首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
采用3H-TdR参入法,测定碱性成纤维细胞生长因子(bFGF)、胰岛素和内皮素-1(ET-1)对体外培养的大鼠肾小球系膜细胞(MC)增殖的影响,以及胰岛素与bFGF或ET-1促MC增殖的协同作用。结果表明,不同浓度的bFGF(5-200ng/ml)和胰岛素(0.1-2.4U/ml)均显著升高MC的3H-TdR参入值(cpm值)(P<0.01)。ET-1对MC的cpm值的影响依剂量不同呈现两种不同的效应,在10-9-10-7mol/L时,随着浓度的升高,MC的cpm值明显升高(P<0.01),并以10-8mol/L作用最强;当升高到10-6mol/L时,MC的cpm值出现降低趋势。胰岛素与bFGF或低浓度ET-1(≤10-8mol/L)共同作用于MC时,MC的cpm值明显高于二者单独作用之和(P<0.01),与高浓度ET-1(>10-7mol/L)共同作用于MC时,MC的cpm值小于二者单独作用之和(P>0.05)。上述结果说明,胰岛素、bFGF和ET-1均能显著促进MC增殖;胰岛素与bFGF或低浓度的ET-1促MC增殖具有正协同作用,与高浓度ET-1呈现负协同作用。  相似文献   

2.
睫状神经营养因子的研究进展   总被引:3,自引:0,他引:3  
睫状神经营养因子 (CiliaryNeurotrophicFac tor ,CNTF )最初是从鸡胚的眼组织睫状节中提取出来 ,因对睫状节神经元有营养作用并可维持鸡副交感神经节的存活而得名[1~ 3] 。CNTF属神经调节细胞因子家族中的一员 ,但不属于神经营养因子家族成员。至今 ,已发现CNTF具有广泛的生物学活性 ,如它对于感觉和运动神经元的分化、存活及功能维持均具有重要作用[1,4 ] 。本文就CNTF的结构、分布、生物学效应及其与脊髓损伤修复的关系作一综述。1.CNTF及其基因结构1 1 CNTF的结构CNTF最初由H…  相似文献   

3.
人睫状神经营养因子的原核表达,纯化及其生物效应   总被引:2,自引:0,他引:2  
人睫状神经营养因子(hCNTF)克隆入pBV220中,在DH5α菌株中表达,重组蛋白以包含体的形式存在,表达量为菌体总蛋白的50%左右。经比较发现用2mol/L脲洗涤包含体可溶解大量可溶性细菌蛋白,且包含体损失较小。在高浓度变性剂条件下进行sepharcylS-200凝胶过滤,解决了纯化中hCNTF易聚合的问题,在低浓度变性剂条件下进行DEAE离子交换,有利于蛋白活性的保持。经两步纯化后得到均一性hCNTF,纯度达95%以上。在自然状态下使hCNTF复性。纯化复性后的hCNTF对无血清培养的鸡胚背根节神经元和脊髓腹角运动神经元有明显的维持存活和促进生长发育的生物效应。  相似文献   

4.
应用细胞培养、3H-TdR和3H-Leucine掺入方法,观察血小板生长因子BB(Platelet-derivedGrowthFactorBB)对体外培养兔肺动脉平滑肌细胞DNA和蛋白质合成的影响。结果表明:(1)当PDGF-BB浓度为10ng/ml时,3H-TdR掺入值已较对照组显著增高(6262.5±412.9vs833.5±124.0,P<0.05);当PDGF-BB浓度为20ng/ml时,3H-Leucine掺入值亦较对照线显著增高(10212.8±638.3vs7340.3±1197.9,P<0.05)。(2)PDGF-BB浓度在5-25ng/ml范围内,3H-TdR,3H-Leucine掺入值与剂量直线相关(rDNA=0.97,rprot=0.90P<0.05)。说明PDGF-BB刺激体外培养兔肺动脉平滑肌细胞DNA和蛋白质合成。  相似文献   

5.
应用细胞培养、^3H-TdR和^3H-Leucine掺入方法,观察血小板生长因子BB对体外培养兔肺动脉平滑肌细胞DNA和蛋白质合成的影响。结果表明:(1)当PDGF-BB浓度为10ng/ml时,^3H-TdR掺入值已较对照组显著提高(6262.5±412.9vs833.5±124.0,P〈0.05);当PDGF-BB浓度为20ng/ml时,^3H-Leucine掺入值亦较对照线显著增高(10212  相似文献   

6.
我们曾报道血小板第四因子(PF4)是巨核细胞形成的有效的抑制因子,它可以保护干细胞免遭5-FU的毒性作用。本研究中试比较PF4和TGF-β1对人脐带血CD34^+来源的MK的作用。PF4(5ug/ml)和TGF-β(1ng/ml)在半固态凝块培养和悬浮培养中明显抑制人脐带血CD34^+来源的MK的生长。用PF4处理的CD34^+细胞在撒去PE4后仍能再生成集落,说明PF4的抑制作用的可逆性的。相反  相似文献   

7.
特异性血清中白介素1β放射免疫分析的建立及初步应用   总被引:5,自引:1,他引:4  
人工重组的白细胞介素1β(IL-1β)多次免疫兔和逐鼠,获取高效价的兔抗IL-1β抗体。用氯氨T法制备^125I标记IL1β,经SephadexG-25纯化。该法测定范围0.06-4ng/ml,批内和批间误差分别小于5%和10%。正常人血清含量为0.24±0.08ng/ml(n=138),人粒细胞系HL60(10^6)细胞体外培养24小时,不能检出上清液中IL-1β,钙离子载体A23187和磷脂酶  相似文献   

8.
人胚胎胰腺结缔组织经分离培养成人成纤维细胞系HF-91,传40代。该细胞贴壁生长,具有密度依赖性抑制性质。它的生长依赖于成纤维细胞生长因子的存在,在10ng/100ng/ml浓度范围内,细胞生长与bFGF的浓度成正相关。细胞群体倍增时间23.8±5.3h。有丝分裂指数49.3%±4.1%染色体众数2n=46,占87.5%±4.1%。染色体众数2n=46,占87.5%-91.0%,乳酸脱氢酮同工酶L  相似文献   

9.
本文利用小鼠大脑机械损伤模型及体外培养的胶质细胞,采用同位素渗入法观察了细胞介素及其抗体对胶质细胞增生的影响。结果表明:体外培养时TNF-α在浓度为10~200u/ml培养液时均能促进胶质细胞增生(P<0.05),IL1-β在浓度为5~200u/ml培养液时能促进胶质细胞增生,TNF-α+IL1-β其促进胶质细胞增生作用更强烈,TNF-α抗体能完全阻断TNF-α的促增生作用,部分阻断TNF-α+IL1-β的促增生作用。在体实验时,IL1-β及TNF-α的作用与离体时相似,IL1-β及TNF-α亦能促进胶质细胞增生,二者共同作用时促细胞增生作用更强。以上结果提示,外源性TNF-α及IL1-β能促进中枢神经损伤后胶质细胞增生且具有协同作用。  相似文献   

10.
睫状神经营养因子(ciliary neurotrophic factor,CNTF)是神经生长因子家族之外的一种神经营养因子,由200个氨基酸组成,分子量约22.86kD,等电点6.00。CNTF对睫状副交感神经元、交感神经元、感觉神经元、视网膜神经节细胞、脊髓运动神经元、海马神经元等多种中枢及外周神经元有促存活作用。CNTF也是第一个被发现的能维持在体和离体脊髓运动神经元的存活及突起生长的神经营养因子,因此在神经创伤和神经退行性病变的诊断与治疗中有巨大的临床价值。由于CNTF在天然组织中含量甚微,故用基因工程  相似文献   

11.
采用PCR的方法对睫状神经营养因子(CNTF)基因进行改造,获得CNTF突变体基因(CNTFM) ,将CNTFM基因克隆入表达载体pBV2 2 0 ,在大肠杆菌BL 2 1(Gold)中进行了表达.目的蛋白占细胞总蛋白5 5 %左右,以包涵体形式存在,经Superdex 75凝胶过滤柱一步纯化和复性,获得纯度达90 %目的蛋白.纯化的重组CNTFM蛋白能促进培养的鸡胚背根神经节长出神经突起,能明显减轻实验小鼠的体重,表明CNTFM具有良好的体内、体外生物学活性,为开发新型高效的减肥药奠定了基础.  相似文献   

12.
Ciliary neurotrophic factor (CNTF) is a multifunctional cytokine that can regulate the survival and differentiation of many types of developing and adult neurons. CNTF prevents the degeneration of motor neurons after axotomy and in mouse mutant progressive motor neuronopathy, which has encouraged trials of CNTF for human motor neuron disease. Given systemically, however, CNTF causes severe side effects, including cachexia and a marked immune response, which has limited its clinical application. The present work describes a novel approach for administering recombinant human CNTF (rhCNTF) while conserving neurotrophic activity and avoiding deleterious side effects. rhCNTF was fused to a protein transduction domain derived from the human immunodeficiency virus-1 TAT (transactivator) protein. The resulting fusion protein (TAT-CNTF) crosses the plasma membrane within minutes and displays a nuclear localization. TAT-CNTF was equipotent to rhCNTF in supporting the survival of cultured chicken embryo dorsal root ganglion neurons. Local or subcutaneous administration of TAT-CNTF, like rhCNTF rescued motor neurons from death in neonatal rats subjected to sciatic nerve transection. In contrast to subcutaneous rhCNTF, which caused a 20–30% decrease in body weight in neonatal rats between postnatal days 2 and 7 together with a considerable fat mobilization in brown adipose tissue, TAT-CNTF lacked such side effects. Together, these results indicate that rhCNTF fused with the protein transduction domain/TAT retains neurotrophic activity in the absence of CNTFs cytokine-like side effects and may be a promising candidate for the treatment of motor neuron and other neurodegenerative diseases.  相似文献   

13.
Chen XP  Liu H  Liu SH  Wu Y  Wu HT  Fan M 《生理学报》2003,55(4):464-468
为探讨外源性重组人睫状神经营养因子(rhCNTF)在成肌细胞分化中的作用,实验观察了0-10 ng/mlrhCNTF对成人成肌细胞体外分化的影响。结果表明,与对照组相比,2.5-10 ng/ml rhCNTF能显著抑制成肌细胞的体外分化(P<0.01),并呈量-效依赖关系,且这种抑制作用是可逆的。Western Blot分析提示,这种抑制作用伴有成肌细胞分化期特异标志myogenin和p21表达量的显著降低(P<0.01),以及成肌细胞增殖期特异标志myf5和desmin表达量的显著增加(P<0.01)。因此可以认为,外源性rhCNTF能可逆地抑制成人成肌细胞的体外分化并保持增殖。  相似文献   

14.
Ciliary neurotrophic factor (CNTF) induces neurogenesis, reduces feeding, and induces weight loss. However, the central mechanisms by which CNTF acts are vague. We employed the mHypoE-20/2 line that endogenously expresses the CNTF receptor to examine the direct effects of CNTF on mRNA levels of urocortin-1, urocortin-2, agouti-related peptide, brain-derived neurotrophic factor, and neurotensin. We found that treatment of 10 ng/ml CNTF significantly increased only urocortin-1 mRNA by 1.84-fold at 48 h. We then performed intracerebroventricular injections of 0.5 mg/mL CNTF into mice, and examined its effects on urocortin-1 neurons post-exposure. Through double-label immunohistochemistry using specific antibodies against c-Fos and urocortin-1, we showed that central CNTF administration significantly activated urocortin-1 neurons in specific areas of the hypothalamus. Taken together, our studies point to a potential role for CNTF in regulating hypothalamic urocortin-1-expressing neurons to mediate its recognized effects on energy homeostasis, neuronal proliferaton/survival, and/or neurogenesis.  相似文献   

15.
16.
采用ELISA双抗体夹心法,建立一种快速灵敏的定量检测rhCNTF成品蛋白含量的方法。结果显示,rhC-NTF抗原浓度在(0~25)ng范围内线性良好(r>0.99),灵敏度为0.3ng/ml,与其他重组细胞因子无交叉反应,样品的检测结果与理论含量相吻合,CV<15%,该方法检测速度快、重复性好、灵敏度高、特异性好。  相似文献   

17.
We have examined the ability of different neurotrophic and growth factors to prevent axotomy-induced motoneuron cell death in the developing mouse spinal cord. After postnatal unilateral section of the mouse sciatic nerve, most motoneuron (MN) loss occurs in the lateral motor column of the fourth lumbar segment (L4). Significant axotomy-induced cell death occurred after surgery performed on or before postnatal day (PN) 5. In contrast, no significant cell loss was found when axotomy was performed after PN10. Axotomy on PN2 or PN5 resulted in a 44% loss of L4 motoneurons by 7 days, and a 66% loss of motoneurons by 10 days postsurgery. Implantation of gelfoam presoaked in various neurotrophic factors at the lesion site rescued axotomized motoneurons. Nerve growth factor (NGF), nedurotrophin-4/5 (NT-4/5) and ciliary neurotrophic factor (CNTF) rescued 20%–30% of motoneurons, whereas brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and insulin-like growth factor 1 (IGF-1) rescued virtually all motoneurons from axotomy-induced death. By contrast, platelet-derived growth factor (PDGF)-AA, PDGF-AB, basic fibroblast growth factor (bFGF), and interleukin (IL-6) were ineffective on motoneuron survival following axotomy. NGF, BDNF, NT-3, IGF-1, and CNTF also prevented axotomy-induced atrophy of surviving motoneurons. These data show that mouse lumbar motoneurons continue to be vulnerable to axotomy up to about 1 week after birth and that a number of trophic agents, including the neurotrophins, CNTF, and IGF-1, can prevent the death of these neurons following axotomy. Our studies confirm and extend previous reports on the time course of axotomy-induced mouse motoneuron death and the survival promoting effects of neurotrophic factors. 1994 John Wiley & Sons, Inc.  相似文献   

18.
Ciliary neurotrophic factor (CNTF) influences the levels of choline acetyltransferase (ChAT) and tyrosine hydroxylase (TH) in cultures of dissociated sympathetic neurons from newborn rats. In the presence of CNTF both the total and specific activity of ChAT was increased 7 d after culture by 15- and 18-fold, respectively, as compared to cultures kept in the absence of CNTF. Between 3 and 21 d in culture in the presence of CNTF the total ChAT activity increased by a factor of greater than 100. Immunotitration demonstrated that the elevated ChAT levels were due to an increased number of enzyme molecules. In contrast to the increase in ChAT levels, the total and specific activity levels of TH were decreased by 42 and 36%, respectively, after 7 d in culture. Half-maximal effects for both ChAT increase and TH decrease were obtained at CNTF concentrations of approximately 0.6 ng and maximal levels were reached at 1 ng of CNTF per milliliter of medium. The effect of CNTF on TH and ChAT levels were seen in serum-containing medium as well as in serum-free medium. CNTF was shown to have only a small effect on the long-term survival of rat sympathetic neurons. We therefore concluded that the effects of CNTF on ChAT and TH are not due to selective survival of cells that acquire cholinergic traits in vitro, but are rather due to the induction of cholinergic differentiation of noradrenergic sympathetic neurons.  相似文献   

19.
We previously reported that ciliary neurotrophic factor (CNTF) increased the serum-free cell survival of immortalized motor neuron-like cells (NSC-34), and addition of the exogenous ganglioside GalNAc4(Neu5Ac3)Gal4GlcCer (GM2) facilitated cell survival together with CNTF. Moreover 1,4 N-acetylgalactosaminyltransferase (GM2 synthase) activity increased in NSC-34 cells cultured with CNTF. We now have examined whether CNTF-induced cell survival is associated with the collaboration between GM2 and the CNTF receptor (CNTF-R). Despite the presence of CNTF (50 ng/ml), anti-CNTF-R antibody caused cell death and prevented the up-regulation of GM2 synthase expression. The addition of GM2 (1 to 20 M) abrogated the anti-CNTF-R antibody effect which shortened cell survival and blocked GM2 synthase activation. Use of [125I]CNTF showed the specificity of CNTF binding in NSC-34 cells in situ. GM2 produced a 5-fold increase in the CNTF binding affinity per cell but did not change the binding site number. The study by metabolic labeling with [1–14C]N-acetyl-D-galactosamine ([14C]GalNAc) showed that biosynthesized GM2 was involved in the immunoprecipitation of CNTF-R. These findings indicate that up-regulated GM2 synthesis induces functional conversion of CNTF-R to the activated state, in which it has affinity for CNTF. We conclude that GM2 is a bio-regulating molecule of CNTF-R in motor neurons.  相似文献   

20.

Objectives

The functionality of cochlear implants (CI) depends, among others, on the number and excitability of surviving spiral ganglion neurons (SGN). The spatial separation between the SGN, located in the bony axis of the inner ear, and the CI, which is inserted in the scala tympani, results in suboptimal performance of CI patients and may be decreased by attracting the SGN neurites towards the electrode contacts. Neurotrophic factors (NTFs) can support neuronal survival and neurite outgrowth.

Methods

Since brain-derived neurotrophic factor (BDNF) is well known for its neuroprotective effect and ciliary neurotrophic factor (CNTF) increases neurite outgrowth, we evaluated if the combination of BDNF and CNTF leads to an enhanced neuronal survival with extended neurite outgrowth. Both NTFs were added in effective high concentrations (BDNF 50ng/ml, CNTF 100ng/ml), alone and in combination, to cultured dissociated SGN of neonatal rats for 48 hours.

Results

The neuronal survival and neurite outgrowth were significantly higher in SGN treated with the combination of the two NTFs compared to treatment with each factor alone. Additionally, with respect to the morphology, the combination of BDNF and CNTF leads to a significantly higher number of bipolar neurons and a decreased number of neurons without neurites in culture.

Conclusion

The combination of BDNF and CNTF shows a great potential to increase the neuronal survival and the number of bipolar neurons in vitro and to regenerate retracted nerve fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号