首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
In circulating lymphocytes, the VLA-4 integrin preexists in multiple affinity states that mediate spontaneous tethering, rolling, and arrest on its endothelial ligand, vascular cell adhesion molecule-1 (VCAM-1). The regulation and function of VLA-4 affinity in lymphocytes has never been elucidated. We show here that p56(lck), the major Src kinase in T cells, is a key regulator of high affinity VLA-4. This high affinity is essential for the rapid development of firm adhesion of resting T cells to VCAM-1 and to their extracellular matrix ligand, fibronectin. Lck-regulated VLA-4 function does not require intact TCR nor several key components of the TCR signaling pathway, including ZAP-70 and SLP-76. Furthermore, stimulation of p56(lck) by the phosphatase inhibitor, pervanadate, triggers firm VLA-4-dependent adhesion to VCAM-1. Although Lck is not required for chemokine receptor signaling to mitogen-activated protein kinase, the presence of Lck-regulated high affinity VLA-4 also facilitates firm adhesion triggered by the chemokine, SDF-1, at short-lived contacts. Surprisingly, bond formation rates, ability to tether cells to VLA-4 ligand, and VLA-4 tether bond stability under shear flow are not affected by VLA-4 affinity or Lck activity. Thus, the ability of high affinity VLA-4 to arrest cells on VCAM-1 under flow arises from instantaneous post-ligand strengthening rather than from increased kinetic stability of individual VLA-4 bonds. These results suggest that p56(lck) maintains high affinity VLA-4 on circulating lymphocytes, which determines their ability to strengthen VLA-4 adhesion and rapidly respond to proadhesive chemokine signals at endothelial sites.  相似文献   

2.
The integrin VLA-4 supports tethering and rolling in flow on VCAM-1   总被引:32,自引:4,他引:28       下载免费PDF全文
《The Journal of cell biology》1995,128(6):1243-1253
Selectins have previously been shown to tether a flowing leukocyte to a vessel wall and mediate rolling. Here, we report that an intergrin, VLA- 4, can also support tethering and rolling. Blood T lymphocytes and alpha 4 integrin-transfected cells can tether in shear flow, and then roll, through binding of the intergrin VLA-4 to purified VCAM-1 on the wall of a flow chamber. VLA-4 transfectants showed similar tethering and rolling on TNF-stimulated endothelium. Tethering efficiency, rolling velocity, and resistance to detachment are related to VCAM-1 density. Tethering and rolling did not occur on ICAM-1, fibronectin, or fibronectin fragments, and tethering did not require integrin activation or the presence of an alpha 4 cytoplasmic domain. Arrest of rolling cells on VCAM-1 occurred spontaneously, and/or was triggered by integrin activating agents Mn2+, phorbol ester, and mAb TS2/16. These agents, and the alpha 4 cytoplasmic domain, promoted increased resistance to detachment. Together the results show that VLA-4 is a versatile integrin that can mediate tethering, rolling, and firm arrest on VCAM-1.  相似文献   

3.
M de Chateau  S Chen  A Salas  T A Springer 《Biochemistry》2001,40(46):13972-13979
We studied interactions in shear flow of cells bearing integrins alpha4beta1 or alpha4beta7 with VCAM-1 and MAdCAM-1 substrates in different divalent cations. Interestingly, Ca(2+) was essential for tethering in flow and rolling interactions through both alpha4 integrins. Mg(2+) promoted firm adhesion of alpha4beta7-expressing cells on MAdCAM-1 but with much lower tethering efficiency in shear flow. The k(off) degrees of 1.28 s(-1) and resistance of the receptor-ligand bond to force (estimated as a bond interaction distance or sigma) for transient tethers on MAdCAM-1 were similar to values for E- and P-selectins. By contrast to results in Ca(2+) or Ca(2+) + Mg(2+), in Mg(2+) the alpha4beta7-MAdCAM-1 k(off) degrees decreased 20-fold to 0.046 s(-1), and the bond was weaker, providing an explanation for the finding of firm adhesion under these conditions. Shear enhanced tethering to MAdCAM-1, thereby contributing to the stability of rolling. Comparisons to selectins demonstrate that the kinetic and mechanical properties of the alpha4beta7 integrin are well suited to its intermediate position in adhesion cascades, in which it bridges rapid rolling through selectins to firm adhesion through beta2 integrins.  相似文献   

4.
Immobilized stromal cell-derived factor-1 alpha (SDF-1 alpha) has been shown to induce tight adhesion of T cells to purified ICAM-1 in assays done under flow conditions. In this study, we show that soluble SDF-1 alpha induced a rapid (within 20 s) cessation of rolling and tight adhesion of >90% of the rolling T cells on monolayers of activated endothelial cells under similar flow. Within 4 min, the T cells had either started to migrate between the endothelial cells or re-entered the rolling and circulating lymphocyte pool. This deadherence of the firmly bound cells, with either ensuing transmigration or continued rolling, was most likely due to desensitization of lymphocytes to the continuously present SDF-1 alpha. The released rolling lymphocytes could still respond to other activating signals by a second round of tight adhesion. Pretreating the lymphocytes with pertussis toxin almost completely blocked the effect of the chemokine, confirming that the induction of firm adhesion was due to the function of the chemokine on the lymphocytes and not the endothelial cells. Pretreating the endothelium with SDF-1 alpha did not lead to firm adhesion of subsequently added lymphocytes, also indicating that the effect was due to soluble, not endothelially bound, chemokine. Blocking experiments showed that the same molecules mediated rolling before and after SDF-1 alpha-induced tight adhesion. This is the first study to demonstrate the effect of soluble SDF-1 alpha on T cell rolling on an endothelial cell monolayer. The data broaden our understanding of the stimulatory factors directing the firm adhesion and ensuing transmigration of leukocytes into tissues through activated endothelium.  相似文献   

5.
The leukocyte beta 1 integrin receptor very late activation antigen-4 (VLA-4) (alpha 4 beta 1, CD49d/CD29) binds to vascular cell adhesion molecule-1 (VCAM-1) expressed on cytokine-activated endothelium. A mAb designated 8A2 was identified that stimulated the binding of U937 cells to CHO cells transfected with VCAM-1 cDNA but not endothelial-leukocyte adhesion molecule or CD4 cDNA. mAb 8A2 also rapidly stimulated the adherence of peripheral blood lymphocytes (PBLs) to VCAM-1-transfected CHO cells or recombinant human tumor necrosis factor-treated human umbilical vein endothelial cells. mAb 8A2-stimulated binding of PBL was inhibited by mAbs to VLA-4 or VCAM-1. Surface expression of VLA-4 was not altered by mAb 8A2 treatment and monovalent Fab fragments of mAb 8A2 were active. Immunoprecipitation studies reveal that mAb 8A2 recognizes beta 1-subunit (CD29) of integrin receptors. In contrast to mAbs directed to VLA-4 alpha-subunit (alpha 4, CD49d), mAb 8A2 did not induce homotypic aggregation of PBL. Additionally, mAb 8A2 stimulated adherence of PBL and hematopoietic cell lines to purified matrix components laminin and fibronectin. This binding was blocked by mAbs to the VLA alpha-subunits alpha 6 (CD49f), or alpha 5 (CD49e) and alpha 4 (CD49d), respectively. We conclude that mAb 8A2 modulates the affinity of VLA-4 and other leukocyte beta 1 integrins, and should prove useful in studying the regulation of beta 1 integrin function.  相似文献   

6.
Stromal cell-derived factor-1 (SDF-1; CXCL12), a CXC chemokine, has been found to be involved in inflammation models in vivo and in cell adhesion, migration, and chemotaxis in vitro. This study aimed to determine whether exogenous SDF-1 induces leukocyte recruitment in mice. After systemic administration of SDF-1alpha, expression of the adhesion molecules P-selectin and VCAM-1 in mice was measured using a quantitative dual-radiolabeled Ab assay and leukocyte recruitment in various tissues was evaluated using intravital microscopy. The effect of local SDF-1alpha on leukocyte recruitment was also determined in cremaster muscle and compared with the effect of the cytokine TNFalpha and the CXC chemokine keratinocyte-derived chemokine (KC; CXCL1). Systemic administration of SDF-1alpha (10 microg, 4-5 h) induced upregulation of P-selectin, but not VCAM-1, in most tissues in mice. It caused modest leukocyte recruitment responses in microvasculature of cremaster muscle, intestine, and brain, i.e., an increase in flux of rolling leukocytes in cremaster muscle and intestines, leukocyte adhesion in all three tissues, and emigration in cremaster muscle. Local treatment with SDF-1alpha (1 microg, 4-5 h) reduced leukocyte rolling velocity and increased leukocyte adhesion and emigration in cremasteric venules, but the responses were much less profound than those elicited by KC or TNFalpha. SDF-1alpha-induced recruitment was dependent on endothelial P-selectin, but not P-selectin on platelets. We conclude that the exogenous SDF-1alpha enhances leukocyte-endothelial cell interactions and induces modest and endothelial P-selectin-dependent leukocyte recruitment.  相似文献   

7.
Physical interaction between human lymphomas and murine bone marrow derived stromal cells were studied. Nalm-6 pre-B cells adhered to BMS2 stromal cells and subsequently migrated beneath them, while Ramos Burkitt lymphoma cells, adhered but did not migrate. Four mAbs were established against Nalm-6 cells, which were able to block initial adhesion of Nalm-6 cells. Two of them were directed against the alpha 4 chain of VLA-4, and other two recognized the beta 1 chain of VLA integrins. Therefore, the initial adhesion of Ramos and Nalm-6 cells to BMS2 was largely mediated by the VLA-4 integrin expressed on lymphocytes. The corresponding ligand on stromal cells appears to be VCAM-1, because antibodies against murine VCAM-1 blocked the adhesion. However, antibodies against the alpha chain of VLA-4 were not capable of blocking subsequent migration beneath stromal cells. In contrast, antibodies against the beta chain of VLA integrins blocked the migration beneath stromal cells as well as the initial adhesion. Because a common beta chain can be shared among integrins, the role of other VLA integrins in Nalm-6 cells migration was investigated. VLA-5 and VLA-6 as well as VLA-4 were expressed on Nalm-6 cells, but not on Ramos cells. Additional blocking experiments revealed that VLA-4 and VLA-5 are likely to work in concert to mediate the migration of Nalm-6 cells beneath stromal cells. Thus, particular VLA integrins appear to be responsible not only for lymphocyte adhesion but also for migration with respect to stromal cells. These findings may have implications for cell-cell interactions and directed migration of lymphocytes in bone marrow and other tissues.  相似文献   

8.
Cytokine-activated human endothelial cells express vascular cell adhesion molecule-1 (VCAM-1), which binds lymphocytes. We now identify the integrin VLA-4 as a receptor for VCAM-1 because VLA-4 surface expression on K-562 cells (following transfection of the VLA alpha 4 subunit cDNA) resulted in specific cell adhesion to VCAM-1, and anti-VLA-4 antibodies completely inhibited VCAM-1-dependent cell-cell attachment. In addition, VLA-4 expression allowed K-562 cells to attach to the heparin II binding region (FN-40) of fibronectin. However, VLA-4/VCAM-1 and VLA-4/FN-40 interactions are readily distinguishable: only the former was inhibited by the anti-VLA-4 monoclonal antibody HP1/3, and only the latter was inhibited by soluble FN-40. The VCAM-1/VLA-4 ligand-receptor pair may play a major role in the recruitment of mononuclear leukocytes to inflammatory sites in vivo.  相似文献   

9.
We investigated the role of H-Ras in chemokine-induced integrin regulation in leukocytes. Stimulation of Jurkat T cells with the CXC chemokine stromal cell-derived factor-1alpha (SDF-1alpha) resulted in a rapid increase in the phosphorylation, i.e., activation of extracellular signal receptor-activated kinase (ERK) but not c-Jun NH(2)-terminal kinase or p38 kinase, and phosphorylation of Akt, reflecting phosphatidylinositol 3-kinase (PI3-K) activation. Phosphorylation of ERK in Jurkat cells was enhanced and attenuated by expression of dominant active (D12) or inactive (N17) forms of H-Ras, respectively, while N17 H-Ras abrogated SDF-1alpha-induced Akt phosphorylation. SDF-1alpha triggered a transient regulation of adhesion to intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 mediated by lymphocyte function antigen-1 (LFA-1) and very late antigen-4 (VLA-4), respectively, and a rapid increase in LFA-1 binding to soluble ICAM-1.Ig, which was inhibited by D12 but not N17 H-Ras. Both D12 and N17 H-Ras abrogated the regulation of LFA-1 but not VLA-4 avidity, and impaired LFA-1-mediated transendothelial chemotaxis but not VLA-4-dependent transmigration induced by SDF-1alpha. Analysis of the mutant Jurkat J19 clone revealed LFA-1 with constitutively high affinity and reduced ERK phosphorylation, which were partially restored by expression of active H-Ras. Inhibition of PI3-K blocked the up-regulation of Jurkat cell adhesion to ICAM-1 by SDF-1alpha, whereas inhibition of mitogen-activated protein kinase kinase impaired the subsequent down-regulation and blocking both pathways abrogated LFA-1 regulation. Our data suggest that inhibition of initial PI3-K activation by inactive H-Ras or sustained activation of an inhibitory ERK pathway by active H-Ras prevail to abolish LFA-1 regulation and transendothelial migration induced by SDF-1alpha in leukocytes, establishing a complex and bimodal involvement of H-Ras.  相似文献   

10.
Inflammatory bowel disease is characterized by the recruitment of lymphocytes to the gut via mucosal vessels. Chemokines are believed to trigger alpha(4)beta(1)- and alpha(4)beta(7)-integrin-mediated adhesion to vascular cell adhesion molecule-1 (VCAM-1) and mucosal addressin cell adhesion molecule-1 (MAdCAM-1) on mucosal vessels, although the contribution of each pathway and the chemokines involved are not well characterized. These interactions occur under conditions of hemodynamic shear, which is critical in determining how lymphocytes integrate chemokine signals to promote transmigration. To define the role of specific chemokines in mediating lymphocyte adhesion to VCAM-1 and MAdCAM-1, we studied the ability of immobilized chemokines to activate adhesion of human lymphocytes in a flow-based adhesion assay. Adhesion to immobilized MAdCAM-1 was alpha(4)beta(7) dependent, with no contribution from alpha(4)beta(1), whereas alpha(4)beta(1) mediated rolling and static adhesion on VCAM-1. Immobilized CC-chemokine ligand (CCL) 25 and CCL28 were both able to trigger alpha(4)beta(7)-dependent lymphocyte arrest on MAdCAM-1 under shear, highlighting a potential role for these chemokines in the arrest of lymphocytes on postcapillary venules in the gut. Neither had any effect on adhesion to VCAM-1, suggesting that they selectively trigger alpha(4)beta(7)-mediated adhesion. Immobilized CCL21, CCL25, CCL28, and CXC-chemokine ligand (CXCL) 12 all converted rolling adhesion to static arrest on MAdCAM-1 by activating lymphocyte integrins, but only CCL21 and CXCL12 also triggered a motile phenotype characterized by lamelipodia and uropod formation. Thus alpha(4)beta(1)/VCAM-1 and alpha(4)beta(7)/MAdCAM-1 operate independently to support lymphocyte adhesion from flow, and chemokines may act in concert with one chemokine triggering integrin-mediated arrest and a second chemokine promoting motility and transendothelial migration.  相似文献   

11.
The integrin lymphocyte function-associated antigen-1 (alpha(L)beta(2)), which is known for its ability to mediate firm adhesion and migration, can also contribute to tethering and rolling in shear flow. The alpha(L) I domain can be mutationally locked with disulfide bonds into two distinct conformations, open and closed, which have high and low affinity for the ligand intercellular adhesion molecule 1 (ICAM-1), respectively. The wild type I domain exists primarily in the lower energy closed conformation. We have measured for the first time the effect of conformational change on adhesive behavior in shear flow. We show that wild type and locked open I domains, expressed in alpha(L)beta(2) heterodimers or as isolated domains on the cell surface, mediate rolling adhesion and firm adhesion, respectively. alpha(L)beta(2) is thus poised for the conversion of rolling to firm adhesion upon integrin activation in vivo. Isolated I domains are surprisingly more effective than alpha(L)beta(2) in interactions in shear flow, which may in part be a consequence of the presence of alpha(L)beta(2) in a bent conformation. Furthermore, the force exerted on the C-terminal alpha-helix appears to stabilize the open conformation of the wild type isolated I domain and contribute to its robustness in supporting rolling. An allosteric small molecule antagonist of alpha(L)beta(2) inhibits both rolling adhesion and firm adhesion, which has important implications for its mode of action in vivo.  相似文献   

12.
For functional studies of the integrin alpha 4 cytoplasmic domain, we have expressed the following in K562 and Chinese hamster ovary (CHO) cells: 1) wild-type alpha 4 (called X4C4), 2) two chimeric forms of alpha 4 (called X4C2 and X4C5) that contain the cytoplasmic domains of alpha 2 and alpha 5, respectively, and 3) alpha 4 with no cytoplasmic domain (X4C0). Cytoplasmic domain exchange had no effect on VLA-4-dependent static cell adhesion or tethering to VCAM-1 in conditions of shear flow. However, the presence of the alpha 2 or alpha 5 tails markedly enhanced VLA-4-dependent K562 cells spreading (X4C2 > X4C5 > X4C4 > X4C0), increased localization of VLA-4 into focal adhesion-like complexes in CHO cells (X4C2 > X4C5 > X4C4), and strengthened CHO and K562 cell resistance to detachment from VCAM-1 in conditions of shear flow (X4C2 > X4C5 > X4C4 > X4C0). Conversely, the alpha 4 tail supported greater VLA-4-dependent haptotactic and chemotactic cell migration. In the absence of any alpha tail (i.e., X4C0), robust focal adhesions were observed, even though cell spreading and adhesion strengthening were minimal. Thus, such focal adhesions may have relatively little functional importance, and should not be compared with focal adhesions formed when alpha tails are present. Together, these results indicate that all three alpha-chain tails exert defined positive effects (compared with no tail at all), but suggest that the alpha 4 cytoplasmic domain may be specialized to engage in weaker cytoskeletal interactions, leading to diminished focal adhesion formation, cell spreading, and adhesion strengthening, while augmenting cell migration and facilitating rolling under shear flow. These properties of the alpha 4 tail are consistent with the role of alpha 4 integrins on highly motile lymphocytes, monocytes, and eosinophils.  相似文献   

13.
The VLA-4 integrin supports static cell-cell, cell-matrix adhesion, and dynamic interactions with VCAM-1. Although functions for well-conserved beta(1) integrin cytoplasmic domains in regulating static cell adhesion has been established, the molecular basis for beta(1) integrin-dependent arrest on VCAM-1 under flow conditions remains poorly understood. We have transfected the beta(1) integrin-deficient A1 Jurkat T cell line with beta(1) cDNA constructs with deletions of the NPXY motifs and specific mutations of tyrosine residues. Deletion of either NPXY motif impaired static adhesion induced by CD2 or CD47 triggering or direct beta(1) integrin stimulation. In contrast, PMA-induced adhesion to VCAM-1 was unaffected by deletion of the NPIY motif and only slightly impaired by deletion of NPKY. Moreover, deletion of the NPIY motif resulted in enhanced rolling and reduced arrest on VCAM-1 under shear flow conditions. In contrast, deletion of the NPKY motif did not alter arrest under flow. Although tyrosine to phenylalanine substitutions within two NPXY motifs did not alter static adhesion to VCAM-1, these mutations enhanced arrest on VCAM-1 under flow conditions. Furthermore, although deletion of the C'-terminal 5 AA of the beta(1) cytoplasmic domain dramatically impaired activation-dependent static adhesion, it did not impair arrest on VCAM-1 under flow conditions. Thus, our results demonstrate distinct structural requirements for VLA-4 function under static and shear flow conditions. This may be relevant for VLA-4 activity regulation in different anatomic compartments, such as when circulating cells arrest on inflamed endothelium under shear flow and when resident cells in bone marrow interact with VCAM-1- positive stromal cells.  相似文献   

14.
VLA-4 (alpha4beta1) is a key integrin in lymphocytes, interacting with endothelial vascular cell adhesion molecule 1 (VCAM-1) on blood vessels and stroma. To dissect the contribution of the two cytoskeletal VLA-4 adaptor partners paxillin and talin to VLA-4 adhesiveness, we transiently knocked them down in Jurkat T cells and primary resting human T cells by small interfering RNA silencing. Paxillin was required for VLA-4 adhesiveness to low density VCAM-1 under shear stress conditions and was found to control mechanical stability of bonds mediated by the alpha4 subunit but did not affect the integrin affinity or avidity to VCAM-1 in shear-free conditions. Talin 1 maintained VLA-4 in a high affinity conformation, thereby promoting rapid VLA-4 adhesion strengthening to VCAM-1 under both shear stress and shear-free conditions. Talin 1, but not paxillin, was required for VLA-4 to undergo optimal stimulation by the prototypic chemokine, CXCL12, under shear stress conditions. Interestingly, talin 1 and paxillin played the same distinct roles in VLA-4 adhesions of primary T lymphocytes, although VLA-4 affinity to VCAM-1 was at least 200-fold lower in these cells than in Jurkat cells. Collectively, our results suggest that whereas paxillin is a mechanical regulator of VLA-4 bonds generated in the absence of chemokine signals and low VCAM-1 occupancy, talin 1 is a versatile VLA-4 affinity regulator implicated in both spontaneous and chemokine-triggered rapid adhesions to VCAM-1.  相似文献   

15.
Rats immunized with Mycobacterium butyricum in Freund's adjuvant develop a chronic vasculitis, with large increases in leukocyte rolling and adhesion in mesenteric postcapillary venules that are significantly inhibited with an alpha 4 integrin Ab. Using intravital microscopy to visualize chronically inflamed microvessels, we demonstrated that alpha 4 integrin-dependent leukocyte rolling and adhesion was inhibited with a beta 1 integrin, but not a beta 7 integrin Ab. To date, VCAM-1 has been presumed to be the primary ligand for alpha 4 beta 1 integrin in the vasculature. However, alpha 4 beta 1 integrin-dependent interactions were not reduced by monoclonal or polyclonal VCAM-1 Abs or a VCAM-1 antisense oligonucleotide despite increased VCAM-1 expression in the mesenteric vasculature. To ensure that the VCAM-1 Abs were functional and used at saturating concentrations, blood from Ab-treated rats was perfused over monolayers of CHO cells transfected with rat VCAM-1. Sufficient alpha 4 integrin or VCAM-1 Ab was present to inhibit leukocyte interactions with rat VCAM-1 by 95-100%. Under in vitro flow conditions, only mononuclear leukocytes were recruited from blood of control rats onto purified VCAM-1. However, neutrophils were also recruited onto VCAM-1 from whole blood of adjuvant-immunized animals via alpha 4 integrin. Another ligand for alpha 4 beta 1 integrin is the connecting segment-1 (CS-1) region of fibronectin. An Ab to the CS-1 portion of fibronectin, which did not reduce rolling and adhesion in adjuvant arthritis animals, completely inhibited leukocyte adhesion to CS-1 under static conditions. These findings provide the first evidence that alpha 4 beta 1 integrin-dependent leukocyte rolling and adhesion can occur in vivo via a mechanism other than VCAM-1.  相似文献   

16.
Activated lymphocyte function-associated antigen-1 (LFA-1, alphaLbeta2 integrin) found on leukocytes facilitates firm adhesion to endothelial cell layers by binding to intercellular adhesion molecule-1 (ICAM-1), which is up-regulated on endothelial cells at sites of inflammation. Recent work has shown that LFA-1 in a pre-activation, low-affinity state may also be involved in the initial tethering and rolling phase of the adhesion cascade. The inserted (I) domain of LFA-1 contains the ligand-binding epitope of the molecule, and a conformational change in this region during activation increases ligand affinity. We have displayed wild-type I domain on the surface of yeast and validated expression using I domain specific antibodies and flow cytometry. Surface display of I domain supports yeast rolling on ICAM-1-coated surfaces under shear flow. Expression of a locked open, high-affinity I domain mutant supports firm adhesion of yeast, while yeast displaying intermediate-affinity I domain mutants exhibit a range of rolling phenotypes. We find that rolling behavior for these mutants fails to correlate with ligand binding affinity. These results indicate that unstressed binding affinity is not the only molecular property that determines adhesive behavior under shear flow.  相似文献   

17.
The interaction between the integrin alpha(4)beta(7) and its ligand, mucosal addressin cell adhesion molecule-1, on high endothelial venules represents a key adhesion event during lymphocyte homing to secondary lymphoid tissue. Stromal cell-derived factor-1alpha (SDF-1alpha) is a chemokine that attracts T and B lymphocytes and has been hypothesized to be involved in lymphocyte homing. In this work we show that alpha(4)beta(7)-mediated adhesion of CD4(+) T lymphocytes and the RPMI 8866 cell line to mucosal addressin cell adhesion molecule-1 was up-regulated by SDF-1alpha in both static adhesion and cell detachment under shear stress assays. Both naive and memory phenotype CD4(+) T cells were targets of SDF-1alpha-triggered increased adhesion. In addition, SDF-1alpha augmented alpha(4)beta(7)-dependent adhesion of RPMI 8866 cells to connecting segment-1 of fibronectin. While pertussis toxin totally blocked chemotaxis of CD4(+) and RPMI 8866 cells to SDF-1alpha, enhanced alpha(4)beta(7)-dependent adhesion triggered by this chemokine was partially inhibited, indicating the participation of Galpha(i)-dependent as well as Galpha(i)-independent signaling. Accordingly, we show that SDF-1alpha induced a rapid and transient association between its receptor CXCR4 and Galpha(i), whereas association of pertussis toxin-insensitive Galpha(13) with CXCR4 was slower and of a lesser extent. SDF-1alpha also activated the small GTPases RhoA and Rac1, and inhibition of RhoA activation reduced the up-regulation of alpha(4)beta(7)-mediated lymphocyte adhesion in response to SDF-1alpha, suggesting that activation of RhoA could play an important role in the enhanced adhesion. These data indicate that up-regulation by SDF-1alpha of lymphocyte adhesion mediated by alpha(4)beta(7) could contribute to lymphocyte homing to secondary lymphoid tissues.  相似文献   

18.
Vascular cell adhesion molecule 1 (VCAM-1), a member of the Ig superfamily originally identified on activated endothelium, binds to the integrin very late antigen-4 (VLA-4), also known as alpha 4 beta 1 or CD49d/CD29, to support cell-cell adhesion. Studies based on cell adhesion to two alternatively spliced forms of VCAM-1 or to chimeric molecules generated from them and intercellular adhesion molecule-1 (ICAM-1) have demonstrated two VLA-4 binding sites on the predominate form of VCAM-1. Here, we studied VLA-4-dependent adhesion of the lymphoid tumor cell line Ramos to cells expressing wild type and mutant forms of VCAM-1. Results based on domain deletion mutants demonstrated the existence and independence of two VLA-4-binding sites located in the first and fourth domains of VCAM-1. Results based on amino acid substitution mutants demonstrated that residues within a linear sequence of six amino acids found in both domain 1 and 4 were required for VLA-4 binding to either domain. Five of these amino acids represent a conserved motif also found in ICAM domains. We propose that integrin binding to these Ig-like domains depends on residues within this conserved motif. Specificity of integrin binding to Ig-like domains may be regulated by a set of nonconserved residues distinct from the conserved motif.  相似文献   

19.
Lymphocyte migration to inflammatory sites is an essential factor in the pathogenesis of chronic inflammation. An ensemble of adhesion receptors mediating lymphocyte-endothelial cell recognition and binding are thought to play a crucial role in this process. In the present study, we have explored the molecular basis of lymphocyte adhesion to endothelium in the synovial membrane of patients with rheumatoid arthritis. We established that the very late antigen-4 [VLA-4 (CD49d)] and the vascular cell adhesion molecule-1 (VCAM-1) are important mediators of binding to synovial endothelium of resting and, to a greater extent, of activated T lymphocytes, whereas the leukocyte-function associated antigen-1 [LFA-1 (CD11a/18)]/intercellular adhesion molecule-1 [ICAM-1 (CD54)] pathway is less important in this interaction. In contrast to its prominent role in lymphocyte interaction with endothelium in rheumatoid synovium, the VLA-4/VCAM-1 pathway does not significantly contribute to lymphocyte adhesion to peripheral lymph node high endothelial venule. Thus, the VLA-4/VCAM-1 pathway may be of primary importance in mediating lymphocyte adhesion to inflamed endothelium and in lymphocyte homing to rheumatoid synovium.  相似文献   

20.
Rapid activation of integrins in response to chemokine-induced signaling serves as a basis for leukocyte arrest on inflamed endothelium. Current models of integrin activation include increased affinity for ligand, molecular extension, and others. In this study, using real-time fluorescence resonance energy transfer to assess alpha(4)beta(1) integrin conformational unbending and fluorescent ligand binding to assess affinity, we report at least four receptor states with independent regulation of affinity and unbending. Moreover, kinetic analysis of chemokine-induced integrin conformational unbending and ligand-binding affinity revealed conditions under which the affinity change was transient whereas the unbending was sustained. In a VLA-4/VCAM-1-specific myeloid cell adhesion model system, changes in the affinity of the VLA-4-binding pocket were reflected in rapid cell aggregation and disaggregation. However, the initial rate of cell aggregation increased 9-fold upon activation, of which only 2.5-fold was attributable to the increased affinity of the binding pocket. These data show that independent regulation of affinity and conformational unbending represents a novel and fundamental mechanism for regulation of integrin-dependent adhesion in which the increased affinity appears to account primarily for the increasing lifetime of the alpha(4)beta(1) integrin/VCAM-1 bond, whereas the unbending accounts for the increased capture efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号