首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Based on plot investigation, stem analysis and radial growth pattern, the authors studied the history of suppression, release and regeneration strategies of Fagus engleriana Seem. and Quercus aliena var. acuteserrata Maxim. forests, which were widely distributed in Shennongjia of Hubei Province. It was found that (85.9 ± 6.9) % of the Fagus engleriana samples showed periods of suppression during their canopy recruitment. The average number of suppression periods was 2.1 ± 0.8, the average total length of suppression time was (47 ± 24.1) a, the length of longest suppression time was 73 a, the average number of periods of release was 1.6±0.7, and the average total length of release time was 23 a. (60.83±17.3)% of the Quercus aliena var. acuteserrata samples showed periods of suppression but without release. Combined with height and radial growth characteristics, these suggest that Fagus engleriana was shade-tolerant species, and its regeneration strategies was release from seedling sprouts in canopy gaps, while Quercus aliena var. acuteserrata was shade-intolerant species, and its regeneration strategies was seedling establishment and growth in large canopy gaps by producing large amount of seeds.  相似文献   

2.
《Dendrochronologia》2014,32(1):62-70
On the Virginia Tech campus, adjacent to the football stadium is a 4.6-ha forest fragment that contains a population of unusually large white oak (Quercus alba L.) trees. We used dendroecology and sampled vegetation in fixed area plots to reconstruct the disturbance history of this forest fragment and compared the radial-growth averaging criteria and the boundary-line release criteria for identifying canopy disturbances. Structurally, the Stadium Woods has an inverse-J diameter distribution and trees present in all canopy strata. The oldest white oak had periods of asynchronous suppression and release indicating a closed canopy forest with periodic canopy disturbances. The boundary-line release criteria detect a broader range of growth releases, whereas the radial-growth averaging criteria are more specialized for capturing canopy gaps. Release events identified with the boundary-line release criteria lagged an average of 5.8 years behind those identified with the radial-growth averaging criteria because the boundary line release criteria identifies the year of maximum percent growth change, whereas the radial-growth averaging criteria identifies the first year with a detectable increase in radial growth. The Stadium Woods represents a unique collection of unusually large white oak trees growing in a heavily populated area and reveals the importance of long-term tree-ring chronologies stored within urban forest fragments.  相似文献   

3.
This study examined the temporal patterns of establishment, suppression, and release of major tree species in two old-growth Ohio forest remnants as a means to determine the past disturbance history of these forests. Increment cores were taken from a total of 154 trees from two well-drained, upland plots and two poorly-drained, bottomland plots in each of the two forested areas. Acer saccharum and Fagus grandifolia exhibited multiple episodes of suppression and release prior to becoming canopy trees, and could tolerate suppressions as long as 84 years. In contrast, Quercus macrocarpa, Q. muehlenbergii, Prunus serotina, and Acer saccharinum rerely exhibited any tolerance to suppression and appeared to have entered the canopy after single disturbances had opened large areas of canopy. There was clear synchrony in the temporal pattern of establishment and final release from suppression among trees from bottomland plots scattered throughout the stands, indicating that relatively large disturbances were important in these poorly-drained areas. In contrast, there was little synchrony among trees from well-drained upland plots, except in a single instance where selective cutting of Quercus trees opened the canopy. Thus, the canopy of upland site was likely subjected only to small disturbances resulting from the death of one or a few trees. At the whole of forest level, there was evidence of episodic recruitment of canopy trees in both forests. Establishment of Fraxinus spp. and Quercus spp. were particularly episodic, and few Fraxinus or Quercus trees alive today established during the last century. These data suggest that large disturbances have affected canopy dynamics of both upland and bottomland areas prior to 1900 and in bottomland forests through this century. In contrast, disturbances in upland areas during this century have been restricted to small, treefall-generated canopy gaps.  相似文献   

4.
Parish R  Antos JA 《Oecologia》2004,141(4):562-576
Old-growth forests are common in the snowy, montane environments of coastal western North America. To examine dynamics of a stand containing four canopy tree species (Abies amabilis, Chamaecyparis nootkatensis, Tsuga mertensiana and T. heterophylla), we used four stem-mapped, 50 m ×50 m plots. From measurements of annual rings, we obtained ages from basal discs of 1,336 live trees, developed master chronologies for each species, reconstructed early growth rates, and delineated periods of release. The stand was ancient; individuals of all four species exceeded 900 years in age, and the oldest tree exceeded 1,400 years. The four plots differed in the timing of events, and we found no evidence of major, stand-level disturbance. Instead the stand was structured by small-scale patch dynamics, resulting from events that affected one to several trees and initiated episodes of release and relatively rapid early growth. The species differed in age structure and dynamics. A. amabilis and T. heterophylla had a classical reverse-J age structure indicative of stable populations, whereas C. nootkatensis and T. mertensiana appeared to rely on local episodes of increased recruitment, which were often separated by centuries, and were probably related to multiple-tree gaps that occurred infrequently. However, such gaps could be considered normal in the long-term history of the stand, and thus these species with their long life spans can persist. Most individuals of all four species grew extremely slowly, with trees typically spending centuries in the understory before reaching the canopy, where they were able to persist for additional centuries. Thus, the key features of this forest are the very slow dynamics dominated by small-scale events, and the slow growth of stress-tolerant trees.  相似文献   

5.
Disturbance history of an old-growth subalpine fir (Abies fargesii) forest in the Shennongjia Mountains of central China was reconstructed using dendroecological methods. Increment cores were extracted from 468 trees within six 100 m × 50 m permanent transects distributed across the old-growth subalpine fir forest of 300 ha. Growth patterns of 299 fir cores were examined for abrupt increases in radial growth to indicate formation of past canopy gaps and for rapid early radial growth to indicate establishment in past canopy gaps. The results showed that 70.8 % of the canopy fir trees experienced an average of 0.78 (ranging from 0 to 2) major release event for an average of 15.8 (ranging from 10 to 24) years, and an average of 1.94 (ranging from 0 to 3) moderate release events for an average of 25.6 (ranging from 10 to 36) years before they reached canopy. Recruitment pulse of trees coincided temporally with the peak of disturbance rate from the 1900s to the 1910s, suggesting occurrence of intense disturbance events during the time period. Radial growth analyses indicated that a history with small-scale disturbance events has resulted in the formation of the old-growth subalpine fir forest, and stand-replacing disturbances might not be necessary for the development of the forest. This study provides strong evidence that there are substantial variations in the disturbance severity and frequency over time. Most disturbance events might rather cause treefall gaps than clear large areas of forest at once. Thus, the old-growth subalpine fir forest experienced frequent gap-scale disturbances and few large-scale disturbances in its development history.  相似文献   

6.
Dendroecological methods that use growth releases to reconstruct the history of canopy disturbances are most useful when calibrated for specific species in specific forest types. In this study, we calibrate the radial-growth averaging method to detect growth releases of western redcedar (Thuja plicata Donn ex D. Don), western hemlock (Tsuga heterophylla (Raf.) Sarg.), and Pacific silver fir (Abies amabilis Dougl. ex J. Forbes) following fine-scale canopy disturbances in old-growth forests of coastal British Columbia, Canada. Our goal is to establish a version of the method that will capture the full range of growth increases that occur for the study species following natural, fine-scale canopy gaps, yet will account for the effects of climatic variability on radial growth and growth increases. We used traditional dendroclimatological techniques and the radial-growth averaging method to examine how climatic and regional-scale factors contributed to radial growth and growth increases. In addition, we did a sensitivity analysis, using both ring widths and basal area increments, to explore how varying the values of three parameters of the radial-growth averaging method (threshold, moving average, and window) influenced the proportion of trees that showed a release pattern following the formation of canopy gaps of known timing of origin. Although radial growth of western redcedar and western hemlock was significantly associated with climate, percent-growth change derived from residual chronologies rarely exceeded 25%, which defined our minimum threshold for a release. For the sensitivity analysis, two general trends were common to all three species: (1) as threshold increased, the proportion of trees that showed a release pattern decreased, particularly for western redcedar and (2) a higher proportion of trees showed a release pattern using a 10-year versus a 5-year window, particularly for thresholds <100%. The greatest proportion of trees showed a release pattern using a 25% threshold, 5-year moving average, and 10-year window for both ring widths and basal area increments. Overall, a higher proportion of trees showed a release pattern using basal area increments as opposed to ring widths. Therefore, basal area increments are better suited to assess releases in these old-growth stands that have large inter- and intra-species variability in tree size. By establishing these empirically-based criteria, we have achieved the first step towards quantifying attributes of growth releases of trees in the study stands, allowing future studies to capture the variability of past disturbance events and predict changes in forest structure and composition over time.  相似文献   

7.
Clonal understory trees develop into patches of interconnected and genetically identical ramets that have the potential to persist for decades or centuries. These patches develop beneath forest canopies that are structurally heterogeneous in space and time. Canopy heterogeneity, in turn, is responsible for the highly variable understory light environment that is typically associated with deciduous forests. We investigated what aspects of patch structure (density, size structure, and reproductive frequency of ramets) of the clonal understory tree, Asimina triloba, were correlated with forest canopy conditions. Specifically, we compared A. triloba patches located beneath closed canopies and canopy gaps. We also conducted a three-year demographic study of individual ramets within patches distributed across a light gradient. The closed canopy-gap comparison demonstrated that the patches of A. triloba had a higher frequency of large and flowering ramets in gaps compared to closed-canopy stands, but total ramet density was lower in gaps than in closed canopy stands. In the demographic study, individual ramet growth was positively correlated with light availability, although the pattern was not consistent for all years. Neither ramet recruitment nor mortality was correlated with light conditions. Our results indicate that the structure of A. triloba patches was influenced by canopy condition, but does not necessarily depend on the responses of ramets to current light conditions. The lack of differences in ramet recruitment and mortality under varying canopy conditions is likely to be a primary reason for the long-term expansion and persistence of the patches. The primary benefit of a positive growth response to increasing light is the transition of relatively small ramets into flowering ramets within a short period of time.  相似文献   

8.
Questions: Did fire regimes in old‐growth Pinus ponderosa forest change with Euro‐American settlement compared to the pre‐settlement period? Do tree age structures exhibit a pattern of continuous regeneration or is regeneration episodic and related to fire disturbance or fire‐free periods? Are the forests compositionally stable? Do trees have a clumped spatial pattern and are clumps even‐ or mixed‐age? How might information from this old‐growth forest inform current restoration and management practices? Location: A 235‐ha old‐growth forest in the Ishi Wilderness, southern Cascade Mountains, California. Methods: Age, size, and spatial pattern of trees were quantified in seven stands. Fire history was reconstructed using fire scar dendrochronology. The influence of fire on stand structure was assessed by comparing fire history with age, size, and spatial structure of trees and identifying and measuring trees killed by two recent fires. Results: Species composition in plots was similar but density and basal area of tree populations varied. Age structure for P. ponderosa and Quercus kelloggii showed periods of episodic recruitment that varied among plots. Fire disturbance was frequent before 1905, with a median period between fires of 12 years. Fire frequency declined after 1905 but two recent fires (1990, 1994) killed 36% and 41% of mostly smaller diameter P. ponderosa and Q. kelloggii. Clusters of similar age trees occurred at scales of 28‐1018 m2 but patches were not even‐aged. Interactions between tree regeneration and fire promoted development of uneven age groups of trees. Conclusions: Fire disturbance strongly influenced density, basal area, and spatial structure of tree populations. Fire exclusion over the last 100 years has caused compositional and structural changes. Two recent fires, however, thinned stands and created gaps favorable for Q. kelloggii and P. ponderosa regeneration. The effects of infrequent 20th century fire indicate that a low fire frequency can restore and sustain structural characteristics resembling those of the pre‐fire suppression period forest.  相似文献   

9.
R. Leemans 《Plant Ecology》1991,93(2):157-165
The spatial pattern of seedlings, saplings and canopy trees was studied in two spruce (Picea abies (L.) Karst.) forests in central Sweden. Canopy and forest structure were determined in five 0.25 ha plots. Life stage classes were distinguished on the basis of age and size distributions. Ripley's K-function (1977) was used to analyze the spatial patterns within each class. A random distribution of seedlings gave way to a more aggregated pattern on a small scale during the establishment phase. Saplings and sub-canopy trees were strongly aggregated and canopy trees were again randomly distributed within the plots. The proportion of individuals growing in gaps was used as an index of association between the spatial pattern in saplings and sub-canopy trees and the occurrence of small (50–350 m2) canopy gaps. Under the null hypothesis of independence the expected value of this statistic would equal the canopy gap ratio for the stand. Monte Carlo simulation of this statistic, using fixed sapling positions and randomly repositioned canopy gaps, confirmed the importance of canopy gaps for the final success of establishment of spruce. The association of understorey trees with gaps suggest that small gaps are typically closed by recruitment of new saplings from a sapling bank rather than by the release of larger suppressed trees.  相似文献   

10.
长白山红松阔叶林林冠木竞争生长及林冠空隙动态研究   总被引:7,自引:0,他引:7  
以长白山红松阔叶林林冠木的年龄资料为基础,分析林木冠重叠与年轮径向生长的关系;通过林冠空隙边缘人隙边缘株的干扰释压分析,揭示林冠空隙集中形成的动态规律。红松林相邻林木间理论树冠重叠率与年轮径向生长呈显著负相关,不同树种间存在不同的竞争和协同关系;红松林中除个别小空隙是经过一个集中形成期形成外,大部分空隙是经过2-3个集中形成期形成的,1900-1920和1910-1930是大部分空隙的集中形成期。  相似文献   

11.
Abstract Aim Tropical rain forests are often regarded as pristine and undisturbed by humans. In Central Africa, community‐wide disturbances by natural causes are rare and therefore current theory predicts that natural gap phase dynamics structure tree species composition and diversity. However, the dominant tree species in many African forests recruit poorly, despite the presence of gaps. To explain this, we studied the disturbance history of a species‐rich and structurally complex rain forest. Location Lowland rain forest in Southern Cameroon. Methods We identified the recruitment conditions of trees in different diameter classes in 16 ha of species‐rich and structurally complex ‘old growth’ rain forest. For the identification of recruitment preference we used independent data on the species composition along a disturbance gradient, ranging from shifting cultivation fields (representing large‐scale disturbance), to canopy gaps and old growth forest. Results In nine of sixteen 1‐ha forest plots the older trees preferred shifting cultivation fields for recruitment while younger trees preferred gaps and closed forest conditions. This indicates that these nine sites once experienced large‐scale disturbances. Three lines of evidence suggest that historical agricultural use is the most likely disturbance factor: (1) size of disturbed and undisturbed patches, (2) distribution of charcoal and (3) historical accounts of human population densities. Main conclusions Present‐day tree species composition of a structurally complex and species‐rich Central African rain forest still echoes historical disturbances, most probably caused by human land use between three to four centuries ago. Human impact on African rain forest is therefore, contrary to common belief, an issue not of the last decades only. Insights in historical use will help to get a more balanced view of the ‘pristine rain forest’, acknowledging that the dualism between ‘old growth’ and ‘secondary’ forest may be less clear than previously thought.  相似文献   

12.
24 treefall gaps accumulated over a 10 year period along an altitudinal transectcovering 4.6ha on Mt. Hauhungatahi, Tongariro National Park, New Zealand were described quantitatively in terms of the area of damage (‘expanded gap’), the canopy opening (‘Tight-gap’) and the size of the root mound. Tree mortality and branch loss following cyclone Bola, 1988, were recorded. In each gap saplings were ranked by species according to their vigour. Pre-gap and post-gap vertical and horizontal branch growth rates were calculated. Effects in the subalpine forest (> 1050 m) were compared with those in the montane zone. Tree mortality was highly episodic, associated with major storms, and patchy. Falling canopy trees destroyed, on average, 1.3 additional trees (> 10 cm diameter at 1 m). About half the trees were uprooted and the remainder broken off. Uprooted angiosperm (canopy) trees frequently resprouted from their bases, gymnosperms rarely. Expanded gap area averaged 56 m2 in the sub-alpine forest and 88 m2 in the montane zone. Median expanded gap areas were about twice those of light gaps. Gap size frequency distribution was highly skewed. The largest gap was formed by a single Dacrydium cupressinum which destroyed six other trees creating a gap of ca. 0.03 ha. Expanded gaps, light gaps, and root mounds comprised 4.5, 2.8 and 0.1 % of the forest area in the sub-alpine zone, and 3.8, 2.5 and 0.06 % in the montane forest. These values represent 10 years of accumulation, and imply light gap ‘return times’ of 360 years for the sub-alpine and 400 years for the montane forest. These periods are in agreement with the known longevities of the canopy and emergent trees. Vertical shoot growth rate was about twice that in the horizontal plane, and both increased following gap formation. The relative increase was greatest in the subalpine forest. Using the measured growth rates it is estimated that gaps of median dimensions are filled by lateral extension growth in 31–44 yr. Saplings require longer to reach the mean canopy height and consequently require large (multiple tree) gaps or sequential gap events.  相似文献   

13.
Dendroecological techniques were used to investigate the stand dynamics and the disturbance history of the subalpine fir forest in the Qinling Mountains of Shaanxi Province, China. The results indicated that 68% of the fir trees experienced 1–2 release events for a total of 10–29 (an average of 15.8) years, and 1–2 suppression events for a total of 10–27 (an average of 13.4) years before they reached canopy. Large number of Abies fargesii and Betula albo-sinensis recruitment coincided temporally with larger increases in the ring-width index from the 1830s to 1880s, suggesting occurrence of a major stand-wide disturbance during this time period. Few seedlings and saplings were found in the forest, and there was a dramatic decline in recruitment after 1890, probably because of the intensive cover of understory umbrella bamboo (Fargesia spathacea). Radial growth analyses indicated frequent canopy opening resulting from small-scale disturbances in the forest. Thus, the subalpine fir forest experienced frequent small-scale disturbances and infrequent large-scale disturbances in its developmental history, and these disturbances coupled with the understory umbrella bamboo might have influenced tree growth and species recruitment.  相似文献   

14.
亚高山云冷杉混交林树木生长释放与干扰分析   总被引:11,自引:2,他引:9  
对云南碧塔海亚高山云冷杉林内4个样地冠层树木的生长压制和释放的历史,用树木年轮分析方法进行了重建,然后根据生长释放频率推测林冠干扰强度(每10年冠层树木的死亡百分率)。4个林分(1个中龄林,3个成过熟林)生长释放的平均百分率为48%~92%。中龄林内,平均生长释放频率为71%/10a,成过熟林则为74%~95%/10a,在油麦吊云杉〔Piceabrachytylavar.complanata(Mast.)ChengexRehd.〕占优势的林分和大果红杉(Larixpotaninivar.macrocarpaLaw)油麦吊云杉混交林分内,估测的林冠干扰强度分别为48%/10a和59%/10a。  相似文献   

15.
张启  闫明  梁寒雪 《生态学报》2017,37(9):3115-3123
森林生长与气候变化有着紧密的关系,在全球变暖情形下了解树木的干扰历史对准确预测森林生长的变化具有促进作用。本文选择山西黄土高原东南部长治地区保存较好的一个油松(Pinus tabuliformis)和两个白皮松(Pinus bungeana)森林为研究对象,利用树木年轮学方法分析了其干扰历史。结果表明:黎城县、平顺县和屯留县研究地点中年龄最老的树木分别有227、185、102a;通过计算树木径向生长的变化幅度,发现该地区在过去150年中发生了3次大的生长抑制事件(分别发生在1873—1877、1925—1930和1994—1997年期间)和5次大的生长释放事件(分别发生在1867—1871、1878—1884、1930—1935、1980—1985和1999—2004年期间)。树木径向生长与气象观测资料的相关分析显示,该地区森林生长在年际尺度上主要与6月份温度呈负相关而与4—5月份水分条件呈正相关,揭示了由降水减少或高温下水分蒸散所带来的极端干旱事件是导致森林抑制现象的主要原因。这些森林历史研究结果对区域林业管理具有实践意义,营林建设更宜选择在森林生长释放时期;经历多次干扰而存留下来的老龄树具有较强的抗干扰能力和丰富的历史信息,加强对老龄树的鉴定与针对性保护可有效维护区域森林生态服务功能。  相似文献   

16.
Question: To what extent do small‐scale disturbances in the forest canopy, created by natural disturbance agents, affect stand development? Doubts exist as to whether small canopy openings have any real effect on the understory tree recruitment, especially in boreal forests. Location: Conifer and mixed stands in the Gaspesian region in eastern Québec. The main natural disturbance agents are recurring outbreaks of Choristoneura fumiferana (eastern spruce budworm) and winds. Methods: Linear transects in 27 sites were used to describe the gap (< 0.1 ha) regime parameters, including gap fraction, gap size and change in disturbance severity through time. Three stand types were distinguished, based on a gradient of abundance of tree host species for the eastern spruce budworm. The impact of gaps was evaluated on the basis of changes in the number, the period of recruitment, and the composition of tree saplings present within gap areas. Changes were measured along the gap size gradient, and according to the pattern of recent budworm epidemics. Results: The gap fraction is highly variable (18%‐64%) and is on average relatively high (42%). Gap sizes have a positively skewed distribution. In most cases the growth rate among gap filling saplings increased sufficiently to date disturbance events. The composition and the structure of understory trees were affected by gap formation. The number of shade‐intolerant tree species did increase during or following periods of particularly severe canopy disturbances. However, the establishment or survival of shade intolerant species was not restricted to larger gaps or more intensely disturbed periods. Conclusions: In sub‐boreal forests of Eastern Canada, small scale disturbances in the tree canopy influence stand regeneration dynamics, but not to the extent that parameters such as sapling composition and recruitment patterns depend on gap regime characteristics.  相似文献   

17.
Aim Climate variability may be an important mediating agent of ecosystem dynamics in cold, arid regions such as the central Tianshan Mountains, north‐western China. Tree‐ring chronologies and the age structure of a Schrenk spruce (Picea schrenkiana) forest were developed to examine treeline dynamics in recent decades in relation to climatic variability. Of particular interest was whether tree‐ring growth and population recruitment patterns responded similarly to climate warming. Location The study was conducted in eight stands that ranged from 2500 m to 2750 m a.s.l. near the treeline in the Tianchi Nature Reserve (43°45′?43°59′ N, 88°00′?88°20′ E) in the central Xinjiang Uygur Autonomous Region, northwestern China. Methods Tree‐ring cores were collected and used to develop tree‐ring chronologies. The age of sampled trees was determined from basal cores sampled as close as possible to the ground. Population age structure and recruitment information were obtained using an age–d.b.h. (diameter at breast height) regression from the sampled cores and the d.b.h. measured on all trees in the plots. Ring‐width chronologies and tree age structure were both used to investigate the relationship between treeline dynamics and climate change. Results Comparisons with the climatic records showed that both the radial growth of trees and tree recruitment were influenced positively by temperature and precipitation in the cold high treeline zone, but the patterns of their responses differed. The annual variation in tree rings could be explained largely by the average monthly minimum temperatures during February and August of the current year and by the monthly precipitation of the previous August and January, which had a significant and positive effect on tree radial growth. P. schrenkiana recruitment was influenced mainly by consecutive years of high minimum summer temperatures and high precipitation during spring. Over the last several decades, the treeline did not show an obvious upward shift and new recruitment was rare. Some trees had established at the treeline at least 200 years ago. Recruitment increased until the early 20th century (1910s) but then decreased with poor recruitment over the past several decades (1950–2000). Main conclusions There were strong associations between climatic change and ring‐width patterns, and with recruitments in Schrenk spruce. Average minimum temperatures in February and August, and total precipitation in the previous August and January, had a positive effect on tree‐ring width, and several consecutive years of high minimum summer temperature and spring precipitation was a main factor favouring the establishment of P. schrenkiana following germination within the treeline ecotone. Both dendroclimatology and recruitment analysis were useful and compatible to understand and reconstruct treeline dynamics in the central Tianshan Mountains.  相似文献   

18.
Large-scale synchronous variations in community dynamics are well documented for a vast array of organisms, but are considerably less understood for forest trees. Because of temporal variations in canopy gap dynamics, forest communities—even old-growth ones—are never at equilibrium at the stand scale. This paucity of equilibrium may also be true at the regional scale. Our objectives were to determine (1) if nonequilibrium dynamics caused by temporal variations in the formation of canopy gaps are regionally synchronized, and (2) if spatiotemporal variations in canopy gap formation affect the relative abundance of tree species in the understory. We examined these questions by analyzing variations in the suppression and release history of Acer saccharum Marsh. and Fagus grandifolia Ehrh. from 481 growth series of understory saplings taken from 34 mature stands. We observed that (1) the proportion of stems in release as a function of time exhibited a U-shaped pattern over the last 35 years, with the lowest levels occurring during 1975–1985, and that (2) the response to this in terms of species composition was that A. saccharum became more abundant at sites that had the highest proportion of stems in release during 1975–1985. We concluded that the understory dynamics, typically thought of as a stand-scale process, may be regionally synchronized.  相似文献   

19.
Decreases in abundances and declines in growth of eastern white pine over the past century due mainly to human activities have resulted in few large intact old-growth white pine forests in Ontario. These stands may be vulnerable to replacement by deciduous species from temperate forests further south, where recruitment in canopy gap disturbances can greatly define the regeneration process. We investigated recruitment dynamics in canopy gaps of an old-growth white pine forest of Temagami, northern Ontario, Canada, the northern limit of the temperate?Cboreal ecotone. White pine, red pine, black spruce and eastern white cedar represented 85?% of the mature canopy abundance, where trees and saplings established equally in gaps and the closed canopy. Balsam fir and paper birch were more abundant in gaps, showing increases of abundance and basal area with increases in gap size representing canopy self-replacement (balsam fir) and autogenic succession (paper birch). Red maple, at its northernmost range limit, was the only species to show linear increases of abundance and basal area with increases in gap size and gap age. This result, along with adult red maples present in gaps but absent from the closed canopy, identifies the establishment of a northward migrating species in gaps as hypothesized for pine forests at the northern limit of this broad ecotone. We discuss how migration pressures, coupled with pine recruitment limitation through reduced fire frequency by regional fire suppression and predicted future increased warming of 2?C4?°C over the next century, threatens replacement of old-growth white pine forests at this latitude with northward migrating tree species found further south.  相似文献   

20.
Birnbaum  P. 《Plant Ecology》2001,153(1-2):293-300
The canopy surface is an undulating surface that follows the irregular contours of the upper tree crowns and defines the inner and the outer limits of the forest volume. In French Guiana, the height of the canopy surface was surveyed in both a primary and a 20-years old clear-felled secondary forest plot. The topographic surface was displayed in a three-dimensional mesh, where X and Y are horizontal co-ordinates, and Z is the canopy height measured from the ground with an optical telemeter. The statistical dispersion of Z-data, and the spatial tree height variations, are interpreted at different levels of ecosystem organisation, from forest type (primary or secondary forest) to the trees themselves, following the folded forest model theory (Oldeman 1992, 1994). The vertical growth of trees creates a convex pattern in the relief of canopy surface, whereas gaps make concavities which delimit impact of perturbation on the forest structure. These events are either the result of the dynamic of single trees (emergent and decayed trees), or arise from the dynamic of a group of trees working together (group of emergent trees or complex gaps). At the plot scale, the elementary events, convexities and concavities, are gathered on similar topo-sequences, and form canopy units either higher or lower than the average canopy height. This study suggests that the topography of the canopy surface is defined by a complex nested system from trees, to groups of trees, to canopy units, within a delimited floristic and physical environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号