首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 817 毫秒
1.
The P2 protein of bovine root myelin: partial chemical characterization.   总被引:1,自引:0,他引:1  
The P2 protein of bovine root myelin has chemical characteristics which differentiate it from other myelin basic proteins. The tryptic peptide map of the bovine P2 protein is distinctly different from the map of either the rabbit PI protein or the bovine CNS myelin basic protein. The tryptic peptides of the P2 protein show no overlap in either map positions or amino acid content with the peptides of the CNS myelin basic protein. Analysis of the individual peptides in the P2 map accounted for all of the amino acids present in the analysis of the whole protein. The P2 protein has a blocked NH2-terminus, lysine at its COOH-terminus and no hexosamine. CD studies revealed that the P2 protein has a very stable β-structure in aqueous solution at neutral or basic pH and retains much of this structure in acid and in 8 M urea. It is suggested that these structural properties are relevant to the dual role of the P2 protein as a membrane constituent and as an antigen.  相似文献   

2.
The Complete Amino Acid Sequence of Human P2 Protein   总被引:3,自引:2,他引:1  
Abstract: The complete amino acid sequence of P2 protein from human peripheral nerve myelin was determined from nine staphylococcal protease peptides and four cyanogen bromide peptides. Human P2 protein is composed of 131 amino acids and has a molecular weight of 14,818. Compared to bovine P2 protein, there are replacements at nine positions (human↔bovine): 18(Asp↔Glu), 39(Thr↔Arg), 56(Thr↔Pro), 83(Ile↔Thr), 87(Gln↔Ala), 96(Arg↔Lys), 100(Lys↔Asn), 115 (Ala↔Val), and 121(Gly↔Asp).  相似文献   

3.
The rat heart contains an abundant cytosolic protein which binds long chain fatty acids. We have determined its primary structure by Edman degradation of peptides generated from chymotryptic, tryptic, and elastase digestions. This polypeptide (Mr = 14,992) contains 134 amino acids and has a blocked (acetylated) NH2 terminus. The sequence of rat heart fatty acid-binding protein (FABP) is remarkably similar to the murine adipocyte 422 protein and the P2 protein of peripheral nerve myelin. Computer-assisted alignment of heart FABP and 422 revealed that 82 of 132 comparable residues are identical (62%). There are 77 identities out of 131 possible matches between this protein and the human myelin P2 protein (59%). Similar comparisons demonstrate that heart FABP has significant homology to several other proteins which bind hydrophobic ligands. The rank of order of similarity to heart FABP is: 422 greater than myelin P2 greater than cellular retinoic acid-binding protein greater than cellular retinol-binding protein II greater than cellular retinol-binding protein greater than intestinal FABP greater than liver FABP. These eight sequences form a family of paralogous homologues. Heart FABP has a region of internal homology involving tandemly arrayed oligopeptides spanning residues 71-100 and 101-131. This feature is not found in the 422 and P2 sequences. The endogenous ligands bound by the 422, P2, and heart FABP sequences have not been defined. Interpretation of the biological significance of their structural similarities and differences will require information about their ligand specificities and affinities.  相似文献   

4.
The phosphorylation sites of myelin basic protein from bovine brain were determined after phosphorylation with Ca2+-calmodulin-dependent protein kinase. Four phosphorylated peptides were selectively and rapidly separated by reversed-phase high-performance liquid chromatography. Partial sequencing of the phosphorylated peptides by automated Edman degradation revealed that Ca2+-calmodulin-dependent protein kinase phosphorylated serine-16, serine-70, and threonine-95 specifically, as well as serine-115, which is located on the experimental allergic encephalitogenic determinant of the protein. Of the four amino acid sequences determined, two sequences surrounding phosphorylated amino acids, -Lys-Tyr-Leu-Ala-Ser(P)16-Ala- and -Arg-Phe-Ser(P)115-Trp-Gly-, have both sides of each phosphoserine residue occupied by hydrophobic amino acids, and a basic amino acid, arginine or lysine, is located at the position 2 or 4 residues amino-terminal to the phosphoserine residue. In contrast, the two other sequences surrounding phosphorylated amino acids, -Tyr-Gly-Ser(P)70-Leu-Pro-Glu-Lys- and -Ile-Val-Thr(P)95-Pro-Arg-, have a basic amino acid at the position 2 or 4 residues carboxyl-terminal to the phosphoamino acid residue.  相似文献   

5.
The PO glycoprotein of peripheral nerve myelin   总被引:6,自引:0,他引:6  
The PO glycoprotein, the major protein of peripheral nerve myelin, is a hydrophobic glycoprotein which can be isolated in soluble and insoluble forms from rabbit sciatic nerve myelin following extensive defatting and mid acidic extraction. The PO glycoprotein was localized exclusively in peripheral nervous system (PNS) myelin of sciatic nerve and rootlets by the immunofluorescent technique using goat anti-PO serum which showed a single precipitin band in double diffusion and did not cross-react with the myelin basic protein or P2 protein. Central nervous system (CNS) myelin from brain and spinal cord was negative by the immunofluorescent procedure. The major glycoprotein bands in PNS myelin, in addition to the PO glycoprotein at 28K, exist at 23K and 19K, as shown by gel electrophoresis in dodecyl sulfate. These glycoproteins, isolated by gel filtration in 2% dodecyl sulfate, show identity to the PO glycoprotein in their monosaccharide profile and overlapping tryptic peptides on peptide mapping. We conclude that both the 23K and 19K glycoproteins are derived from the PO glycoprotein by in situ proteolysis; the 23K glycoprotein has the identical amino terminal sequence. The 19K glycoprotein, beginning with amino-terminal methionine, is identical with the TPO glycoprotein, shown previously to originate from tryptic hydrolysis of the PO glycoprotein in isolated myelin. A tryptic glycopeptide containing 27 amino acids was isolated from the PO glycoprotein and sequenced. It contained a relatively high proportion of aspartic acid (four residues) and glutamic acid (two residues), thus exhibiting a high negative charge. We conclude that the total carbohydrate of the PO, 23K, and 19K glycoproteins does indeed exist as a single nonasaccharide moiety linked through N-acetylglucosamine to Asp-14 of the glycopeptide in a N-glycosidic linkage. These results further support the role of the PO glycoprotein as a typical amphipathic membrane protein.  相似文献   

6.
Abstract— Two basic peptides (B1 and B2) were derived from bovine spinal cord following in situ proteolysis at 37°C for 10–24 h. These peptides do not arise as degradation products from the A1 protein as shown by amino acid composition and end group analysis; rather they appear to originate from some larger basic protein in the spinal cord having similarities to the P2 protein, a basic protein found in peripheral nerve myelin. The peptides were purified following defatting, acid extraction, and ammonium sulphate fractionation, by chromatography on Amberlite IRC-50 resin using guanidinium chloride. The peptides, found generally in a 4:1 ratio of B1 to B2, appeared homogeneous on gel electrophoresis and immunodiffusion. Approximately 25–60 mg of peptides was obtained per 100 g wet spinal cord.
In contrast to the basic A1 protein from myelin, neither of these peptides nor their pepsin digests were encephalitogenic. They do not cross-react immunologically with the basic A1 protein, but cross-react with each other. These peptides further differ from the A1 protein in their tryptic peptide map, size (B1, 63 residues; B2, 54 residues), and composition particularly the high lysine: arginine ratio, and low histidine content. Like the A1 protein, however, they contain a tryptophan residue and a blocked NH2-terminal amino acid; peptide Bl has COOH-terminal valine. It was concluded that the basic peptides represent a fragment of a hitherto unidentified protein(s) of the nervous system.  相似文献   

7.
Myelin proteolipid protein (PLP) contains covalently bound long-chain fatty acids. A large proportion of these acyl moieties are bound in thioester linkages, as demonstrated by alkylation of newly formed SH groups upon deacylation. To identify the Cys residue(s) involved in the thioester linkage(s), reduced and carboxyamidomethylated proteolipid protein was labeled with [14C]iodoacetamide upon deacylation with neutral hydroxylamine. The labeled protein was digested with trypsin or pepsin, and peptides analyzed by RP-HPLC. Identification of the isolated radioactive peptides by amino acid analysis, peptide sequencing and/or fast-atom bombardment-mass spectrometry revealed that Cys108 in the bovine PLP sequence is an acylated site. The sequence surrounding the palmitoylation site in the myelin PLP is strikingly similar to that found in rhodopsin. Furthermore, as in rhodopsin and other members of the G protein-coupled receptor family, this Cys residue is located within a hydrophilic, basic, and possibly cytoplasmic, domain.  相似文献   

8.
Amino acid sequence of the smaller basic protein from rat brain myelin   总被引:28,自引:3,他引:25  
1. The complete amino acid sequence of the smaller basic protein from rat brain myelin was determined. This protein differs from myelin basic proteins of other species in having a deletion of a polypeptide of 40 amino acid residues from the centre of the molecule. 2. A detailed comparison is made of the constant and variable regions in a group of myelin basic proteins from six species. 3. An arginine residue in the rat protein was found to be partially methylated. The ratio of methylated to unmethylated arginine at this position differed from that found for the human basic protein. 4. Three tryptic peptides were isolated in more than one form. The differences between the two forms of each peptide are discussed in relation to the electrophoretic heterogeneity of myelin basic proteins, which is known to occur at alkaline pH values. 5. Detailed evidence for the amino acid sequence of the protein has been deposited as Supplementary Publication SUP 50029 at the British Library (Lending Division) (formerly the National Lending Library for Science and Technology), Boston Spa, Yorks. LS23 7BQ, U.K., from whom copies may be obtained on the terms given in Biochem. J. (1973) 131, 5.  相似文献   

9.
SOME PROPERTIES OF A MAJOR STRUCTURAL GLYCOPROTEIN OF SCIATIC NERVE   总被引:7,自引:5,他引:2  
The major protein of rat sciatic nerve is a glycoprotein which consists of a protein moiety attached to galactose, mannose and perhaps other sugars. On controlled tryptic digestion, it splits into a glycopeptide and a smaller fragment similar in molecular size to peripheral nerve basic proteins. Both the basic proteins of peripheral nervous system (PNS) myelin and the glycoprotein are antigenically active when administered to guinea pigs and produce sciatic nerve lesions similar to those described for experimental allergic neuritis. It is suggested from the amino acid analysis and its antigenic properties that the protein moiety of the glycoprotein may contain a sequence which is similar to the basic proteins of PNS myelin.  相似文献   

10.
Sequence of Guinea Pig Myelin Basic Protein   总被引:5,自引:5,他引:0  
This paper proposes a tentative amino acid sequence of guinea pig myelin basic protein obtained by comparison of peptide fragments of the guinea pig and bovine proteins. Analyses of the tryptic peptides confirmed the known sequence differences in the NH2-terminal half of the molecule and showed that in the COOH-terminal half of the guinea pig protein Ser131 was missing, Ala136 - His137 was deleted, Leu140 was replaced by Phe, and an extra Ala was inserted somewhere within sequence 142-151 (tryptic peptide T23 ). Sequence determination of guinea pig tryptic peptides corresponding to residues 130-134 ( T20 ), 135-138 ( T21 ), and 142-151 ( T23 ) of the bovine protein confirmed the above sequence changes and placed the extra Ala between Gly142 and His143 . The sequence of the region corresponding to bovine residues 130-143 is thus Ala-Asp-Tyr-Lys-Ser-Lys-Gly-Phe-Lys-Gly-Ala-His. No species differences were observed in the amino acid compositions of the remaining tryptic peptides obtained from the COOH-terminal half of the molecule. Based upon these results, the guinea pig basic protein contains 167 amino acid residues and has a molecular weight of 18,256.  相似文献   

11.
A full-length cDNA for bovine heart fatty-acid-binding protein (H-FABP) was cloned from a lambda gt11 cDNA library established from bovine heart muscle. The cDNA sequence shows an open reading frame coding for a protein with 133 amino acids. Colinearity with the amino acid sequences of four tryptic peptides was asserted. H-FABP isolated from bovine heart begins with an N-acetylated valine residue, however, as derived from analysis of the tryptic, amino-terminal-blocked peptide and the molecular mass of the peptide obtained via secondary-ion mass spectrometry. The molecular mass of the total protein is 14673 Da. Bovine H-FABP is 89% homologous to rat H-FABP and 97% homologous to the bovine mammary-derived growth-inhibition factor described recently by B?hmer et al. [J. Biol. Chem. 262, 15137-15143 (1987)]. Significant homologies were also found with bovine myelin protein P2 and murine adipocyte protein p422. Secondary-structure predictions were proposed for these proteins, based on computer analysis, which reveal striking similarities.  相似文献   

12.
The primary structure of a fatty-acid-binding protein (FABP) isolated from the liver of the nurse shark (Ginglymostoma cirratum) was determined by high-performance tandem mass spectrometry (employing multichannel array detection) and Edman degradation. Shark liver FABP consists of 132 amino acids with an acetylated N-terminal valine. The chemical molecular mass of the intact protein determined by electrospray ionization mass spectrometry (Mr = 15124 +/- 2.5) was in good agreement with that calculated from the amino acid sequence (Mr = 15121.3). The amino acid sequence of shark liver FABP displays significantly greater similarity to the FABP expressed in mammalian heart, peripheral nerve myelin and adipose tissue (61-53% sequence similarity) than to the FABP expressed in mammalian liver (22% similarity). Phylogenetic trees derived from the comparison of the shark liver FABP amino acid sequence with the members of the mammalian fatty-acid/retinoid-binding protein gene family indicate the initial divergence of an ancestral gene into two major subfamilies: one comprising the genes for mammalian liver FABP and gastrotropin, the other comprising the genes for mammalian cellular retinol-binding proteins I and II, cellular retinoic-acid-binding protein myelin P2 protein, adipocyte FABP, heart FABP and shark liver FABP, the latter having diverged from the ancestral gene that ultimately gave rise to the present day mammalian heart-FABP, adipocyte FABP and myelin P2 protein sequences. The sequence for intestinal FABP from the rat could be assigned to either subfamily, depending on the approach used for phylogenetic tree construction, but clearly diverged at a relatively early evolutionary time point. Indeed, sequences proximately ancestral or closely related to mammalian intestinal FABP, liver FABP, gastrotropin and the retinoid-binding group of proteins appear to have arisen prior to the divergence of shark liver FABP and should therefore also be present in elasmobranchs. The presence in shark liver of an FABP which differs substantially in primary structure from mammalian liver FABP, while being closely related to the FABP expressed in mammalian heart muscle, peripheral nerve myelin and adipocytes, opens a further dimension regarding the question of the existence of structure-dependent and tissue-specific specialization of FABP function in lipid metabolism.  相似文献   

13.
The P0 protein is a major structural glycoprotein of molecular weight 28,000 in peripheral nerve myelin. The complete amino acid sequence of bovine P0 protein was determined. The polypeptide chain consists of 219 amino acid residues and includes a highly hydrophobic domain (residues 125-150) in the middle, which probably represents a transmembrane segment. The amino terminal domain (residues 1-124) is relatively hydrophobic, but contains a negatively charged carbohydrate chain at Asn93. This domain is most likely located on the extracellular side of the membrane and may contribute to formation of the myelin intraperiod line by hydrophobic and electrostatic interactions. On the other hand, the basic carboxyl-terminal domain (residues 151-219) may protrude from the cytoplasmic side of the membrane and is probably involved together with basic proteins in the formation of the major myelin dense line through electrostatic interaction with acidic lipids in the membrane. The few interspecies amino acid variations between the bovine P0 and the rat P0 sequences, deduced from the cDNA (Lemke, G., and Axel, R. (1985) Cell 40, 501-508), indicate that the P0 protein is conserved across species.  相似文献   

14.
Automated Edman degradation of a testis-specific basic protein isolated from the rat gave the following NH2-terminal sequence of amino acids:
Cleavage of the native protein with cyanogen bromide produced two fragments which were purified by gel filtration. Amino acid analysis of the smaller fragment revealed it to be the NH2-terminal undecapeptide resulting from cleavage at Met11. The partial sequence analysis of the intact protein coupled with compositional analyses of these cyanogen bromide peptides indicate that the basic testis protein contains 24 basic amino acids and a single methionine in a sequence of 54 amino acids.  相似文献   

15.
The peptide portion of the lipopeptide isolated from bovine myelin basic protein contained glycine, lysine, and serine in a 2:1:1 molar ratio as determined by amino acid analysis. The N-terminus of the peptide was determined to be glycine. The tetrapeptide Gly53-Ser-Gly-Lys56 was the only segment of myelin basic protein that matched the above two characteristics. This tetrapeptide is highly conserved among the myelin basic proteins sequenced so far. After the selective degradation of the lipopeptide, phosphoserine was identified in the acid hydrolysate, thus indicating that Ser-54 of myelin basic protein in bovine brain is the site of attachment of polyphosphoinositide. Interestingly, serine-54 of myelin basic protein can be phosphorylated by the endogenous protein kinase myelin. However, myelin basic protein phosphorylated by the catalytic subunit of an exogenous soluble protein kinase failed to produce radioactively labeled lipopeptide. Hence the endogenous enzymes of myelin are thought to be involved in the formation of the covalent linkage between polyphosphoinositide and myelin basic protein. The conservation in sequence suggests a possible important structural role for the "phospholipidation" of myelin basic protein.  相似文献   

16.
Exported proteins require an N-terminal signal peptide to direct them from the cytoplasm to the periplasm. Once the protein has been translocated across the cytoplasmic membrane, the signal peptide is cleaved by a signal peptidase, allowing the remainder of the protein to fold into its mature state in the periplasm. Signal peptidase I (LepB) cleaves non-lipoproteins and recognises the sequence Ala-X-Ala. Amino acids present at the N-terminus of mature, exported proteins have been shown to affect the efficiency at which the protein is exported. Here we investigated a bias against aromatic amino acids at the second position in the mature protein (P2′). Maltose binding protein (MBP) was mutated to introduce aromatic amino acids (tryptophan, tyrosine and phenylalanine) at P2′. All mutants with aromatic amino acids at P2′ were exported less efficiently as indicated by a slight increase in precursor protein in vivo. Binding of LepB to peptides that encompass the MBP cleavage site were analysed using surface plasmon resonance. These studies showed peptides with an aromatic amino acid at P2′ had a slower off rate, due to a significantly higher binding affinity for LepB. These data are consistent with the accumulation of small amounts of preMBP in purified protein samples. Hence, the reason for the lack of aromatic amino acids at P2′ in E. coli is likely due to interference with efficient LepB activity. These data and previous bioinformatics strongly suggest that aromatic amino acids are not preferred at P2′ and this should be incorporated into signal peptide prediction algorithms.  相似文献   

17.
DYRK1A is a dual-specificity protein kinase that is thought to be involved in brain development. We identified a single phosphorylated amino acid residue in the DYRK substrate histone H3 (threonine 45) by mass spectrometry, phosphoamino acid analysis, and protein sequencing. Exchange of threonine 45 for alanine abolished phosphorylation of histone H3 by DYRK1A and by the related kinases DYRK1B, DYRK2, and DYRK3 but not by CLK3. In order to define the consensus sequence for the substrate specificity of DYRK1A, a library of 300 peptides was designed in variation of the H3 phosphorylation site. Evaluation of the phosphate incorporation into these peptides identified DYRK1A as a proline-directed kinase with a phosphorylation consensus sequence (RPX(S/T)P) similar to that of ERK2 (PX(S/T)P). A peptide designed after the optimal substrate sequence (DYRKtide) was efficiently phosphorylated by DYRK1A (K(m) = 35 microM) but not by ERK2. Both ERK2 and DYRK1A phosphorylated myelin basic protein, whereas only ERK2, but not DYRK1A, phosphorylated the mitogen-activated protein kinase substrate ELK-1. This marked difference in substrate specificity between DYRK1A and ERK2 can be explained by the requirement for an arginine at the P -3 site of DYRK substrates and its presumed interaction with aspartate 247 conserved in all DYRKs.  相似文献   

18.
Two major glycoproteins of bovine peripheral nerve myelin were isolated from the acid-insoluble residue of the myelin by a procedure involving delipidation with chloroform/methanol (2:1, v/v) and chromatography on Sephadex G-200 column with a buffer containing sodium dodecyl sulfate. The separation patterns of the proteins on the gel were affected considerably by the dodecyl sulfate concentration in the elution buffer. At above 2% dodecyl sulfate concentration in the elution buffer, the glycoproteins could be separated clearly on the gel and were purified. The purified proteins, the BR protein (mol. wt. 28 000) and the PAS-II protein (mol. wt. 13 000), were homogeneous on dodecyl sulfate-polyacrylamide gel electrophoresis. The NH2-terminal amino acids of the BR and the PAS-II proteins were isoleucine and methionine, respectively. The BR protein contained glucosamine, mannose, galactose, fucose and sialic acids and the PAS-II protein contained glucosamine, mannose, galactose, fucose and glucose. Neither the BR protein nor the PAS-II were a glycosylated derivative of a basic protein of bovine peripheral nerve myelin, a deduction based on the results of amino acid analysis. The two major glycoproteins were observed commonly in the peripheral nerve myelin of cows, pigs, rabbits and guinea pigs, using dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

19.
A New Form of Myelin Basic Protein Found in Human Brain   总被引:2,自引:0,他引:2  
Human myelin basic protein was subjected to ion-exchange chromatography at high pH to separate the differently charged components. Polyacrylamide gel electrophoretic patterns of the fractions showed that the less basic fractions 3, 4, and 5 contained significant amounts of a protein somewhat smaller than the more common 18.5-kDa form. Fraction 3 consisted of approximately equal amounts of this smaller polypeptide and component 3, the 18.5-kDa form found in other mammalian myelin basic protein preparations. The two proteins in fraction 3 were separated by fast protein liquid chromatography. Both have blocked N termini and identical C termini (-Met-Ala-Arg-Arg). When the tryptic digests of the two proteins were fractionated by HPLC, the elution profiles were similar, except that four peaks found in the chromatogram of the larger protein were missing from the chromatogram of the smaller one. In addition, an extra peak was found in the elution pattern of the latter chromatogram. Amino acid analysis of the individual tryptic peptides indicated that the smaller protein lacked residues 106-116 (-Gly-Arg-Gly-Leu-Ser-Leu-Ser-Arg-Phe-Ser-Trp-). The deleted portion corresponds exactly to the amino acid sequence encoded by exon 5 of the mouse basic protein gene. This new form of myelin basic protein has a molecular weight of 17,200, calculated from its amino acid composition.  相似文献   

20.
Bovine P2 Protein: Sequence at the NH2-Terminal of the Protein   总被引:2,自引:2,他引:0  
Sequence data from key fragments of the P2 protein established the order of cyanogen bromide (CNBr) peptides in the structure of the protein and the primary structure for approximately one-half of the molecule. Data were obtained from the three tryptic peptides of blocked NH2-terminal CNBr peptide (CN3), the large CNBr peptide of P2 protein (CN1), and a fragment obtained from P2 by cleavage at tryptophan with 2-(2-nitrophenylsulfenyl)-3-methyl-3'-bromoindolenine. This last fragment was found to contain an over-lapping sequence that proved the juxtaposition of CN1 and CN3 in P2 protein. Thus, based on this fact and the characteristics of the CNBr peptides, the P2 structure is composed of CNBr peptides in the order: CN3-CN1-CN2(Val)-CN2(Lys). A comparison was made between the partial sequence of P2 protein and the equivalent portion of the structure of bovine myelin basic protein. The structures of these two proteins were found to be distinctly different although certain similarities are found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号