首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Teaching science as inquiry is advocated in all national science education documents and by leading science and science teaching organizations. In addition to teaching science as inquiry, we recognize that learning experiences need to connect to students’ lives. This article details how we use a sequence of faded scaffolded inquiry supported by technologies to engage students meaningfully in science connected to their lives and schoolyards. In this approach, more teacher guidance is provided earlier in the inquiry experiences before this is faded later in the sequence, as students are better prepared to complete successful inquiries. The sequence of inquiry experiences shared in this article offers one possible mechanism for science teaching supported by technologies as an exemplar for translating teaching “science as inquiry” into practice.  相似文献   

2.
Recent science education reform has led to an increased emphasis on engaging students in inquiry and science practices rather than having them simply memorize scientific facts. However, many teachers of elementary science may themselves have had more traditional science learning experiences, and may therefore be unsure about inquiry-based teaching methods. One way to enhance preservice teachers' comfort with and desire to teach science using a hands-on approach might be to engage them in science learning experiences alongside children during their educator preparation program. The purpose of this article is to share how one faculty member and a cooperating teacher from a partner school involve teacher candidates in working with children in the school's garden, allowing them to personally experience inquiry while witnessing firsthand the potential benefits to children of authentic science learning through garden based activities.  相似文献   

3.
Vocabulary is the essential element of comprehending concepts in content areas. Many words used in science content-area materials are used to define concepts and to increase the conceptual development of the content area. Conceptual development is a major goal of content-area instruction. Without a clear understanding of the language of the science content, students will certainly experience difficulty and a lack of interest with their science content-area material. Providing students with inquiry strategic vocabulary strategies can significantly support their understanding and interest concerning the language of science. As a result of using engaged vocabulary strategies, teachers can help students bridge the gap between the language of the science content and the language and background knowledge that students bring to the class. This article is easily adaptable for grades 6-12, and it is applicable to all science areas. It provides the middle and high school science teacher with five engaged learning vocabulary strategies that will help students become active participants in the learning process as they master their content area material. In addition, the article offers a pre- and postevaluation Science Vocabulary Questionnaire.  相似文献   

4.
One major emphasis of reform initiatives in science education is the importance of extended inquiry experiences for students through authentic collaborations with scientists. As such, unique partnerships have started to emerge between science and education in an ongoing effort to capture the interest and imaginations of students as they make sense of the world around them. One such partnership is called the student–teacher–scientist partnership, in which teachers and their students participate in and contribute to the research of scientists. This article explores a partnership between a 10th-grade biology teacher, her students, and practicing scientists who collaborated in the design, implementation and evaluation of a horse evolution unit. The primary goal of the collaborative activity was to involve teachers and students in a process of conceptual change as a means of eliminating common misconceptions implicit in horse evolution displays in museums in various parts of the country. The evidence-based lessons developed enhanced students’ understanding of concepts in macroevolution but also connected the science classroom with a community of scientists whose personalization of the horse evolution unit situated biological concepts and the learning experience within the context of real-world issues.  相似文献   

5.
With school days seemingly getting shorter and packed with more and more obligations, teachers integrate core subjects like science and reading in the hopes of delivering a curriculum that is meaningful and content rich. Using trade books, primary teachers can develop and deliver science content designed to introduce students to proenvironmental behaviors built around the Next Generation Science Earth and Human Activity Standard, Human Impacts on Earth Systems, ESS3-C. The Next Generation Science standards call for integrating literacy skills and science to develop knowledge of scientific topics. This article shares ideas on how primary teachers can use a variety of children’s literature as a foundation to inspire young students to take small steps toward developing proenvironmental behaviors. Under an umbrella of three environmental themes, proenvironmental behavior, trash, and water pollution, the article describes key concepts, vocabulary, and activities designed to develop a mindfulness of proenvironmental behaviors for each selected text. While texts and learning experiences are intentionally focused on young learners (Kindergarten/first grade), they can be adapted and used in all primary grades.  相似文献   

6.
Argumentation is one of the central practices in science learning and helps deepen students’ conceptual understanding. Students should learn how to communicate ideas including procedure tests, data interpretations, and investigation outcomes in verbal and written forms through argument structure. This article presents a negotiation model to show how argument can be a vehicle to drive students to learn core ideas of density. The negotiation model consists of five phases: (1) creating a testable question, (2) constructing an argument in groups, (3) critiquing arguments publicly, (4) advancing students’ arguments, and (5) writing and reflecting individually.  相似文献   

7.
Patterns of Change: Forces and Motion is an integrated science lesson that uses the 5E lesson cycle to tie together science with language arts, mathematics, literature, technology, engineering and social studies in an engaging format applicable for young learners. This lesson has been uniquely designed for the purpose of providing elementary teachers with ideas for using hands-on minds-on activities to foster inquiry and discussion, while engaging their students to use technology as a learning tool. This lesson has been used on the elementary level to teach students about the forces that have an effect on motion.  相似文献   

8.
Many topics in the secondary science classroom can be difficult to introduce to students in a manner that fully engages them, especially when presented using traditional teaching methods. However, with a little innovation and an emphasis on inquiry, even dry subjects can be presented in an appealing way. The authors developed an inquiry-based exercise that teaches students about flower anatomy and dissection. During this exercise, students investigate the morphology of simple and composite flowers using digital microscopes. Dissection of a simple flower results in a count of floral parts that is used to construct a floral formula. Students use appearance of structures to suggest function of sepals, petals, anthers, pistils, and components. Investigation of composite and bilabiate flowers introduces concepts of inflorescence and symmetry and asymmetry. Following self-guided inquiry by the students, the teacher uses a digital microscope, computer, and LCD projector to lead discussion of what was observed and to help assimilate important concepts.  相似文献   

9.
This case study describes a classroom-based questionnaire that was carried out with a group of 36 high school students (17–18 years old) in Catalonia. The aim was to examine the usefulness of questionnaires focused on scientific inquiry, both to evaluate students’ inquiry abilities and for their potential as tools to improve the understanding of these processes. The questionnaire refers to procedural understanding within the field of enzyme kinetics. Rubrics for scoring the questionnaire were developed to standardise data analysis. Results showed ambiguous identification of the inquiry question and difficulties in formulating accurate hypotheses and identifying the independent variable. The greatest difficulties appeared in the control variables and the methodology design; misunderstandings related to the underlying scientific concepts were also identified. Questionnaires like the one used in this case study can be useful tools for formative assessment and allow fundamental aspects of scientific inquiry processes to be tackled in less time because they do not involve hands-on activities but instead combine scientific practices with core disciplinary ideas.  相似文献   

10.
ABSTRACT

The central dogma of biology is difficult to learn because its microscopic processes cannot be visualized. This study aimed to devise two inquiry activities: ‘Button Code’ and ‘Beaded Bracelet Making,’ involving the concepts of DNA replication and protein synthesis based on the Metacognitive Learning Cycle (MLC) for students, and to explore the effectiveness of concept learning of the central dogma, how students’ metacognition may be expressed, and students’ perceptions of their inquiry performance. We developed a ‘Concept journal’ including metacognitive scaffolds, and employed the ‘Central Dogma Achievement Test’ as a tool for the above purpose. A total of 18 junior high school students participated in this inquiry course instructed by two of the authors. The results showed that students’ achievement performance was significantly improved on the whole, the students’ metacognition was expressed during the process of inquiry with scaffolding, and most students gave positive responses about their learning performance. According to the results, this inquiry course could develop students’ comprehension of the central dogma concept, and give students opportunities to practice metacognition that might lead to effective learning in inquiry activities. The implications and expandability of this course are discussed.  相似文献   

11.
ABSTRACT

Scientific modeling along with hands-on inquiry can lead to a deeper understanding of scientific concepts among students in upper elementary grades. Even though scientific modeling involves abstract-thinking processes, can students in younger elementary grades successfully participate in scientific modeling? Scientific modeling, like all other aspects of scientific inquiry, has to be developed. This article clearly outlines how students in a first-grade classroom can develop and use scientific models to explain the properties and behaviors of solids, liquids, and gases in a unit on the states of matter.  相似文献   

12.
Botanists benefit from a scientifically literate society and an interested and botanically literate student population, and we have opportunities to promote literacy in our classes. Unfortunately, scientific illiteracy exists, in part, because students are technologically advanced but lack intellectual curiosity and rigor. Botanical illiteracy results from several interacting factors, including a lack of interest in plants and infrequent exposure to plant science before students reach college. If scientific or botanical literacy is a goal, we must understand what literacy means and how we can help students reach that goal. A model of biological literacy recognizes four levels; students enter courses at the lowest level possessing misconceptions about concepts; however, misconceptions can be used to our advantage, especially by using concept inventories. Inquiry-based instruction is advocated for all science courses, and learning theory supports inquiry. Seven principles of learning inform recommendations about how botanists should teach, including using themes and "thinking botanically" to illustrate all biological concepts. Overall, consideration of the botanical content taught is less critical than the methods used to teach that content. If botanists emphasize thinking and process skills with an understanding of concepts, we will prepare scientifically literate students and citizens and benefit from our efforts.  相似文献   

13.
In this study we designed, implemented, and evaluated an outreach programme for high-school biology students rooted in the ‘science as inquiry’ approach. Accordingly, students learn about science from experts in the field, as well as through in-class exposure to the history and philosophy of science. Our sample consisted of 11th graders (n?=?497), ages 16–17, attending advanced biology classes. Our goal was to determine whether this programme had a significant effect on students’ understanding of the ‘nature of science’ (NOS) and on their attitudes towards science. Using a controlled pre-post research design, we asked participants to complete a Likert-like questionnaire. Also, we conducted post-programme semi-structured interviews with 35 of the participants. Results show that completion of the programme significantly enhanced participants’ NOS understanding and improved their attitudes towards science. Participants expressed a deep level of NOS understanding and explicitly stated that the field visits to experts’ labs had changed their attitude towards science. We believe that our outreach programme can be adapted for teaching other sciences and for societies worldwide, as long as there is access to university laboratories and researchers willing to interact with young citizens and potential future scientists.  相似文献   

14.
In recent years, the integration of science and mathematics has become popular among educators because of its potential benefits for student learning. The purpose of this study is to introduce a two-day interdisciplinary lesson that brings science and mathematics concepts together, actively engaging students in working with percentages of the ingredients in mixtures with the concept of torque. Participation in this Grade 7-9 lesson provides opportunities for students to learn from both content areas as they progress through a variety of science process skills.  相似文献   

15.
This article outlines how to incorporate argumentation into a forensic science unit using a mock trial. Practical details of the mock trial include: (1) a method of scaffolding students’ development of their argument for the trial, (2) a clearly outlined set of expectations for students during the planning and implementation of the mock trial, and (3) an example of how to use questioning to guide students through the planning of the mock trial. While a general forensic science unit is provided in the article, a teacher can use the details of the mock trial with any forensic science unit for either middle school or secondary science students.  相似文献   

16.
This is an interdisciplinary lesson designed for middle school students studying landforms and geological processes. Students create a two-dimensional topographic map from a three-dimensional landform that they create using clay. Students then use other groups’ topographic maps to re-create landforms. Following this, students explore some basic ideas about how landforms take shape and how they can change over time. As students work through three distinct learning-cycle phases of concept exploration, introduction, and application, they use art, language arts, and mathematical skills to strengthen or form new science and social studies concepts.  相似文献   

17.
Science education is progressively more focused on employing inquiry-based learning methods in the classroom and increasing scientific literacy among students. However, due to time and resource constraints, many classroom science activities and laboratory experiments focus on simple inquiry, with a step-by-step approach to reach predetermined outcomes. The science classroom inquiry (SCI) simulations were designed to give students real life, authentic science experiences within the confines of a typical classroom. The SCI simulations allow students to engage with a science problem in a meaningful, inquiry-based manner. Three discrete SCI simulations were created as website applications for use with middle school and high school students. For each simulation, students were tasked with solving a scientific problem through investigation and hypothesis testing. After completion of the simulation, 67% of students reported a change in how they perceived authentic science practices, specifically related to the complex and dynamic nature of scientific research and how scientists approach problems. Moreover, 80% of the students who did not report a change in how they viewed the practice of science indicated that the simulation confirmed or strengthened their prior understanding. Additionally, we found a statistically significant positive correlation between students’ self-reported changes in understanding of authentic science practices and the degree to which each simulation benefitted learning. Since SCI simulations were effective in promoting both student learning and student understanding of authentic science practices with both middle and high school students, we propose that SCI simulations are a valuable and versatile technology that can be used to educate and inspire a wide range of science students on the real-world complexities inherent in scientific study.  相似文献   

18.
The advent of genomics, proteomics, and microarray technology has brought much excitement to science, both in teaching and in learning. The public is eager to know about the processes of life. In the present context of the explosive growth of scientific information, a major challenge of modern cell biology is to popularize basic concepts of structures and functions of living cells, to introduce people to the scientific method, to stimulate inquiry, and to analyze and synthesize concepts and paradigms. In this essay we present our experience in mixing science and education in Brazil. For two decades we have developed activities for the science education of teachers and undergraduate students, using microscopy images generated by our work as cell biologists. We describe open-air outreach education activities, games, cell modeling, and other practical and innovative activities presented in public squares and favelas. Especially in developing countries, science education is important, since it may lead to an improvement in quality of life while advancing understanding of traditional scientific ideas. We show that teaching and research can be mutually beneficial rather than competing pursuits in advancing these goals.  相似文献   

19.
Evolution is the underlying framework upon which all biology is based; however, when it comes to learning evolutionary concepts, many students encounter obstacles. There are many reasons as to why these obstacles occur. These reasons deal with evolution being treated as a discrete topic among many within a biology curriculum, misunderstanding the nature of science, and personal difficulties with understanding due to evolution’s seemingly abstract nature. In this article, we propose a different way of thinking about and teaching evolution in grades K-12, and it surrounds four core areas essential to the understanding of evolution: variation, selection, inheritance, and deep time. Possibilities for how these areas can affect learning are described and implications for assessment are also discussed.  相似文献   

20.
The need for all students to develop a stronger ability to express their science knowledge in writing is important. In this article, the authors take you on a journey in an elementary school classroom with tools to help foster deeper learning and stronger writing skills in science content. With many students in high school required to pass end-of-semester science exams to receive a diploma, teaching writing at an early age across various content areas is an even more critical component of today’s curriculum. Presenting curriculum material through multiple means (Universal Design for Learning-Representation) allows students to gain information through a learning approach that best fits the students’ learning needs. The authors examine multiple means of representing science curriculum to engage students in creating detailed and comprehensive concept maps and to provide supportive scientific evidence in written explanations as they gain more content knowledge in science.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号