首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
Exciton calculations on tubular pigment aggregates similar to recently proposed models for BChl c/d/e antennae in light-harvesting chlorosomes from green photosynthetic bacteria yield electronic absorption spectra that are super-impositions of linear J-aggregate spectra. While the electronic spectroscopy of such antennae differs considerably from that of linear J-aggregates, tubular exciton models (which may be viewed as cross-coupled J-aggregates) may be constructed to yield spectra that resemble that of the BChl c antenna in the green bacterium Chloroflexus aurantiacus. Highly symmetric tubular models yield absorption spectra with dipole strength distributions essentially identical to that of a J-aggregate; strong symmetry-breaking is needed to simulate the absorption spectrum of the BChl c antenna.Abbreviations BChl bacteriochlorophyll - [E,M] BChl c S bacteriochlorophyll c with ethyl and methyl substituents in the 8- and 12-positions, and with stearol as the esterifying alcohol  相似文献   

2.
We determined the concentrations of bacteriochlorophylls (BChl) in the light-harvesting antennae of Oscillochloris trichoides (of the family Oscillochloridaceae belonging to green filamentous mesophilic bacteria) cultivated either with gabaculine, an inhibitor of the C-5 pathway of BChl biosynthesis in a number of bacteria, or at various illumination intensities. We determined the BChl c: BChl a molar ratios in intact cells, in chlorosome-membrane complexes, and in isolated chlorosomes. We revealed that BChl c synthesis in Osc. trichoides was more gabaculine-sensitive than BChl a synthesis. Accordingly, an increase in gabaculine concentrations in the medium resulted in a decrease in the BChl c: BChl a ratio in the tested samples. We suggest that BChl synthesis in Osc. trichoides proceeds via the C-5 pathway, similar to representatives of other families of green bacteria (Chlorobium limicola and Chloroflexus aurantiacus). We demonstrated that the BChl c: BChl a ratio in the chlorosomes varied from 55: 1 to 110: 1, depending on light intensity. This ratio is, therefore, closer to that of Chlorobiaceae, and it significantly exceeds the BChl c: BChl a ratio in Chloroflexaceae.  相似文献   

3.
We have studied the pigment arrangement in purified cytoplasmic membranes of the thermophilic green bacterium Chloroflexus aurantiacus. The membranes contain 30–35 antenna bacteriochlorophyll a molecules per reaction center; these are organized in the B808–866 light-harvesting complex, together with carotenoids in a 2:1 molar ratio. Measurements of linear dichroism in a pressed polyacrylamide gel permitted the accurate determination of the orientation of the optical transition dipole moments with respect to the membrane plane. Combination of linear dichroism and low temperature fluorescence polarization data shows that the Qy transitions of the BChl 866 molecules all lie almost perfectly parallel to the membrane plane, but have no preferred orientation within the plane. The BChl 808 Qy transitions make an average angle of about 44° with this plane. This demonstrates that there are clear structural differences between the B808–866 complex of C. aurantiacus and the B800–850 complex of purple bacteria. Excitation energy transfer from carotenoid to BChl a proceeds with about 40% efficiency, while the efficiency of energy transfer from BChl 808 to BChl 866 approaches 100%. From the minimal energy transfer rate between the two spectral forms of BChl a, obtained by analysis of low temperature fluorescence emission spectra, a maximal distance between BChl 808 and BChl 866 of 23 was derived.Abbreviations BChl bacteriochlorophyll - BPheo bacteriopheophytin - CD circular dichroism - LD linear dichroism - Tris Tris(hydroxymethyl)aminomethane  相似文献   

4.
The first committed step in the biosynthesis of (bacterio-)chlorophyll is the insertion of Mg2+ into protoporphyrin IX by Mg-chelatase. In all known (B)Chl-synthesizing organisms, Mg-chelatase is encoded by three genes that are homologous to bchH, bchD, and bchI of Rhodobacter spp. The genomes of all sequenced strains of green sulfur bacteria (Chlorobi) encode multiple bchH paralogs, and in the genome of Chlorobaculum tepidum, there are three bchH paralogs, denoted CT1295 (bchT), CT1955 (bchS), and CT1957 (bchH). Cba. tepidum mutants lacking one or two of these paralogs were constructed and characterized. All of the mutants lacking only one of these BchH homologs, as well as bchS bchT and bchH bchT double mutants, which can only produce BchH or BchS, respectively, were viable. However, attempts to construct a bchH bchS double mutant, in which only BchT was functional, were consistently unsuccessful. This result suggested that BchT alone is unable to support the minimal (B)Chl synthesis requirements of cells required for viability. The pigment compositions of the various mutant strains varied significantly. The BChl c content of the bchS mutant was only ~10% of that of the wild type, and this mutant excreted large amounts of protoporphyrin IX into the growth medium. The observed differences in BChl c production of the mutant strains were consistent with the hypothesis that the three BchH homologs function in end product regulation and/or substrate channeling of intermediates in the BChl c biosynthetic pathway. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
The transfer of excitation energy and the pigment arrangement in isolated chlorosomes of the thermophilic green bacterium Chloroflexus aurantiacus were studied by means of absorption, fluorescence and linear dichroism spectroscopy, both at room temperature and at 4 K. The low temperature absorption spectrum shows bands of the main antenna pigments BChl c and carotenoid, in addition to which bands of BChl a are present at 798 and 613 nm. Fluorescence measurements showed that excitation energy from BChl c and carotenoid is transferred to BChl a, which presumably functions as an intermediate in energy transfer from the chlorosome to the cytoplasmic membrane. Measurements of fluorescence polarization and the use of two different orientation techniques for linear dichroism experiments enabled us to determine the orientation of several transition dipole moments with respect to each other and to the three principal axes of the chlorosome. The Qy transition of BChl a is oriented almost perfectly perpendicular to the long axis of the chlorosome. The Qy transition of BChl c and the -carotene transition dipole are almost parallel to each other. They make an angle of about 40° with the long axis and of about 70° with the short axis of the chlorosome; the angle between these transitions and the BChl a Qy transition is close to the magic angle (55°).Abbreviations BChl bacteriochlorophyll - CD circular dichroism - LD linear dichroism Dedicated to Prof. L.N.M. Duysens on the occasion of his retirement.  相似文献   

6.
Room temperature absorption difference spectra were measured on the femtosecond through picosecond time scales for chlorosomes isolated from the green bacterium Chloroflexus aurantiacus. Anomalously high values of photoinduced absorption changes were revealed in the BChl c Qy transition band. Photoinduced absorption changes at the bleaching peak in the BChl c band were found to be 7–8 times greater than those at the bleaching peak in the BChl a band of the chlorosome. This appears to be the first direct experimental proof of excitation delocalization over many BChl c antenna molecules in the chlorosome.  相似文献   

7.
Green sulfur bacteria (GSB) rely on the chlorosome, a light-harvesting apparatus comprised almost entirely of self-organizing arrays of bacteriochlorophyll (BChl) molecules, to harvest light energy and pass it to the reaction center. In Chlorobaculum tepidum, over 97% of the total BChl is made up of a mixture of four BChl c homologs in the chlorosome that differ in the number and identity of alkyl side chains attached to the chlorin ring. C. tepidum has been reported to vary the distribution of BChl c homologs with growth light intensity, with the highest degree of BChl c alkylation observed under low-light conditions. Here, we provide evidence that this functional response at the level of the chlorosome can be induced not only by light intensity, but also by temperature and a mutation that prevents phototrophic thiosulfate oxidation. Furthermore, we show that in conjunction with these functional adjustments, the fraction of cellular volume occupied by chlorosomes was altered in response to environmental conditions that perturb the balance between energy absorbed by the light-harvesting apparatus and energy utilized by downstream metabolic reactions.  相似文献   

8.
Positive and negative bands in previously measured circular dichroism (CD) spectra of Chlorobium limicola chlorosomes appeared to be sign-reversed relative to those of Chloroflexus aurantiacus chlorosomes in the 740–750 nm spectral region where bacteriochlorophyll (BChl) c absorbs maximally. It was not clear, however, whether this difference was intrinsic to the chlorosomes or was due to differences in the procedures used to prepare them. We therefore repeated the CD measurements using chlorosomes isolated from both Cb. limicola f. thiosulfatophilum and Cf. aurantiacus using the method of Gerola and Olson (1986, Biochim. Biophys. Acta 848: 69–76). Contrary to the earlier results, both types of chlorosomes had very similar CD spectra, suggesting that both have similar arrangements of BChl c molecules. The previously reported difference between the CD spectra of Chlorobium and Chloroflexus chlorosomes is due to the instability of Chlorobium chlorosomes, which can undergo a hypsochromic shift in their near infrared absorption maximum accompanied by an apparent inversion in their near infrared CD spectrum during isolation. Treating isolated chlorosomes with the strong ionic detergent sodium dodecylsulfate, which removes BChl a, does not alter the arrangement of BChl c molecules in either Chloroflexus or Chlorobium chlorosomes, as indicated by the lack of an effect on their CD spectra.Abbreviations BChl bacteriochlorophyll - Cb. Chlorobium - CD circular dichroism - Cf. Chloroflexus - NIR near infrared  相似文献   

9.
The complete carotenoid composition of the thermophilic green sulfur bacterium Chlorobium tepidum strain TNO was determined by spectroscopic methods. Major carotenoids were four kinds of carotenes: γ-carotene, chlorobactene, and their 1′,2′-dihydro derivatives (1′,2′-dihydro-γ-carotene and 1′,2′-dihydrochlorobactene). In lesser amounts, hydroxyl γ-carotene, hydroxyl chlorobactene, and their glucoside fatty acid esters were found. The only esterified fatty acid present was laurate, and OH-chlorobactene glucoside laurate is a novel carotenoid. In other strains of C. tepidum, the same carotenoids were found, but the composition varied from strain to strain. The overall pigment composition in cells of strain TNO was 4 mol carotenoids and 40 mol bacteriochlorophyll c per mol bacteriochlorophyll a. The effects of nicotine on carotenoid biosynthesis in C. tepidum differed from those in the thermophilic green nonsulfur bacterium Chloroflexus aurantiacus. Received: 3 February 1997 / Accepted: 6 June 1997  相似文献   

10.
The development of chlorosomes and their pigmentation were studied by growing Chloroflexus aurantiacus strain Ok-7o-fl first under conditions under which BChl c-synthesis is low (50°C, 2000 lux and 30°C, 1500 lux) and subsequently under conditions promoting high BChl c-synthesis (50°C, 400 lux). Electron microscopic observations on and chemical analyses of isolated cell components showed that in BChl c-depleted cells chlorosome-like structures (chlorosome bags) are attached to fragments of cytoplasmic membranes. These chlorosome bags exhibit a periodic fine structure caused by the construction of the baseplates of the chlorosomes. The baseplates are closely attached to the cytoplasmic membrane, they are rich in phospholipids and apparently contain a 790 nm-BChl a-complex. Chlorosome bags of BChl c-depleted cells always contain a limited amount of light-harvesting pigment complexes (BChlc, - and -carotene). The light-harvesting system is restored (50°C, 400 lux) by first refilling the existing chlorosome bags before cell division takes place.Abbreviations BChl Bacteriochlorophyll - LH Light-harvesting complex - RC Reaction center  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号