首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Pepper (Capsicum annuum L.) cultivars differ in susceptibilityto stress-induced abscission. Previous research indicates thatthe stress susceptible cultivar 'Shamrock' undergoes a largerreduction in net assimilation rate (NAR) under low light stress,and partitions less dry matter (DM) to reproductive structuresand more to leaves than the more tolerant cultivar 'Ace'. Todetermine if photosynthetic rates under low light stress couldexplain NAR differences, photosynthesis was measured on 'Ace'and 'Shamrock'. Assimilate partitioning was compared throughmeasurement of leaf and bud respiration rates and analysis ofbud sugar concentrations. Photosynthetic rates per unit leafarea of leaves fully exposed to incident light revealed no cultivardifferences under low light conditions. Bud respiration ratesfell to a lower level in 'Shamrock' than 'Ace' in low light-stressedplants, while expanded leaves respired at higher rates in 'Shamrock'than 'Ace' under both full and low light. Bud sugar concentrationswere significantly lower in 'Shamrock' than 'Ace' after 3 dof low light stress. Susceptibility to low light stress-inducedabscission in 'Shamrock' appears to be associated with reducedassimilate partitioning to flower buds, which may be relatedto high assimilate consumption in maintenance of expanded leaves.Copyright1994, 1999 Academic Press Pepper (Capsicum annuum L.), abscission, low light stress, photosynthesis, respiration, sugars, assimilate partitioning, cultivar  相似文献   

2.
ALONI  B.; PASHKAR  T.; KARNI  L. 《Annals of botany》1991,67(5):371-377
The effect of heat stress on processes related to carbohydratepartitioning was investigated in young bell pepper (Capsicumannum L. cv. Maor) plants in relation to abscission of theirreproductive organs at different stages of development. None of the reproductive organs abscised after 5 d in a normalday/night temperature regime (25/18°C). With a temperatureregime of 35°C day, 25°C night, abscission occurredin only a small portion of the flower buds and none of the flowersand fruitlets. However, when temperatures in the day and nightwere reversed (25/35°C, day/night) all the buds and someof the flowers abscised during that time period. The young fruitat the first node did not abscise under any temperature regime.The abscission rate of the flower buds was reduced under heatstress if the developing fruit at the first node had been removed. High temperature during either the light or dark periods reducedthe export of [14C]sucrose from the source leaf (fed for 48h with [14C]sucrose). Both heat stress and fruit presence reduced the relative amountof [14C]sucrose which was exported to the flower buds, flowersand roots. Likewise, these treatments reduced the concentrationof reducing sugars in the reproductive organs. Concomitantly,the heat stress and fruit presence on the first node reducedthe activity of soluble acid invertase in the flower buds andthe roots, but not in young leaves. Overall, the results show that heat stress causes alternationin sucrose distribution in the plant, but may also have specificeffects on metabolic activities related to sucrose import andutilization in flower buds and flowers which in turn may enhancetheir abscission. Bell pepper, (Capsicum annuum L. cv. Maor), abscission, acidinvertase, heat stress, reproductive organs, sink leaves. Bell pepper, (Capsicum annuum L. cv. Maor), abscission, acid invertase, heat stress, reproductive organs, sink leaves.  相似文献   

3.
The effects of seed number on set, development and growth ofa fruit, and on inhibition of later-developed fruits were studiedby varying the pollen load on the stigma of sweet pepper flowers(Capsicum annuum L.). Despite much variation, a linear increasein individual fruit weight with seed number could be observed.Seed number affected the growth rate rather than the growingperiod of fruit. When seed numbers were low, the probabilityof fruit setting was positively related to seed number. However,a relatively low seed number (50–100 seeds/fruit: 20–30%of the maximum seed number) was sufficient for maximal fruitset. An increase in seed number increased the inhibitory effect ofa fruit on set and growth of later-developing fruits. As a result,when pollination treatments were applied to all the flowersof a plant, results could be quite different to those obtainedwhen only a limited number of flowers were treated. Fruit setof the second fruit was reduced by the application of a highpollen load to the first flower, even when the first fruit abortedbefore it had accumulated much dry matter. Our results suggestthat growth inhibition of the second fruit by seed number ofthe first fruit is controlled both by competition for limitedassimilates, as well as by dominance due to the production ofplant growth regulators by the developing fruit. Sweet pepper; Capsicum annuum L.; pollination; fruit set; abortion; abscission; fruit growth; first-fruit dominance; sink strength  相似文献   

4.
Two pot experiments and one field experiment were conducted on sugarcane to assess the effects of treatments expected to change total carbon assimilation on the partitioning of assimilate. In the first experiment pots of cultivars CP and N14 were arranged to simulate normal field spacing. At 5 months, plants were partially defoliated or left intact. In the subsequent four months, defoliation resulted in a small (not significant) decrease in total dry mass increment; it increased the proportional partitioning of assimilates to leaves in N14, whilst in CP it increased the proportional partitioning to stems. In both cultivars defoliation increased proportional allocation to non-structural dry matter, and thus sucrose, in the stem. In the second experiment pots of cv. CP were grown at normal spacing for 4 months, then left untreated, shaded, or placed further apart. During the subsequent four months shading decreased total dry matter increment, but increased proportional partitioning to the stems, and within stems to non-structural dry matter, and so sucrose. Widened spacing increased total assimilation, but decreased proportional allocation to stems; partitioning within the stems was not affected. In the field experiment plants of both cultivars were partially defoliated at 6 months, or left intact. Defoliation resulted in only a very small decrease in stem dry mass increment during the subsequent four months (leaves were not measured). Within the stem partial defoliation caused proportionally increased partitioning to non-structural dry matter, hence to sucrose. The results suggest that sucrose storage receives priority in the allocation of assimilate, rather than representing the accumulation of assimilate not required for vegetative growth.  相似文献   

5.
NILWIK  H. J. M. 《Annals of botany》1981,48(2):129-136
A growth analysis was carried out with sweet pepper grown ina glasshouse. The plants received natural daylight or additionalillumination applied either during or after the natural photopenod.All irradiance conditions were applied at three temperatureregimes. Additional illumination increased leaf number, leaf area andtotal dry weight. At all temperatures the long-day treatmentsshowed a smaller number of leaves, but a larger leaf area whencompared to the short-day treatments with the same daily radiationsum. A lower temperature progressively reduced leaf area. The derived growth analysis quantities showed strong ontogenetictrends. When comparing both methods of applying additional illuminationhigher mean relative growth rates were observed for the long-daytreatments, especially at the lowest temperature. No differencesin mean net assimilation rate were found, but the short-daytreatments showed a reduced mean leaf area ratio. A lower nighttemperature decreased RGR and NAR but did not affect LAR, alower day temperature increased NAR and decreased LAR. Changesin LAR were largely mediated by changes in specific leaf weight. Capsicum annuum L., sweet pepper, growth analysis, irradiance, temperature  相似文献   

6.
Green pepper (Capsicum annuum cv. Bell Boy) plants were exposedin chambers to low (2%) oxygen and controlled carbon dioxideconcentrations. Vegetative and fruiting plants showed short-termincreases in net photosynthesis in low oxygen or elevated carbondioxide (up to 900 µl CO2 l–1). Photosynthesis ofyoung vegetative plants increased in low oxygen in the short-termbut there was no long-term benefit. Low oxygen enhancement ofphotosynthesis declined with time and after 10 d, leaf areaand root dry weight were less than in plants grown in normalair. Labelled assimilates were translocated from leaves to otherregions at similar rates in low oxygen and normal air. Low oxygenreduced respiratory losses from leaves and reduced the proportionof soluble carbohydrate converted to polysaccharide in all plantparts. Thus, low-oxygen environments decrease the utilisationof assimilates which then may lead to inhibition of photosynthesis. Capsicum annuum, photosynthesis, photorespiration, translocation, utilization of assimilates  相似文献   

7.
Abscission of pepper flowers is enhanced under conditions oflow light and high temperature. Our study shows that pepperflowers accumulate assimilates, particularly in the ovary, duringthe day time, and accumulate starch, which is then metabolizedin the subsequent dark period. With the exception of the petals,the ovary contains the highest total amounts of sugars and starch,compared with other flower parts and contains the highest totalactivity, as well as activity calculated on fresh mass basis,of sucrose synthase, in accordance with the role of this enzymein starch biosynthesis. Low light intensity or leaf removaldecreased sugar accumulation in the flower and subsequentlycaused flower abscission. The threshold of light intensity fordaily sugar accumulation in the sink leaves was much lower thanin flowers, resulting in higher daytime accumulation of sugarsin the sink leaves than in the adjacent flower buds under anylight intensity, suggesting a competition for assimilates betweenthese organs. Flowers of bell pepper cv. ‘Maor’and ‘899’ (sensitive to abscission) accumulatedless soluble sugars and starch under shade than the flowersof bell pepper cv. ‘Mazurka’ and of paprika cv.‘Lehava’ (less sensitive). The results suggest thatthe flower capacity to accumulate sugars and starch during theday is an important factor in determining flower retention andfruit set. Pepper; Capsicum annuum L.; abscission; shading; pepper flowers; ovary; leaves; sugars; starch; acid invertase; sucrose synthase  相似文献   

8.
B.  ALONI; T.  PASHKAR; L.  KARNI 《Annals of botany》1991,67(4):371-377
The effect of heat stress on processes related to carbohydratepartitioning was investigated in young bell pepper (Capsicumannum L. cv. Maor) plants in relation to abscission of theirreproductive organs at different stages of development. None of the reproductive organs abscised after 5 d in a normalday/night temperature regime (25/18 °C). With a temperatureregime of 35 °C day, 25 °C night, abscission occurredin only a small portion of the flower buds and none of the flowersand fruitlets. However, when temperatures in the day and nightwere reversed (25/35 °C, day/night) all the buds and someof the flowers abscised during that time period. The young fruitat the first node did not abscise under any temperature regime.The abscission rate of the flower buds was reduced under heatstress if the developing fruit at the first node had been removed. High temperature during either the light or dark periods reducedthe export of [14C]sucrose from the source leaf (fed for 48h with [14C]sucrose). Both heat stress and fruit presence reduced the relative amountof [14C]sucrose which was exported to the flower buds, flowersand roots. Likewise, these treatments reduced the concentrationof reducing sugars in the reproductive organs. Concomitantly,the heat stress and fruit presence on the first node reducedthe activity of soluble acid invertase in the flower buds andthe roots, but not in young leaves. Overall, the results show that heat stress causes alternationin sucrose distribution in the plant, but may also have specificeffects on metabolic activities related to sucrose import andutilization in flower buds and flowers which in turn may enhancetheir abscission. Bell pepper, (Capsicum annuum L. cv. Maor), abscission, acid invertase, heat stress, reproductive organs, sink leaves  相似文献   

9.
Carbon Partitioning and Export in Mature Leaves of Pepper (Capsicum annuum)   总被引:1,自引:0,他引:1  
The partitioning of recently fixed carbon by mature pepper leaveshas been examined over a 10 h photoperiod using a constant specificradioactivity 14CO2 labelling technique. Changes in the ratesof carbon partitioning into export, starch, sucrose and hexoseswere examined following changes in irradiance during the photoperiod.Leaves grown under 80 W m–2 PAR were exposed to this irradiancefor the first 4 h of the photoperiod then the iiradiance wasdecreased. Leaves accumulated sufficient reserves in the first4 h to maintain export at the initial rate (approximately 20µg carbon cm–2 leaf h–1) over the following6 h of the photoperiod when the net photosynthesis rate (Pn)was decreased to 10% of the initial rate by the decreased irradiance.Export was initially maintained by the depletion of sucroseand hexose and then by carbon from the degradation of starchin the light. If leaves were exposed to low irradiance at the beginning ofthe photoperiod, then the export rate was linearly related tothe Pn during that period. When Pn exceeded that required tomaintain an export rate of approximately 20 µg carboncm–2 h–1, then more carbon was partitioned intostarch. At low initial irradiance, a greater proportion of photosynthatewas partitioned into export rather than starch and at high initialirradiancc the reverse occurred. There was a linear relationship between starch accumulationrate and Pn for all leaves but the relationship between Pn andexport rate was only significant for leaves with low levelsof reserve carbon. The results show that mature pepper leaves subjected to differentirradiances maintain constant export rates through alterationsof carbon partitioning. Export at low Pn is maintained at theexpense of sugar and starch reserves, with partitioning in highirradiance being predominantly to starch. Key words: Carbon partitioning, Starch, Export, Pepper (Capsicum annuum L.)  相似文献   

10.
The shape and regularity of bell pepper (Capsicum annuumL.)fruit are known to be determined at a very early stage of flowerdevelopment. Small, flattened fruit which are commonly parthenocarpicdevelop under low-temperatures (below 16 °C) from flowerswith enlarged ovaries. In such flowers self-pollination is notefficient because of the large distance between the stigma andstamens. Flower deformation of this kind is common during thewinter season. In the present study it was found that deformationsof flowers, similar to those found under low temperatures, wereinduced in 15 d by complete removal of fruit from plants growingunder night-time temperatures of 18 °C. Only flowers whichwere at the pre-anthesis stage at the time of fruit removalwere deformed by this treatment. Removal of leaves from thelower part of the plant (source leaves) partially reduced theeffect of fruit removal on the shape of the flowers and on subsequentfruit morphology. Fruit removal induced significant increasesin the concentrations of starch and reducing sugars, but notsucrose, in the flower buds. Likewise, flower buds of plantswhich grew under a night-time temperature of 12 °C containedmore carbohydrate than those which grew at 18 °C. Theseresults suggest that flower morphology in pepper is at leastpartly controlled by source-sink relationships. Assimilateswhich are normally transferred to developing fruit may be transported,upon fruit removal, to the flower buds which subsequently swell.A similar increase in assimilate translocation to flower budsmay occur under low temperatures, subsequently causing deformationof fruit.Copyright 1999 Annals of Botany Company Pepper, (Capsicum annuumL), flower shape, low temperatures, source-sink relationship, fruit shape, seeds, reducing sugars, sucrose, starch.  相似文献   

11.
Goenaga  Ricardo 《Annals of botany》1995,76(4):337-341
A field study was conducted as part of an ongoing effort tocollect data on patterns of leaf area development and dry matteraccumulation and partitioning among various plant parts duringgrowth and development of two taro cultivars. Plants were harvestedfor biomass about every 6 weeks during the growing season. Ateach harvest, plants were separated into various plant parts,and their dry matter content was determined. The first 80 dafter planting were characterized by low rates of dry matteraccumulation, with only leaves, petioles, and roots showingsubstantial growth. Afterwards, increases in total dry matterwere mainly the result of corm and sucker growth. Corm bulkingoccurred after the attainment of maximal leaf area indices.The absence of an optimal leaf area index for a longer periodof time may have prevented the realization of higher dry matteryields. The partitioning of dry matter to the corms of bothcultivars remained almost constant especially after 150 d afterplanting. This process was in contrast to the partitioning ofdry matter to the suckers, which increased significantly untilthe end of the growing cycle.Copyright 1995, 1999 Academic Press Taro, Colocasia sp., growth, dry matter partitioning  相似文献   

12.
Two bell pepper (Capsicum annuum) cultivars, differing in their response to chilling, were exposed to three levels of root‐zone temperatures. Gas exchange, shoot and root phenology, and the pattern of change of the central metabolites and secondary metabolites caffeate and benzoate in the leaves and roots were profiled. Low root‐zone temperature significantly inhibited gaseous exchange, with a greater effect on the sensitive commercial pepper hybrid (Canon) than on the new hybrid bred to enhance abiotic stress tolerance (S103). The latter was less affected by the treatment with respect to plant height, shoot dry mass, root maximum length, root projected area, number of root tips and root dry mass. More carbon was allocated to the leaves of S103 than nitrogen at 17°C, while in the roots at 17°C, more nitrogen was allocated and the ratio between C/N decreased. Metabolite profiling showed greater increase in the root than in the leaves. Leaf response between the two cultivars differed significantly. The roots accumulated stress‐related metabolites including γ‐aminobutyric acid (GABA), proline, galactinol and raffinose and at chilling (7°C) resulted in an increase of sugars in both cultivars. Our results suggest that the enhanced tolerance of S103 to root cold stress, reflected in the relative maintenance of shoot and root growth, is likely linked to a more effective regulation of photosynthesis facilitated by the induction of stress‐related metabolism.  相似文献   

13.
Raw  Anthony 《Annals of botany》2000,85(4):487-492
Native bees are effective pollinators of hot pepper plants,Capsicum annuum. In four gardens in south-central Brazil (Patosde Minas and Brasília) flowers of three cultivars receivedvisits from 16 species of bees in eight genera: Hylaeus(Colletidae),Dialictus, Halictus, Augochlora,Augochloropsis and Ceratalictus(Halictidae),Exomalopsis andBombus (Apidae). No other insects were observedto visit the flowers. Some species of bee occurred in more thanone garden. Individual bees gathered a full pollen load from18 to 47 flowers and visited one to eight plants on a singleforaging trip. In 76 shifts between plants, the bees made nineswitches between cultivars. It is suggested that small nativespecies of bees pollinate the flowers effectively and that theirsmall foraging areas are important in keeping the cultivarsof both hot and sweet peppers genetically distinct where severalcultivars are grown close together. Copyright 2000 Annals ofBotany Company Capsicum annuum, hot pepper, native bees, fruit set, Brazil  相似文献   

14.
Nieman, R. H., Clark, R. A., Pap, D., Ogata, G. and Maas, E.V. 1988. Effects of salt stress on adenine and uridine nucleotidepools, sugar and acid-soluble phosphate in shoots of pepperand safflower.-J. exp. Bot. 39: 301–309. Pepper (Capsicum annuum cv. Yolo wonder) and safflower (Carthamustinctonus L. cv. Gila) were grown hydroponically and subjectedto a salt stress (51 mol m–3 NaCl plus 25.5 mol m–3CaCl2). Mature photosynthetic source leaves and shoot meristematicsinks (young pepper leaves and safflower buds) were analyzedfor nucleotides by high performance liquid chromatography andfor hexose and acid-soluble P—pepper was still vegetativewhereas safflower had switched to flower bud formation—thesalt stress reduced the fresh shoot yield of pepper by nearlytwo-thirds and of safflower by half. It reduced the ATP pooland ATP/ADP ratio in the source leaves of both species and alsoin the young pepper leaves. It had little or no effect on ATPor other nucleotide pools in safflower buds. The UDPG pool wasnot affected in source leaves or safflower buds, but in theyoung pepper leaves it was reduced by half, along with UTP.These reductions were accompanied by over a 3-fold increasein hexose and a large decrease in ester phosphate. In safflower,on the other hand, salt stress had little or no effect on UDPG,hexose, or ester phosphate in either source leaves or buds.The results suggest that salt stress reduced the growth of pepperbecause it reduced assimilation of photosynthate, possibly aconsequence of reduced UDPG, UTP, and ATP pools in the growingleaves. Salt stress did not so markedly affect assimilationof photosynthate in the more tolerant safflower. Key words: Growth suppression, energy charge, UDPG  相似文献   

15.
The adverse effect of lodging on grass seed yield may be attributed,in part, to assimilate limitation during the seed filling period.This investigation examined plant dry matter assimilate partitioningand seed yield as affected by lodging in three species thatare closely related but phenotypically different: tall fescue(Festuca arundinacea Schreber.), Italian ryegrass (Lolium multiflorumLam.), and perennial ryegrass (L. perenne L.). Studies wereperformed in field plots at Corvallis, Oregon, USA. Seed yieldcomponents (seed number per inflorescence, seed yield per inflorescence,and single seed mass) and leaf, stem (lower, middle, and peduncle)and seed inflorescence dry mass were measured just prior toanthesis to seed maturity. Dry mass and water soluble carbohydrates(WSC) were determined for shoot components. The reduction indry mass and WSC in leaves and stem components following anthesiswas often greater in lodged plants compared to upright plants.The relatively low seed yield depression in lodged tall fescuesuggested a higher compensation potential for partitioning reserveassimilate from leaves and stems to support seed growth anddevelopment. This potential does not appear to be present tothe same degree in Italian ryegrass and to an even lesser extentin perennial ryegrass. These findings suggest that the potentialto compensate for reduced assimilate supply during the periodof high assimilate demand by seeds may be attributed, in part,to the total assimilate reserve accumulated prior to photoassimilatereduction caused by the lodged condition. Copyright 2000 Annalsof Botany Company Tall fescue, Festuca arundinacea Schreber., Italian ryegrass, Lolium multiflorum Lam., perennial ryegrass, L. perenne L., assimilate partitioning, source–sink  相似文献   

16.
Vegetative crops of chrysanthemum were grown for 5 or 6 weekperiods in daylit assimilation chambers. Crop responses to differentradiation levels and temperatures were analysed into effectson dry matter partitioning, specific leaf area, leaf photosynthesisand canopy light interception. The percentage of newly formed dry matter partitioned to theleaves was almost constant, although with increasing radiationor decreasing temperature, a greater percentage of dry matterwas partitioned to stem tissue at the expense of root tissue.There was a positive correlation between the percentage of drymatter in shoot material and the overall carbon: dry matterratio. Canopy photosynthesis was analysed assuming identical behaviourfor all leaves in the crop. Leaf photochemical efficiency wasonly slightly affected by crop environment. The rate of grossphotosynthesis per unit leaf area at light saturation, PA (max),increased with increasing radiation integral, but the same parameterexpressed per unit leaf dry matter, Pw (max) was almost unaffectedby growth radiation. In contrast, PA (max) was hardly affectedby temperature but Pw (max) increased with increasing growthtemperature. This was because specific leaf area decreased withdecreasing temperature and increased with decreasing radiation.There was a positive correlation between canopy respirationintegral and photosynthesis integral, and despite a four-foldchange in crop mass during the experiments, the maintenancecomponent of canopy respiration remained small and constant. Canopy extinction coefficient showed no consistent variationwith radiation integral but was negatively correlated with temperature.This decrease in the efficiency of the canopy at interceptingradiation exactly cancelled the increase in specific carbonassimilation rate that occurred with increasing growth temperature,giving a growth rate depending solely on the incident lightlevel. Chrysanthemum, dry matter partitioning, photosynthesis, specific leaf area  相似文献   

17.
Abortion of pepper flowers depends on the light intensity perceivedby the plant and on the amounts of sucrose taken up by the flower(Aloni B, Karni L, Zaidman Z, Schaffer AA. 1996.Annals of Botany78: 163–168). We hypothesize that changes in the activityof sucrose-cleaving enzymes within the flower ovary might beresponsible for the changes in flower abortion under differentlight conditions. In the present study we report that the activityof sucrose synthase, but not of cytosolic acid invertase, increasesin flowers of pepper plants which were exposed, for 2 d, toincreasing photosynthetically active radiation (PAR) in therange of 85–400 µmol m-2s-1at midday. Sucrose synthaseactivity increased in parallel with the increasing concentrationsof starch in the flower ovary. Feeding flower explants, preparedfrom 3-d-predarkened plants, with 100 mM sucrose for 24 h, causeda 23% increase in reducing sugars and a 2.5-fold increase instarch concentration, compared with explants fed with buffer.Likewise, feeding explants of pepper flowers with sucrose, glucose,fructose and also mannitol increased the sucrose synthase activityin the ovaries. Concomitantly, sucrose, glucose and fructose,but not mannitol, reduced the abortion of flower explants. Itis suggested that sucrose entry into the flower increases theflower sink activity by inhibiting abscission and inducing metabolicchanges, thus enhancing flower set. Pepper; Capsicum annuum L.; abscission; light; pepper flowers; sucrose; glucose; fructose; starch; acid invertase; sucrose synthase  相似文献   

18.
HIROSE  T.; KITAJIMA  K. 《Annals of botany》1986,58(4):479-486
Polygonun cuspidatum was grown hydroponically to examine theeffect of nitrogen removal from the nutrient solution upon plantgrowth and the partitioning of dry matter and nitrogen amongorgans. Nitrogen removal reduced the growth rate mainly dueto the reduced growth of leaf area. Accelerated root growthwas observed only in plants which earlier had received highlevels of nitrogen. Nitrogen removal caused almost exclusiveallocation of available nitrogen to root growth. Nitrogen fluxfrom the shoot to the root occurred in plants which had receivedlow nitrogen. Not only was net assimilation rate (NAR) littleaffected by nitrogen removal, but it also was not correlatedwith the concentration of leaf nitrogen on an area basis. Light-saturatedCO2 exchange rate (CER) was highly correlated with the concentrationof leaf nitrogen. Nitrogen use efficiency (NUE) in CER (CERdivided by leaf nitrogen) remained constant against leaf nitrogen,indicating efficient use of nitrogen under light saturation,while NUE in terms of NAR decreased with higher concentrationof leaf nitrogen. Polygonum cuspidatum Sieb. et Zuce., CO2 exchange rate, growth analysis, leaf nitrogen, net assimilation rate, nitrogen use efficiency, partitioning of dry matter and nitrogen  相似文献   

19.
STEER  B. T. 《Annals of botany》1982,49(2):191-198
Species differ in the relationship of nitrate reductase activityto nitrate uptake. In Capsicum annuum different diurnal patternsof leaf nitrate reductase activity and nitrate uptake have beenreported. As a consequence, the relationship of free nitratein the plant to nitrate supplied has a higher level of significancethan has reduced nitrogen to nitrate supplied. In Zea mays ithas been reported that leaf nitrate reductase activity respondsdirectly to nitrate translocation to the leaf and in this speciesthe relationship of greatest significance is reduced nitrogencontent to nitrate supplied. In both species, and also in Cucumis melo, the proportion oftotal plant free nitrate and reduced nitrogen in the roots decreases,and in the stem increases, with increasing nitrate supplied. The accumulation of free nitrate in leaves is accompanied bya quantitatively different relationship between reduced nitrogenand dry weight compared to leaves not accumulating nitrate. Capsicum annuum. L., Cucumis melo L., melon, Zea mays L., maize, sweet corn, nitrate reductase, nitrate uptake  相似文献   

20.
HEUVELINK  E. 《Annals of botany》1996,78(4):467-470
The importance of transport resistance (distance between sourceand sink) on assimilate partitioning in tomato is questioned.Slack and Calvert ( Journal of Horticultural Science 52 : 309–315,1977) concluded that, in tomato, excising of fruit trusses showeda direct influence of distance from source on assimilate partitioning.A dry matter distribution model for tomato, based on the hypothesisthat distribution is regulated by the sink strengths of theplant organs and that no influence of transport resistance onpartitioning exists, has been described and validated by Heuvelink( Annals of Botany 77 : 71–80, 1996). Using this model,it is shown that the results of Slack and Calvert (1977) canbe explained more simply on the basis of the succession of trusseswith growth shifted with respect to time. Therefore, their resultsdo not prove that transport resistance plays a role in assimilatepartitioning. Allocation; distance; dry matter distribution; model; assimilate pool; partitioning; simulation; transport resistance; tomato  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号