首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
干旱下植物激素影响作物根系发育的研究进展   总被引:1,自引:0,他引:1  
植物激素是指在植物体内某些部位合成、可被运输到其他部位调控植物生长发育的微量有机物质,在植物生命活动中发挥重要作用。根系是作物吸收水分和养分的重要器官,其形态决定了作物获得养分和水分的能力。作物发达的根系与其抵抗干旱环境胁迫息息相关,而植物激素在作物根系发育中发挥关键作用,因此深入了解干旱胁迫下植物激素对作物根系发育的影响对农业的安全生产是至关重要的。本文就干旱胁迫下植物激素如何调控及不同激素协同调控作物根系生长发育的研究进行了概述,并讨论了激素在作物抗旱上应用的意义及将来可能开展的研究方向。  相似文献   

2.
植物根系形态对低磷胁迫应答的研究进展   总被引:15,自引:2,他引:13  
本文综述了近年来植物对磷营养高效吸收有关的根系形态方面的研究进展,总结了植物适应低磷胁迫的根系形态特征,以及植物适应低磷胁迫根系形态变化的激素调控的内在机制,着重阐述了植物适应低磷根系形态变化的分子生物学基础,并对开展此类工作的有效途径进行了探讨.  相似文献   

3.
本文综述了近年来植物对磷营养高效吸收有关的根系形态方面的研究进展, 总结了植物适应低磷胁迫的根系形态特征, 以及植物适应低磷胁迫根系形态变化的激素调控的内在机制, 着重阐述了植物适应低磷根系形态变化的分子生物学基础, 并对开展此类工作的有效途径进行了探讨。  相似文献   

4.
植物根系耐盐机制的研究进展   总被引:1,自引:0,他引:1  
植物根系能够摄取土壤环境中的养分与水分,在植物的生长发育中起重要的作用。植物根系由于直接与土壤环境相接触会受到非生物胁迫较大的影响。盐胁迫是主要的非生物胁迫之一,对植物根系会产生较大的伤害。综述根系在组织形态和细胞水平上对盐胁迫的应答,以及根系响应盐胁迫的信号传导途径、转录因子与基因,对植物根部耐盐机制的解析和植物耐盐基因工程工具基因的挖掘具有重要意义。  相似文献   

5.
连作障碍与根际微生态研究Ⅱ.根系分泌物与酚酸物质   总被引:69,自引:6,他引:63  
阐述了作物主要根系分泌物与作物种类、生长期以及与所处环境的关系。并从植物的残体分解、作物根系的分泌等方面论述了土壤中酚酸物质的来源、存在形态、吸附机理及其对作物生长发育与土壤生物活性的影响与机制。  相似文献   

6.
植物根系响应低磷胁迫的机理研究   总被引:3,自引:0,他引:3  
磷是植物生长的必需营养元素之一。但大部分土壤中有效磷含量较低,难以满足植物生长的需求。作物磷效率遗传改良是解决土壤磷供应不足的有效途径。根系是植物吸收矿质营养元素的主要器官,其性状决定了植物对土壤磷的吸收利用效率。解析根系对低磷胁迫的响应机制是进行作物磷效率遗传改良的基础。主要介绍了近年来关于植物根系响应低磷胁迫机理的重要研究成果。  相似文献   

7.
土壤有效磷(P)含量低是限制植物生长的主要因素之一。根形态变化和根系大量分泌以柠檬酸为主的有机酸是植物适应土壤P素缺乏的重要机制。以广泛分布于我国北方的重要豆科牧草黄花苜蓿(Medicago falcata)和豆科模式植物蒺藜苜蓿(M. truncatula)为材料, 采用砂培方法, 研究了低P胁迫对其植株生长、根系形态和柠檬酸分泌的影响, 对比了两种苜蓿适应低P胁迫的不同策略。结果表明: 1)低P处理显著抑制了蒺藜苜蓿与黄花苜蓿的地上部生长, 而对地下部生长影响较小, 从而导致根冠比增加。2)低P胁迫显著降低黄花苜蓿的总根长和侧根长, 而对蒺藜苜蓿的上述根系形态指标没有显著影响。3)低P胁迫促进两种苜蓿根系的柠檬酸分泌, 无论是在正常供P还是低P胁迫条件下, 黄花苜蓿根系分泌柠檬酸量显著高于蒺藜苜蓿根系。上述结果表明, 黄花苜蓿和蒺藜苜蓿对低P胁迫的适应策略不同, 低P胁迫下, 黄花苜蓿主要通过根系大量分泌柠檬酸, 活化根际难溶态P来提高对P的吸收, 而蒺藜苜蓿维持较大的根系是其适应低P胁迫的主要策略。  相似文献   

8.
小麦根系与土壤水分胁迫关系的研究进展   总被引:42,自引:3,他引:39  
几十年来,大量科学工作者为拓宽小麦根系对土壤水分的吸收能力和调控根系对干旱的适应能力,挖掘干旱地区的生产潜力,实现高产做了大量细致的研究工作,取得了许多重要研究成果,综述了土壤水分胁迫对小麦根系形态、构型建成和生理指标影响的影响。过去进行的研究表明,干旱胁迫条件下,不仅表达小麦根系形态和构型建成指标的根系数量、根系比表面积、根冠比、根生长势、根水势,导管直径等发生显著变化,而且表达根系生理指标的伤流流、根呼吸速率、根系质膜透性、膜脂过氧化水平、保护酶及其同工酶等也发生相应改变,虽然不同的研究者所获得的研究结果不同,有的甚至相互矛盾,但从总体看,各种变要是对干旱胁迫的一种适应性反应,有利于提高小麦的抗旱能力,对干旱条件下产量的形成具有重要作用。  相似文献   

9.
不同基因型春蚕豆对磷胁迫的适应性反应   总被引:16,自引:0,他引:16  
张恩和  张新慧  王惠珍 《生态学报》2004,24(8):1589-1593
利用不同作物或品种吸收利用土壤磷能力的差异提高磷素营养效率,是解决磷资源短缺的重要生物学途径.选择西北地区重要经济作物春蚕豆作为研究对象,选用3个不同春蚕豆品种(系),采用严重缺磷的碱性灌淤土,利用盆栽法研究了在不同供磷水平下不同基因型蚕豆的根系形态特征、酸性磷酸酶活性(APase)及产量的表现, 探讨不同基因型蚕豆对低磷胁迫的适应性反应.结果表明在整个生长过程中根长、根半径、根比表面积和根冠比变动最明显的是临蚕5号,分别为36.40%,65.10%、65.27%和13. 46%;缺磷条件下,蚕豆主要通过减小根半径,增加根长、根表面积,提高根冠比及体内酸性磷酸酶活性来实现对低磷胁迫的适应;不同基因型对低磷胁迫的适应能力不同;缺磷胁迫明显诱导各基因型蚕豆体内酸性磷酸酶活性的上升,临蚕5号增加最快为24.9%,8409为7. 79%,8354为7.29%;同一基因型的不同器官中酸性磷酸酶活性大小表现为根系>茎部>叶片 .根系酸性磷酸酶和根系形态参数可分别作为蚕豆耐低磷品种筛选的选择指标;缺磷导致作物减产,并且不同的基因型作物减产的幅度不同,临蚕5号缺磷比施磷减产30.98%,而8354 的产量在两个磷水平下变化不明显,说明临蚕5号对磷素的反应最强烈,为磷低效基因型,而 8354反应比较迟钝,为磷高效基因型.  相似文献   

10.
盐胁迫是影响植物生长发育重要的环境因子之一,为了适应及抵御盐胁迫危害的逆境,作物自身会通过一系列变化来适应环境而作出相关性应激性改变,如宏观形态学、生理学改变、微观分子生物学变化等。转录调控是细胞内部调控网络中最重要的一个环节,WRKY转录因子响应并参与多种植物的生物和非生物胁迫。本综述从盐胁迫下作物形态结构的变化、盐胁迫对作物生理代谢的影响以及WRKY转录因子参与作物抗盐调控网络等方面文献,来汇总分析近年来拟南芥、水稻及其他种类植物应对胁迫的响应机制以及WRKY转录因子的功能,为提高园艺作物抗盐性生理作用及分子机制提供帮助,同时为作物抗盐栽培提供新思路。  相似文献   

11.
Wan  Liqiang  Li  Yue  Li  Shuo  Li  Xianglin 《Journal of Plant Growth Regulation》2022,41(1):92-112
Journal of Plant Growth Regulation - Drought stress is a primary abiotic stress that causes the crop losses worldwide. Under drought conditions, root growth is determined by the action of...  相似文献   

12.
The hot pepper xyloglucan endo-trans-gluco-sylase/hydrolase (CaXTH3) gene that was inducible by a broad spectrum of abiotic stresses in hot pepper has been reported to enhance tolerance to drought and high salinity in transgenic Arabidopsis. To assess whether CaXTH3 is a practically useful target gene for improving the stress tolerance of crop plants, we ectopically over-expressed the full-length CaXTH3 cDNA in tomato (Solanum lycopersicum cv. Dotaerang) and found that the 35S:CaXTH3 transgenic tomato plants exhibited a markedly increased tolerance to salt and drought stresses. Transgenic tomato plants exposed to a salt stress of 100?mM NaCl retained the chlorophyll in their leaves and showed normal root elongation. They also remained green and unwithered following exposure to 2?weeks of dehydration. A high proportion of stomatal closures in 35S:CaXTH3 was likely to be conferred by increased cell-wall remodeling activity of CaXTH3 in guard cell, which may reduce transpirational water loss in response to dehydration stress. Despite this increased stress tolerance, the transgenic tomato plants showed no detectable phenotype defects, such as abnormal morphology and growth retardation, under normal growth conditions. These results raise the possibility that CaXTH3 gene is appropriate for application in genetic engineering strategies aimed at improving abiotic stress tolerance in agriculturally and economically valuable crop plants.  相似文献   

13.
14.
The hot pepper xyloglucan endo-trans-gluco-sylase/hydrolase (CaXTH3) gene that was inducible by a broad spectrum of abiotic stresses in hot pepper has been reported to enhance tolerance to drought and high salinity in transgenic Arabidopsis. To assess whether CaXTH3 is a practically useful target gene for improving the stress tolerance of crop plants, we ectopically over-expressed the full-length CaXTH3 cDNA in tomato (Solanum lycopersicum cv. Dotaerang) and found that the 35S:CaXTH3 transgenic tomato plants exhibited a markedly increased tolerance to salt and drought stresses. Transgenic tomato plants exposed to a salt stress of 100 mM NaCl retained the chlorophyll in their leaves and showed normal root elongation. They also remained green and unwithered following exposure to 2 weeks of dehydration. A high proportion of stomatal closures in 35S:CaXTH3 was likely to be conferred by increased cell-wall remodeling activity of CaXTH3 in guard cell, which may reduce transpirational water loss in response to dehydration stress. Despite this increased stress tolerance, the transgenic tomato plants showed no detectable phenotype defects, such as abnormal morphology and growth retardation, under normal growth conditions. These results raise the possibility that CaXTH3 gene is appropriate for application in genetic engineering strategies aimed at improving abiotic stress tolerance in agriculturally and economically valuable crop plants.  相似文献   

15.
Plant and Soil - Drought is the main abiotic stress affecting Mediterranean forests. Root systems are responsible for water uptake, but intraspecific variability in tree root morphology is poorly...  相似文献   

16.
Enhancing drought tolerance in C(4) crops   总被引:1,自引:0,他引:1  
Adaptation to abiotic stresses is a quantitative trait controlled by many different genes. Enhancing the tolerance of crop plants to abiotic stresses such as drought has therefore proved to be somewhat elusive in terms of plant breeding. While many C(4) species have significant agronomic importance, most of the research effort on improving drought tolerance has focused on maize. Ideally, drought tolerance has to be achieved without penalties in yield potential. Possibilities for success in this regard are highlighted by studies on maize hybrids performed over the last 70 years that have demonstrated that yield potential and enhanced stress tolerance are associated traits. However, while our understanding of the molecular mechanisms that enable plants to tolerate drought has increased considerably in recent years, there have been relatively few applications of DNA marker technologies in practical C(4) breeding programmes for improved stress tolerance. Moreover, until recently, targeted approaches to drought tolerance have concentrated largely on shoot parameters, particularly those associated with photosynthesis and stay green phenotypes, rather than on root traits such as soil moisture capture for transpiration, root architecture, and improvement of effective use of water. These root traits are now increasingly considered as important targets for yield improvement in C(4) plants under drought stress. Similarly, the molecular mechanisms underpinning heterosis have considerable potential for exploitation in enhancing drought stress tolerance. While current evidence points to the crucial importance of root traits in drought tolerance in C(4) plants, shoot traits may also be important in maintaining high yields during drought.  相似文献   

17.
Chickpea (Cicer arietinum L.) is an important food legume crop, particularly for the arid regions including Indian subcontinent. Considering the detrimental effect of drought, temperature and salt stress on crop yield, efforts have been initiated in the direction of developing improved varieties and designing alternate strategies to sustain chickpea production in adverse environmental conditions. Identification of genes that confer abiotic stress tolerance in plants remains a challenge in contemporary plant breeding. The present study focused on the identification of abiotic stress responsive genes in chickpea based on sequence similarity approach exploiting known abiotic stress responsive genes from model crops or other plant species. Ten abiotic stress responsive genes identified in other plants were partially amplified from eight chickpea genotypes and their presence in chickpea was confirmed after sequencing the PCR products. These genes have been functionally validated and reported to play significant role in stress response in model plants like Arabidopsis, rice and other legume crops. Chickpea EST sequences available at NCBI EST database were used for the identification of abiotic stress responsive genes. A total of 8,536 unique coding long sequences were used for identification of chickpea homologues of these abiotic stress responsive genes by sequence similarity search (BLASTN and BLASTX). These genes can be further explored towards achieving the goal of developing superior chickpea varieties providing improved yields under stress conditions using modern molecular breeding approaches.  相似文献   

18.
Assessment of yield performance under fluctuating environmental conditions is a major aim of crop breeders. Unfortunately, results from controlled‐environment evaluations of complex agronomic traits rarely translate to field performance. A major cause is that crops grown over their complete lifecycle in a greenhouse or growth chamber are generally constricted in their root growth, which influences their response to important abiotic constraints like water or nutrient availability. To overcome this poor transferability, we established a plant growth system comprising large refuse containers (120 L ‘wheelie bins’) that allow detailed phenotyping of small field‐crop populations under semi‐controlled growth conditions. Diverse winter oilseed rape cultivars were grown at field densities throughout the crop lifecycle, in different experiments over 2 years, to compare seed yields from individual containers to plot yields from multi‐environment field trials. We found that we were able to predict yields in the field with high accuracy from container‐grown plants. The container system proved suitable for detailed studies of stress response physiology and performance in pre‐breeding populations. Investment in automated large‐container systems may help breeders improve field transferability of greenhouse experiments, enabling screening of pre‐breeding materials for abiotic stress response traits with a positive influence on yield.  相似文献   

19.
Biotechnological perspectives of microbes in agro-ecosystems   总被引:1,自引:0,他引:1  
In subsistence agricultural systems, crop yields are directly dependent on the inherent soil fertility and on microbial processes that govern the mineralization and mobilization of nutrients required for plant growth. An impact of different crop species that are used in various combinations is likely to be an important factor in determining the structure of plant beneficial microbial communities that function in nutrient cycling, the production of plant growth hormones, and suppression of root diseases. In addition, studies are needed to elucidate the signal transduction pathways that result from treatment of plants with plant growth-promoting rhizobacteria under stress conditions. In the present review an emphasis has been given on plant–microbe interactions and their mitigation under abiotic and biotic stresses.  相似文献   

20.

Background

Aluminium (Al) toxicity and drought stress are two major constraints for crop production in the world, particularly in the tropics. The variation in rainfall distribution and longer dry spells in much of the tropics during the main growing period of crops are becoming increasingly important yield-limiting factors with the global climate change. As a result, crop genotypes that are tolerant of both drought and Al toxicity need to be developed.

Scope

The present review mainly focuses on the interaction of Al and drought on root development, crop growth and yield on acid soils. It summarizes evidence from our own studies and other published/related work, and provides novel insights into the breeding for the adaptation to these combined abiotic stresses. The primary symptom of Al phytotoxicity is the inhibition of root growth. The impeded root system will restrict the roots for exploring the acid subsoil to absorb water and nutrients which is particularly important under condition of low soil moisture in the surface soil under drought. Whereas drought primarily affects shoot growth, effects of phytotoxic Al on shoot growth are mostly secondary effects that are induced by Al affecting root growth and function, while under drought stress root growth may even be promoted. Much progress has recently been made in the understanding of the physiology and molecular biology of the interaction between Al toxicity and drought stress in common bean (Phaseolus vulgaris L.) in hydroponics and in an Al-toxic soil.

Conclusions

Crops growing on acid soils yield less than their potential because of the poorly developed root system that limits nutrient and water uptake. Breeding for drought resistance must be combined with Al resistance, to assure that drought resistance is expressed adequately in crops grown on soils with acid Al-toxic subsoils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号