of such cultivations via manual sampling is often labor‐intensive and can introduce operator‐dependent error into the process. An integrated multi‐functional off‐line analyzer, the BioProfile FLEX (NOVA Biomedical, Waltham MA) has been developed, which combines the functionality of three off‐line analyzers (a cell counter, an osmometer, and a gas/electrolyte & nutrient/metabolite bio‐profile analyzer) into one device. In addition, a novel automated sampling system has also been developed that allows the BioProfile FLEX to automatically analyze the culture conditions in as many as ten bioreactors. This is the first report on the development and function of this integrated analyzer and an auto‐sampler prototype for monitoring of mammalian cell cultures. Evaluation of the BioProfile FLEX was conducted in two separate laboratories and involved two BioProfile FLEX analyzers and two sets of reference analyzers (Nova BioProfile 400, Beckman‐Coulter Vi‐Cell AS, and Advanced Instruments Osmometer 3900), 13 CHO cell lines and over 20 operators. In general, BioProfile FLEX measurements were equivalent to those obtained using reference analyzers, and the auto‐sampler did not alter the samples it provided to the BioProfile FLEX. These results suggest that the system has the potential to dramatically reduce the manual labor involved in monitoring mammalian cell bioprocesses without altering the quality of the data obtained, and integration with a bioreactor control system will allow feedback control of parameters previously available only for off‐line monitoring. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

20.
Optimized hydrolysis of lignocellulosic waste biomass is essential to achieve the liberation of sugars to be used in fermentation process. Ionic liquids (ILs), a new class of solvents, have been tested in the pretreatment of cellulosic materials to improve the subsequent enzymatic hydrolysis of the biomass. Optimized application of ILs on biomass is important to advance the use of this technology. In this research, we investigated the effects of using 1‐butyl‐3‐methylimidazolium acetate ([bmim][Ac]) on the decomposition of soybean hull, an abundant cellulosic industrial waste. Reaction aspects of temperature, incubation time, IL concentration, and solid load were optimized before carrying out the enzymatic hydrolysis of this residue to liberate fermentable glucose. Optimal conditions were found to be 75°C, 165 min incubation time, 57% (mass fraction) of [bmim][Ac], and 12.5% solid loading. Pretreated soybean hull lost its crystallinity, which eased enzymatic hydrolysis, confirmed by Fourier Transform Infrared analysis. The enzymatic hydrolysis of the biomass using an enzyme complex from Penicillium echinulatum liberated 92% of glucose from the cellulose matrix. The hydrolysate was free of any toxic compounds, such as hydroxymethylfurfural and furfural. The obtained hydrolysate was tested for fermentation using Candida shehatae HM 52.2, which was able to convert glucose to ethanol at yields of 0.31. These results suggest the possible use of ILs for the pretreatment of some lignocellulosic waste materials, avoiding the formation of toxic compounds, to be used in second‐generation ethanol production and other fermentation processes. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:312–320, 2016  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号