首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
2.
Necrotrophic and biotrophic pathogens are resisted by different plant defenses. While necrotrophic pathogens are sensitive to jasmonic acid (JA)-dependent resistance, biotrophic pathogens are resisted by salicylic acid (SA)- and reactive oxygen species (ROS)-dependent resistance. Although many pathogens switch from biotrophy to necrotrophy during infection, little is known about the signals triggering this transition. This study is based on the observation that the early colonization pattern and symptom development by the ascomycete pathogen Plectosphaerella cucumerina (P. cucumerina) vary between inoculation methods. Using the Arabidopsis (Arabidopsis thaliana) defense response as a proxy for infection strategy, we examined whether P. cucumerina alternates between hemibiotrophic and necrotrophic lifestyles, depending on initial spore density and distribution on the leaf surface. Untargeted metabolome analysis revealed profound differences in metabolic defense signatures upon different inoculation methods. Quantification of JA and SA, marker gene expression, and cell death confirmed that infection from high spore densities activates JA-dependent defenses with excessive cell death, while infection from low spore densities induces SA-dependent defenses with lower levels of cell death. Phenotyping of Arabidopsis mutants in JA, SA, and ROS signaling confirmed that P. cucumerina is differentially resisted by JA- and SA/ROS-dependent defenses, depending on initial spore density and distribution on the leaf. Furthermore, in situ staining for early callose deposition at the infection sites revealed that necrotrophy by P. cucumerina is associated with elevated host defense. We conclude that P. cucumerina adapts to early-acting plant defenses by switching from a hemibiotrophic to a necrotrophic infection program, thereby gaining an advantage of immunity-related cell death in the host.Plant pathogens are often classified as necrotrophic or biotrophic, depending on their infection strategy (Glazebrook, 2005; Nishimura and Dangl, 2010). Necrotrophic pathogens kill living host cells and use the decayed plant tissue as a substrate to colonize the plant, whereas biotrophic pathogens parasitize living plant cells by employing effector molecules that suppress the host immune system (Pel and Pieterse, 2013). Despite this binary classification, the majority of pathogenic microbes employ a hemibiotrophic infection strategy, which is characterized by an initial biotrophic phase followed by a necrotrophic infection strategy at later stages of infection (Perfect and Green, 2001). The pathogenic fungi Magnaporthe grisea, Sclerotinia sclerotiorum, and Mycosphaerella graminicola, the oomycete Phytophthora infestans, and the bacterial pathogen Pseudomonas syringae are examples of hemibiotrophic plant pathogens (Perfect and Green, 2001; Koeck et al., 2011; van Kan et al., 2014; Kabbage et al., 2015).Despite considerable progress in our understanding of plant resistance to necrotrophic and biotrophic pathogens (Glazebrook, 2005; Mengiste, 2012; Lai and Mengiste, 2013), recent debate highlights the dynamic and complex interplay between plant-pathogenic microbes and their hosts, which is raising concerns about the use of infection strategies as a static tool to classify plant pathogens. For instance, the fungal genus Botrytis is often labeled as an archetypal necrotroph, even though there is evidence that it can behave as an endophytic fungus with a biotrophic lifestyle (van Kan et al., 2014). The rice blast fungus Magnaporthe oryzae, which is often classified as a hemibiotrophic leaf pathogen (Perfect and Green, 2001; Koeck et al., 2011), can adopt a purely biotrophic lifestyle when infecting root tissues (Marcel et al., 2010). It remains unclear which signals are responsible for the switch from biotrophy to necrotrophy and whether these signals rely solely on the physiological state of the pathogen, or whether host-derived signals play a role as well (Kabbage et al., 2015).The plant hormones salicylic acid (SA) and jasmonic acid (JA) play a central role in the activation of plant defenses (Glazebrook, 2005; Pieterse et al., 2009, 2012). The first evidence that biotrophic and necrotrophic pathogens are resisted by different immune responses came from Thomma et al. (1998), who demonstrated that Arabidopsis (Arabidopsis thaliana) genotypes impaired in SA signaling show enhanced susceptibility to the biotrophic pathogen Hyaloperonospora arabidopsidis (formerly known as Peronospora parastitica), while JA-insensitive genotypes were more susceptible to the necrotrophic fungus Alternaria brassicicola. In subsequent years, the differential effectiveness of SA- and JA-dependent defense mechanisms has been confirmed in different plant-pathogen interactions, while additional plant hormones, such as ethylene, abscisic acid (ABA), auxins, and cytokinins, have emerged as regulators of SA- and JA-dependent defenses (Bari and Jones, 2009; Cao et al., 2011; Pieterse et al., 2012). Moreover, SA- and JA-dependent defense pathways have been shown to act antagonistically on each other, which allows plants to prioritize an appropriate defense response to attack by biotrophic pathogens, necrotrophic pathogens, or herbivores (Koornneef and Pieterse, 2008; Pieterse et al., 2009; Verhage et al., 2010).In addition to plant hormones, reactive oxygen species (ROS) play an important regulatory role in plant defenses (Torres et al., 2006; Lehmann et al., 2015). Within minutes after the perception of pathogen-associated molecular patterns, NADPH oxidases and apoplastic peroxidases generate early ROS bursts (Torres et al., 2002; Daudi et al., 2012; O’Brien et al., 2012), which activate downstream defense signaling cascades (Apel and Hirt, 2004; Torres et al., 2006; Miller et al., 2009; Mittler et al., 2011; Lehmann et al., 2015). ROS play an important regulatory role in the deposition of callose (Luna et al., 2011; Pastor et al., 2013) and can also stimulate SA-dependent defenses (Chaouch et al., 2010; Yun and Chen, 2011; Wang et al., 2014; Mammarella et al., 2015). However, the spread of SA-induced apoptosis during hyperstimulation of the plant immune system is contained by the ROS-generating NADPH oxidase RBOHD (Torres et al., 2005), presumably to allow for the sufficient generation of SA-dependent defense signals from living cells that are adjacent to apoptotic cells. Nitric oxide (NO) plays an additional role in the regulation of SA/ROS-dependent defense (Trapet et al., 2015). This gaseous molecule can stimulate ROS production and cell death in the absence of SA while preventing excessive ROS production at high cellular SA levels via S-nitrosylation of RBOHD (Yun et al., 2011). Recently, it was shown that pathogen-induced accumulation of NO and ROS promotes the production of azelaic acid, a lipid derivative that primes distal plants for SA-dependent defenses (Wang et al., 2014). Hence, NO, ROS, and SA are intertwined in a complex regulatory network to mount local and systemic resistance against biotrophic pathogens. Interestingly, pathogens with a necrotrophic lifestyle can benefit from ROS/SA-dependent defenses and associated cell death (Govrin and Levine, 2000). For instance, Kabbage et al. (2013) demonstrated that S. sclerotiorum utilizes oxalic acid to repress oxidative defense signaling during initial biotrophic colonization, but it stimulates apoptosis at later stages to advance necrotrophic colonization. Moreover, SA-induced repression of JA-dependent resistance not only benefits necrotrophic pathogens but also hemibiotrophic pathogens after having switched from biotrophy to necrotrophy (Glazebrook, 2005; Pieterse et al., 2009, 2012).Plectosphaerella cucumerina ((P. cucumerina, anamorph Plectosporum tabacinum) anamorph Plectosporum tabacinum) is a filamentous ascomycete fungus that can survive saprophytically in soil by decomposing plant material (Palm et al., 1995). The fungus can cause sudden death and blight disease in a variety of crops (Chen et al., 1999; Harrington et al., 2000). Because P. cucumerina can infect Arabidopsis leaves, the P. cucumerina-Arabidopsis interaction has emerged as a popular model system in which to study plant defense reactions to necrotrophic fungi (Berrocal-Lobo et al., 2002; Ton and Mauch-Mani, 2004; Carlucci et al., 2012; Ramos et al., 2013). Various studies have shown that Arabidopsis deploys a wide range of inducible defense strategies against P. cucumerina, including JA-, SA-, ABA-, and auxin-dependent defenses, glucosinolates (Tierens et al., 2001; Sánchez-Vallet et al., 2010; Gamir et al., 2014; Pastor et al., 2014), callose deposition (García-Andrade et al., 2011; Gamir et al., 2012, 2014; Sánchez-Vallet et al., 2012), and ROS (Tierens et al., 2002; Sánchez-Vallet et al., 2010; Barna et al., 2012; Gamir et al., 2012, 2014; Pastor et al., 2014). Recent metabolomics studies have revealed large-scale metabolic changes in P. cucumerina-infected Arabidopsis, presumably to mobilize chemical defenses (Sánchez-Vallet et al., 2010; Gamir et al., 2014; Pastor et al., 2014). Furthermore, various chemical agents have been reported to induce resistance against P. cucumerina. These chemicals include β-amino-butyric acid, which primes callose deposition and SA-dependent defenses, benzothiadiazole (BTH or Bion; Görlach et al., 1996; Ton and Mauch-Mani, 2004), which activates SA-related defenses (Lawton et al., 1996; Ton and Mauch-Mani, 2004; Gamir et al., 2014; Luna et al., 2014), JA (Ton and Mauch-Mani, 2004), and ABA, which primes ROS and callose deposition (Ton and Mauch-Mani, 2004; Pastor et al., 2013). However, among all these studies, there is increasing controversy about the exact signaling pathways and defense responses contributing to plant resistance against P. cucumerina. While it is clear that JA and ethylene contribute to basal resistance against the fungus, the exact roles of SA, ABA, and ROS in P. cucumerina resistance vary between studies (Thomma et al., 1998; Ton and Mauch-Mani, 2004; Sánchez-Vallet et al., 2012; Gamir et al., 2014).This study is based on the observation that the disease phenotype during P. cucumerina infection differs according to the inoculation method used. We provide evidence that the fungus follows a hemibiotrophic infection strategy when infecting from relatively low spore densities on the leaf surface. By contrast, when challenged by localized host defense to relatively high spore densities, the fungus switches to a necrotrophic infection program. Our study has uncovered a novel strategy by which plant-pathogenic fungi can take advantage of the early immune response in the host plant.  相似文献   

3.
The development of the plant root system is highly plastic, which allows the plant to adapt to various environmental stresses. Salt stress inhibits root elongation by reducing the size of the root meristem. However, the mechanism underlying this process remains unclear. In this study, we explored whether and how auxin and nitric oxide (NO) are involved in salt-mediated inhibition of root meristem growth in Arabidopsis (Arabidopsis thaliana) using physiological, pharmacological, and genetic approaches. We found that salt stress significantly reduced root meristem size by down-regulating the expression of PINFORMED (PIN) genes, thereby reducing auxin levels. In addition, salt stress promoted AUXIN RESISTANT3 (AXR3)/INDOLE-3-ACETIC ACID17 (IAA17) stabilization, which repressed auxin signaling during this process. Furthermore, salt stress stimulated NO accumulation, whereas blocking NO production with the inhibitor Nω-nitro-l-arginine-methylester compromised the salt-mediated reduction of root meristem size, PIN down-regulation, and stabilization of AXR3/IAA17, indicating that NO is involved in salt-mediated inhibition of root meristem growth. Taken together, these findings suggest that salt stress inhibits root meristem growth by repressing PIN expression (thereby reducing auxin levels) and stabilizing IAA17 (thereby repressing auxin signaling) via increasing NO levels.Due to agricultural practices and climate change, soil salinity has become a serious factor limiting the productivity and quality of agricultural crops (Zhu, 2007). Worldwide, high salinity in the soil damages approximately 20% of total irrigated lands and takes 1.5 million ha out of production each year (Munns and Tester, 2008). In general, high salinity affects plant growth and development by reducing plant water potential, altering nutrient uptake, and increasing the accumulation of toxic ions (Hasegawa et al., 2000; Munns, 2002; Zhang and Shi, 2013). Together, these effects severely reduce plant growth and survival.Because the root is the first organ to sense high salinity, salt stress plays a direct, important role in modulating root system architecture (Wang et al., 2009). For instance, salt stress negatively regulates root hair formation and gravitropism (Sun et al., 2008; Wang et al., 2008). The role of salt in lateral root formation depends on the NaCl concentration. While high NaCl levels inhibit lateral root formation, lower NaCl levels stimulate lateral root formation in an auxin-dependent manner (Zolla et al., 2010; Ji et al., 2013). The root meristem plays an essential role in sustaining root growth (Perilli et al., 2012). Salt stress inhibits primary root elongation by suppressing root meristem activity (West et al., 2004). However, how this inhibition occurs remains largely unclear.Plant hormones are important intermediary signaling compounds that function downstream of environmental stimuli. Among plant hormones, indole-3-acetic acid (IAA) is thought to play a fundamental role in root system architecture by regulating cell division, expansion, and differentiation. In Arabidopsis (Arabidopsis thaliana) root tips, a distal auxin maximum is formed and maintained by polar auxin transport (PAT), which determines the orientation and extent of cell division in the root meristem as well as root pattern formation (Sabatini et al., 1999). PINFORMED (PIN) proteins, which are components of the auxin efflux machinery, regulate primary root elongation and root meristem size (Blilou et al., 2005; Dello Ioio et al., 2008; Yuan et al., 2013, 2014). The auxin signal transduction pathway is activated by direct binding of auxin to its receptor protein, TRANSPORT INHIBITOR RESPONSE1 (TIR1)/AUXIN SIGNALING F-BOX (AFB), promoting the degradation of Aux/IAA proteins, releasing auxin response factors (ARFs), and activating the expression of auxin-responsive genes (Gray et al., 2001; Dharmasiri et al., 2005a; Kepinski and Leyser, 2005). Aux/IAA proteins are short-lived, nuclear-localized proteins that play key roles in auxin signal activation and root growth modulation (Rouse et al., 1998). Other hormones and stresses often regulate auxin signaling by affecting Aux/IAA protein stability (Lim and Kunkel, 2004; Nemhauser et al., 2004; Wang et al., 2007; Kushwah and Laxmi, 2014).Nitric oxide (NO) is a signaling molecule with diverse biological functions in plants (He et al., 2004; Fernández-Marcos et al., 2011; Shi et al., 2012), including important roles in the regulation of root growth and development. NO functions downstream of auxin during the adventitious rooting process in cucumber (Cucumis sativus; Pagnussat et al., 2002). Exogenous auxin-induced NO biosynthesis is associated with nitrate reductase activity during lateral root formation, and NO is necessary for auxin-induced lateral root and root hair development (Pagnussat et al., 2002; Lombardo et al., 2006). Pharmacological and genetic analyses in Arabidopsis indicate that NO suppresses primary root growth and root meristem activity (Fernández-Marcos et al., 2011). Additionally, both exogenous application of the NO donor sodium nitroprusside (SNP) and overaccumulation of NO in the mutant chlorophyll a/b binding protein underexpressed1 (cue1)/nitric oxide overproducer1 (nox1) result in reduced PIN1 expression and auxin accumulation in root tips. The auxin receptors protein TIR1 is S-nitrosylated by NO, suggesting that this protein is a direct target of NO in the regulation of root development (Terrile et al., 2012).Because NO is a free radical, NO levels are dynamically regulated by endogenous and environmental cues. Many phytohormones, including abscisic acid, auxin, cytokinin, salicylic acid, jasmonic acid, and ethylene, induce NO biosynthesis (Zottini et al., 2007; Kolbert et al., 2008; Tun et al., 2008; García et al., 2011). In addition, many abiotic and biotic stresses or stimuli, such as cold, heat, salt, drought, heavy metals, and pathogens/elicitors, also stimulate NO biosynthesis (Zhao et al., 2009; Mandal et al., 2012). Salt stress stimulates NO and ONOO accumulation in roots (Corpas et al., 2009), but the contribution of NO to root meristem growth under salinity stress has yet to be examined in detail.In this study, we found that salt stress significantly down-regulated the expression of PIN genes and promoted AUXIN RESISTANT3 (AXR3)/IAA17 stabilization. Furthermore, salt stress stimulated NO accumulation, and pharmacological inhibition of NO biosynthesis compromised the salt-mediated reduction in root meristem size. Our results support a model in which salt stress reduces root meristem size by increasing NO accumulation, which represses PIN expression and stabilizes IAA17, thereby reducing auxin levels and repressing auxin signaling.  相似文献   

4.
5.
In plants, K transporter (KT)/high affinity K transporter (HAK)/K uptake permease (KUP) is the largest potassium (K) transporter family; however, few of the members have had their physiological functions characterized in planta. Here, we studied OsHAK5 of the KT/HAK/KUP family in rice (Oryza sativa). We determined its cellular and tissue localization and analyzed its functions in rice using both OsHAK5 knockout mutants and overexpression lines in three genetic backgrounds. A β-glucuronidase reporter driven by the OsHAK5 native promoter indicated OsHAK5 expression in various tissue organs from root to seed, abundantly in root epidermis and stele, the vascular tissues, and mesophyll cells. Net K influx rate in roots and K transport from roots to aerial parts were severely impaired by OsHAK5 knockout but increased by OsHAK5 overexpression in 0.1 and 0.3 mm K external solution. The contribution of OsHAK5 to K mobilization within the rice plant was confirmed further by the change of K concentration in the xylem sap and K distribution in the transgenic lines when K was removed completely from the external solution. Overexpression of OsHAK5 increased the K-sodium concentration ratio in the shoots and salt stress tolerance (shoot growth), while knockout of OsHAK5 decreased the K-sodium concentration ratio in the shoots, resulting in sensitivity to salt stress. Taken together, these results demonstrate that OsHAK5 plays a major role in K acquisition by roots faced with low external K and in K upward transport from roots to shoots in K-deficient rice plants.Potassium (K) is one of the three most important macronutrients and the most abundant cation in plants. As a major osmoticum in the vacuole, K drives the generation of turgor pressure, enabling cell expansion. In the vascular tissue, K is an important participant in the generation of root pressure (for review, see Wegner, 2014 [including his new hypothesis]). In the phloem, K is critical for the transport of photoassimilates from source to sink (Marschner, 1996; Deeken et al., 2002; Gajdanowicz et al., 2011). In addition, enhancing K absorption and decreasing sodium (Na) accumulation is a major strategy of glycophytes in salt stress tolerance (Maathuis and Amtmann, 1999; Munns and Tester, 2008; Shabala and Cuin, 2008).Plants acquire K through K-permeable proteins at the root surface. Since available K concentration in the soil may vary by 100-fold, plants have developed multiple K uptake systems for adapting to this variability (Epstein et al., 1963; Grabov, 2007; Maathuis, 2009). In a classic K uptake experiment in barley (Hordeum vulgare), root K absorption has been described as a high-affinity and low-affinity biphasic transport process (Epstein et al., 1963). It is generally assumed that the low-affinity transport system (LATS) in the roots mediates K uptake in the millimolar range and that the activity of this system is insensitive to external K concentration (Maathuis and Sanders, 1997; Chérel et al., 2014). In contrast, the high-affinity transport system (HATS) was rapidly up-regulated when the supply of exogenous K was halted (Glass, 1976; Glass and Dunlop, 1978).The membrane transporters for K flux identified in plants are generally classified into three channels and three transporter families based on phylogenetic analysis (Mäser et al., 2001; Véry and Sentenac, 2003; Lebaudy et al., 2007; Alemán et al., 2011). For K uptake, it was predicted that, under most circumstances, K transporters function as HATS, while K-permeable channels mediate LATS (Maathuis and Sanders, 1997). However, a root-expressed K channel in Arabidopsis (Arabidopsis thaliana), Arabidopsis K Transporter1 (AKT1), mediates K absorption over a wide range of external K concentrations (Sentenac et al., 1992; Lagarde et al., 1996; Hirsch et al., 1998; Spalding et al., 1999), while evidence is accumulating that many K transporters, including members of the K transporter (KT)/high affinity K transporter (HAK)/K uptake permease (KUP) family, are low-affinity K transporters (Quintero and Blatt, 1997; Senn et al., 2001), implying that functions of plant K channels and transporters overlap at different K concentration ranges.Out of the three families of K transporters, cation proton antiporter (CPA), high affinity K/Na transporter (HKT), and KT/HAK/KUP, CPA was characterized as a K+(Na+)/H+ antiporter, HKT may cotransport Na and K or transport Na only (Rubio et al., 1995; Uozumi et al., 2000), while KT/HAK/KUP were predicted to be H+-coupled K+ symporters (Mäser et al., 2001; Lebaudy et al., 2007). KT/HAK/KUP were named by different researchers who first identified and cloned them (Quintero and Blatt, 1997; Santa-María et al., 1997). In plants, the KT/HAK/KUP family is the largest K transporter family, including 13 members in Arabidopsis and 27 members in the rice (Oryza sativa) genome (Rubio et al., 2000; Mäser et al., 2001; Bañuelos et al., 2002; Gupta et al., 2008). Sequence alignments show that genes of this family share relatively low homology to each other. The KT/HAK/KUP family was divided into four major clusters (Rubio et al., 2000; Gupta et al., 2008), and in cluster I and II, they were further separated into A and B groups. Genes of cluster I or II likely exist in all plants, cluster III is composed of genes from both Arabidopsis and rice, while cluster IV includes only four rice genes (Grabov, 2007; Gupta et al., 2008).The functions of KT/HAK/KUP were studied mostly in heterologous expression systems. Transporters of cluster I, such as AtHAK5, HvHAK1, OsHAK1, and OsHAK5, are localized in the plasma membrane (Kim et al., 1998; Bañuelos et al., 2002; Gierth et al., 2005) and exhibit high-affinity K uptake in the yeast Saccharomyces cerevisiae (Santa-María et al., 1997; Fu and Luan, 1998; Rubio et al., 2000) and in Escherichia coli (Horie et al., 2011). Transporters of cluster II, like AtKUP4 (TINY ROOT HAIRS1, TRH1), HvHAK2, OsHAK2, OsHAK7, and OsHAK10, could not complement the K uptake-deficient yeast (Saccharomyces cerevisiae) but were able to mediate K fluxes in a bacterial mutant; they might be tonoplast transporters (Senn et al., 2001; Bañuelos et al., 2002; Rodríguez-Navarro and Rubio, 2006). The function of transporters in clusters III and IV is even less known (Grabov, 2007).Existing data suggest that some KT/HAK/KUP transporters also may respond to salinity stress (Maathuis, 2009). The cluster I transporters of HvHAK1 mediate Na influx (Santa-María et al., 1997), while AtHAK5 expression is inhibited by Na (Rubio et al., 2000; Nieves-Cordones et al., 2010). Expression of OsHAK5 in tobacco (Nicotiana tabacum) BY2 cells enhanced the salt tolerance of these cells by accumulating more K without affecting their Na content (Horie et al., 2011).There are only scarce reports on the physiological function of KT/HAK/KUP in planta. In Arabidopsis, mutation of AtKUP2 (SHORT HYPOCOTYL3) resulted in a short hypocotyl, small leaves, and a short flowering stem (Elumalai et al., 2002), while a loss-of-function mutation of AtKUP4 (TRH1) resulted in short root hairs and a loss of gravity response in the root (Rigas et al., 2001; Desbrosses et al., 2003; Ahn et al., 2004). AtHAK5 is the only system currently known to mediate K uptake at concentrations below 0.01 mm (Rubio et al., 2010) and provides a cesium uptake pathway (Qi et al., 2008). AtHAK5 and AtAKT1 are the two major physiologically relevant molecular entities mediating K uptake into roots in the range between 0.01 and 0.05 mm (Pyo et al., 2010; Rubio et al., 2010). AtAKT1 may contribute to K uptake within the K concentrations that belong to the high-affinity system described by Epstein et al. (1963).Among all 27 members of the KT/HAK/KUP family in rice, OsHAK1, OsHAK5, OsHAK19, and OsHAK20 were grouped in cluster IB (Gupta et al., 2008). These four rice HAK members share 50.9% to 53.4% amino acid identity with AtHAK5. OsHAK1 was expressed in the whole plant, with maximum expression in roots, and was up-regulated by K deficiency; it mediated high-affinity K uptake in yeast (Bañuelos et al., 2002). In this study, we examined the tissue-specific localization and the physiological functions of OsHAK5 in response to variation in K supply and to salt stress in rice. By comparing K uptake and translocation in OsHAK5 knockout (KO) mutants and in OsHAK5-overexpressing lines with those in their respective wild-type lines supplied with different K concentrations, we found that OsHAK5 not only mediates high-affinity K acquisition but also participates in root-to-shoot K transport as well as in K-regulated salt tolerance.  相似文献   

6.
Plasticity of the Arabidopsis Root System under Nutrient Deficiencies   总被引:1,自引:0,他引:1  
Plant roots show a particularly high variation in their morphological response to different nutrient deficiencies. Although such changes often determine the nutrient efficiency or stress tolerance of plants, it is surprising that a comprehensive and comparative analysis of root morphological responses to different nutrient deficiencies has not yet been conducted. Since one reason for this is an inherent difficulty in obtaining nutrient-deficient conditions in agar culture, we first identified conditions appropriate for producing nutrient-deficient plants on agar plates. Based on a careful selection of agar specifically for each nutrient being considered, we grew Arabidopsis (Arabidopsis thaliana) plants at four levels of deficiency for 12 nutrients and quantified seven root traits. In combination with measurements of biomass and elemental concentrations, we observed that the nutritional status and type of nutrient determined the extent and type of changes in root system architecture (RSA). The independent regulation of individual root traits further pointed to a differential sensitivity of root tissues to nutrient limitations. To capture the variation in RSA under different nutrient supplies, we used principal component analysis and developed a root plasticity chart representing the overall modulations in RSA under a given treatment. This systematic comparison of RSA responses to nutrient deficiencies provides a comprehensive view of the overall changes in root plasticity induced by the deficiency of single nutrients and provides a solid basis for the identification of nutrient-sensitive steps in the root developmental program.Plant survival and performance are highly dependent on the plant’s ability to efficiently explore the soil in the search for water and minerals. Thus, root growth and architecture are extremely relevant for the plant’s adaptation to the growth medium, as they determine the soil volume that a plant is able to explore at a given time. Root system architecture (RSA) represents the spatial arrangement of roots of different ages and orders (Lynch, 1995; Osmont et al., 2007) and is determined by genetic factors and the integration of environmental cues (Malamy, 2005). The genetic component determines the fundamental morphology and blueprint of a plant’s root system, whereas environmental cues shape root architecture by modifying the intrinsic genetic program. The existence of this additional level of regulation allows plants to display a high level of root plasticity, which reflects the shape, three-dimensional distribution, branching pattern, and age of the primary and postembryonically generated roots (Pacheco-Villalobos and Hardtke, 2012). The dynamic modulation of RSA is based on the intrinsic developmental nature of the different components of the root system. In fact, the primary root (PR) is established during embryogenesis, while the lateral roots (LRs) that originate from the PR develop postembryonically (Osmont et al., 2007; Péret et al., 2009). These highly dynamic changes in the overall RSA throughout time finally determine root plasticity and allow plants to efficiently adapt to environmental constraints.Nutrient availability can exert a profound impact on RSA by altering the number, length, angle, and diameter of roots and root hairs (for review, see Forde and Lorenzo, 2001; López-Bucio et al., 2003; Malamy, 2005; Osmont et al., 2007). In fact, plants can respond to the heterogenous availability of resources by allocating roots where the most favorable conditions are found (Zhang and Forde, 1998; Linkohr et al., 2002; Remans et al., 2006; Lima et al., 2010; Giehl et al., 2012). When grown under limited phosphorus (P) availability, roots exhibit a shallower architecture that results from the inhibition of PR elongation and the concomitant increase in LR formation (Williamson et al., 2001; López-Bucio et al., 2002; Sanchez-Calderon et al., 2005). Such an architectural rearrangement of the root is thought to improve the plant’s ability to forage P from the usually P-enriched topsoil horizon (Lynch and Brown, 2001; Rubio et al., 2003; Zhu et al., 2005). In contrast to low P, reduced nitrogen (N) availability stimulates PR and particularly LR elongation but not LR initiation (Linkohr et al., 2002; López-Bucio et al., 2003). However, it is noteworthy that under severe N shortage, LR formation is almost completely absent (Krouk et al., 2010), suggesting that plants require a certain level of N to sustain an active foraging strategy. These examples indicate that the availability of different nutrients can evoke distinct effects on RSA that depend upon which nutrient is supplied and the concentration of the supplied nutrient.Unfortunately, for the majority of the nutrients, a more detailed analysis of the architectural modifications under deficient conditions is still missing. In fact, most studies describe the effect of nutrient deficiencies on root growth and development only in terms of root biomass or total root length (Hermans and Verbruggen, 2005; Hermans et al., 2006; Richard-Molard et al., 2008; Jung et al., 2009; Cailliatte et al., 2010). Thus, important features of the root system are not comprehensible from these rather basic measurements. The characterization of RSA in more detail appears justified due to the positive correlations found between single root characteristics and plant yield, especially when the supply of water or mineral resources was limited (Landi et al., 2002; Tuberosa et al., 2002; Manschadi et al., 2006; Kirkegaard et al., 2007; Steele et al., 2007). Although a large number of studies have been conducted on the root development of grasses (Hochholdinger and Tuberosa, 2009; Iyer-Pascuzzi et al., 2010; Pacheco-Villalobos and Hardtke, 2012), our understanding of the molecular players involved in the regulation of root growth and development has benefited most from studies of the reference plant Arabidopsis (Arabidopsis thaliana) grown under controlled conditions to minimize variability. However, imposing consistent nutrient deficiencies presents an experimental challenge as long as plants are grown on agar medium, which is the method of choice to preserve the spatial arrangement of the root system and access a larger number of root traits.A major drawback of agar and agarose media is their inherent nutrient load, such that traces of nutrient contamination must often be made unavailable to plants, for example by adding chelating agents to lower the free activities of micronutrients (Bell et al., 1991; Yang et al., 1994; Rengel, 1999). Additionally, in many cases, symptoms of deficiency are only observed in mutants impaired in the uptake of the nutrient in question (Tomatsu et al., 2007; Mills et al., 2008; Assunção et al., 2010). In general, gelling agents may contribute considerable amounts of nutrients (Debergh, 1983; Scholten and Pierik, 1998), hampering the occurrence of deficiency for specific nutrients (Jain et al., 2009). Thus, it becomes crucial to select the most suitable gelling agent when particular nutrient deficiencies are to be obtained. This is particularly relevant as strategies depending upon the use of gelling media are being developed to overcome the bottleneck that often limits RSA traits from being characterized in high-throughput phenotyping studies (Iyer-Pascuzzi et al., 2010; Clark et al., 2011).In our approach to compare RSA under different nutrient deficiencies in Arabidopsis plants grown on solid medium, we first identified the most appropriate conditions for producing nutrient-deficient plants on agar plates. Once identified, these conditions allowed us to characterize the effects of 12 deficiencies at four intensity levels on the RSA by measuring seven root traits. These measurements, in combination with biomass and elemental concentrations, allowed us to determine the nutrient-specific effects on particular parameters of the RSA and thus to describe the root plasticity of Arabidopsis and analyze the underlying traits under different nutrient deficiencies.  相似文献   

7.
8.
9.
We have established an efficient transient expression system with several vacuolar reporters to study the roles of endosomal sorting complex required for transport (ESCRT)-III subunits in regulating the formation of intraluminal vesicles of prevacuolar compartments (PVCs)/multivesicular bodies (MVBs) in plant cells. By measuring the distributions of reporters on/within the membrane of PVC/MVB or tonoplast, we have identified dominant negative mutants of ESCRT-III subunits that affect membrane protein degradation from both secretory and endocytic pathways. In addition, induced expression of these mutants resulted in reduction in luminal vesicles of PVC/MVB, along with increased detection of membrane-attaching vesicles inside the PVC/MVB. Transgenic Arabidopsis (Arabidopsis thaliana) plants with induced expression of ESCRT-III dominant negative mutants also displayed severe cotyledon developmental defects with reduced cell size, loss of the central vacuole, and abnormal chloroplast development in mesophyll cells, pointing out an essential role of the ESCRT-III complex in postembryonic development in plants. Finally, membrane dissociation of ESCRT-III components is important for their biological functions and is regulated by direct interaction among Vacuolar Protein Sorting-Associated Protein20-1 (VPS20.1), Sucrose Nonfermenting7-1, VPS2.1, and the adenosine triphosphatase VPS4/SUPPRESSOR OF K+ TRANSPORT GROWTH DEFECT1.Endomembrane trafficking in plant cells is complicated such that secretory, endocytic, and recycling pathways are usually integrated with each other at the post-Golgi compartments, among which, the trans-Golgi network (TGN) and prevacuolar compartment (PVC)/multivesicular body (MVB) are best studied (Tse et al., 2004; Lam et al., 2007a, 2007b; Müller et al., 2007; Foresti and Denecke, 2008; Hwang, 2008; Otegui and Spitzer, 2008; Robinson et al., 2008; Richter et al., 2009; Ding et al., 2012; Gao et al., 2014). Following the endocytic trafficking of a lipophilic dye, FM4-64, the TGN and PVC/MVB are sequentially labeled and thus are defined as the early and late endosome, respectively, in plant cells (Lam et al., 2007a; Chow et al., 2008). While the TGN is a tubular vesicular-like structure that may include several different microdomains and fit its biological function as a sorting station (Chow et al., 2008; Kang et al., 2011), the PVC/MVB is 200 to 500 nm in size with multiple luminal vesicles of approximately 40 nm (Tse et al., 2004). Membrane cargoes destined for degradation are sequestered into these tiny luminal vesicles and delivered to the lumen of the lytic vacuole (LV) via direct fusion between the PVC/MVB and the LV (Spitzer et al., 2009; Viotti et al., 2010; Cai et al., 2012). Therefore, the PVC/MVB functions between the TGN and LV as an intermediate organelle and decides the fate of membrane cargoes in the LV.In yeast (Saccharomyces cerevisiae), carboxypeptidase S (CPS) is synthesized as a type II integral membrane protein and sorted from the Golgi to the lumen of the vacuole (Spormann et al., 1992). Genetic analyses on the trafficking of CPS have led to the identification of approximately 17 class E genes (Piper et al., 1995; Babst et al., 1997, 2002a, 2002b; Odorizzi et al., 1998; Katzmann et al., 2001) that constitute the core endosomal sorting complex required for transport (ESCRT) machinery. The evolutionarily conserved ESCRT complex consists of several functionally different subcomplexes, ESCRT-0, ESCRT-I, ESCRT-II, and ESCRT-III and the ESCRT-III-associated/Vacuolar Protein Sorting4 (VPS4) complex. Together, they form a complex protein-protein interaction network that coordinates sorting of cargoes and inward budding of the membrane on the MVB (Hurley and Hanson, 2010; Henne et al., 2011). Cargo proteins carrying ubiquitin signals are thought to be passed from one ESCRT subcomplex to the next, starting with their recognition by ESCRT-0 (Bilodeau et al., 2002, 2003; Hislop and von Zastrow, 2011; Le Bras et al., 2011; Shields and Piper, 2011; Urbé, 2011). ESCRT-0 recruits the ESCRT-I complex, a heterotetramer of VPS23, VPS28, VPS37, and MVB12, from the cytosol to the endosomal membrane (Katzmann et al., 2001, 2003). The C terminus of VPS28 interacts with the N terminus of VPS36, a member of the ESCRT-II complex (Kostelansky et al., 2006; Teo et al., 2006). Then, cargoes passed from ESCRT-I and ESCRT-II are concentrated in certain membrane domains of the endosome by ESCRT-III, which includes four coiled-coil proteins and is sufficient to induce the membrane invagination (Babst et al., 2002b; Saksena et al., 2009; Wollert et al., 2009). Finally, the ESCRT components are disassociated from the membrane by the adenosine triphosphatase (ATPase) associated with diverse cellular activities (AAA) VPS4/SUPPRESSOR OF K+ TRANSPORT GROWTH DEFECT1 (SKD1) before releasing the internal vesicles (Babst et al., 1997, 1998).Putative homologs of ESCRT-I–ESCRT-III and ESCRT-III-associated components have been identified in plants, except for ESCRT-0, which is only present in Opisthokonta (Winter and Hauser, 2006; Leung et al., 2008; Schellmann and Pimpl, 2009). To date, only a few plant ESCRT components have been studied in detail. The Arabidopsis (Arabidopsis thaliana) AAA ATPase SKD1 localized to the PVC/MVB and showed ATPase activity that was regulated by Lysosomal Trafficking Regulator-Interacting Protein5, a plant homolog of Vps Twenty Associated1 Protein (Haas et al., 2007). Expression of the dominant negative form of SKD1 caused an increase in the size of the MVB and a reduction in the number of internal vesicles (Haas et al., 2007). This protein also contributes to the maintenance of the central vacuole and might be associated with cell cycle regulation, as leaf trichomes expressing its dominant negative mutant form lost the central vacuole and frequently contained multiple nuclei (Shahriari et al., 2010). Double null mutants of CHARGED MULTIVESICULAR BODY PROTEIN, chmp1achmp1b, displayed severe growth defects and were seedling lethal. This may be due to the mislocalization of plasma membrane (PM) proteins, including those involved in auxin transport such as PINFORMED1, PINFORMED2, and AUXIN-RESISTANT1, from the vacuolar degradation pathway to the tonoplast of the LV (Spitzer et al., 2009).Plant ESCRT components usually contain several homologs, with the possibility of functional redundancy. Single mutants of individual ESCRT components may not result in an obvious phenotype, whereas knockout of all homologs of an ESCRT component by generating double or triple mutants may be lethal to the plant. As a first step to carry out systematic analysis on each ESCRT complex in plant cells, here, we established an efficient analysis system to monitor the localization changes of four vacuolar reporters that accumulate either in the lumen (LRR84A-GFP, EMP12-GFP, and aleurain-GFP) or on the tonoplast (GFP-VIT1) of the LV and identified several ESCRT-III dominant negative mutants. We reported that ESCRT-III subunits were involved in the release of PVC/MVB’s internal vesicles from the limiting membrane and were required for membrane protein degradation from secretory and endocytic pathways. In addition, transgenic Arabidopsis plants with induced expression of ESCRT-III dominant negative mutants showed severe cotyledon developmental defects. We also showed that membrane dissociation of ESCRT-III subunits was regulated by direct interaction with SKD1.  相似文献   

10.
11.
12.
13.
14.
Fumarylacetoacetate hydrolase (FAH) hydrolyzes fumarylacetoacetate to fumarate and acetoacetate, the final step in the tyrosine (Tyr) degradation pathway that is essential to animals. Deficiency of FAH in animals results in an inborn lethal disorder. However, the role for the Tyr degradation pathway in plants remains to be elucidated. In this study, we isolated an Arabidopsis (Arabidopsis thaliana) short-day sensitive cell death1 (sscd1) mutant that displays a spontaneous cell death phenotype under short-day conditions. The SSCD1 gene was cloned via a map-based cloning approach and found to encode an Arabidopsis putative FAH. The spontaneous cell death phenotype of the sscd1 mutant was completely eliminated by further knockout of the gene encoding the putative homogentisate dioxygenase, which catalyzes homogentisate into maleylacetoacetate (the antepenultimate step) in the Tyr degradation pathway. Furthermore, treatment of Arabidopsis wild-type seedlings with succinylacetone, an abnormal metabolite caused by loss of FAH in the Tyr degradation pathway, mimicked the sscd1 cell death phenotype. These results demonstrate that disruption of FAH leads to cell death in Arabidopsis and suggest that the Tyr degradation pathway is essential for plant survival under short-day conditions.Programmed cell death (PCD) has been defined as a sequence of genetically regulated events that lead to the elimination of specific cells, tissues, or whole organs (Lockshin and Zakeri, 2004). In plants, PCD is essential for developmental processes and defense responses (Dangl et al., 1996; Greenberg, 1996; Durrant et al., 2007). One well-characterized example of plant PCD is the hypersensitive response occurring during incompatible plant-pathogen interactions (Lam, 2004), which results in cell death to form visible lesions at the site of infection by an avirulent pathogen and consequently limits the pathogen spread (Morel and Dangl, 1997).To date, a large number of mutants that display spontaneous cell death lesions have been identified in barley (Hordeum vulgare), maize (Zea mays), rice (Oryza sativa), and Arabidopsis (Arabidopsis thaliana; Marchetti et al., 1983; Wolter et al., 1993; Dietrich et al., 1994; Gray et al., 1997). Because lesions form in the absence of pathogen infection, these mutants have been collectively termed as lesion-mimic mutants. Many genes with regulatory roles in PCD and defense responses, including LESION SIMULATING DISEASE1, ACCELERATED CELL DEATH11, and VASCULAR ASSOCIATED DEATH1, have been cloned and characterized (Dietrich et al., 1997; Brodersen et al., 2002; Lorrain et al., 2004).The appearance of spontaneous cell death lesions in some lesion-mimic mutants is dependent on photoperiod. For example, the Arabidopsis mutant lesion simulating disease1 and myoinositol-1-phosphate synthase1 show lesions under long days (LD; Dietrich et al., 1994; Meng et al., 2009), whereas the lesion simulating disease2, lesion initiation1, enhancing RPW8-mediated HR-like cell death1, and lag one homolog1 display lesions under short days (SD; Dietrich et al., 1994; Ishikawa et al., 2003; Wang et al., 2008; Ternes et al., 2011).Blockage of some metabolic pathways in plants may cause cell death and result in lesion formation. For example, the lesion-mimic phenotypes in the Arabidopsis mutants lesion initiation2 and accelerated cell death2 and the maize mutant lesion mimic22 result from an impairment of porphyrin metabolism (Hu et al., 1998; Ishikawa et al., 2001; Mach et al., 2001). Deficiency in fatty acid, sphingolipid, and myoinositol metabolism also causes cell death in Arabidopsis (Mou et al., 2000; Liang et al., 2003; Wang et al., 2008; Meng et al., 2009; Donahue et al., 2010; Berkey et al., 2012).Tyr degradation is an essential five-step pathway in animals (Lindblad et al., 1977). First, Tyr aminotransferase catalyzes the conversion of Tyr into 4-hydroxyphenylpyruvate, which is further transformed into homogentisate by 4-hydroxyphenylpyruvate dioxygenase. Through the sequential action of homogentisate dioxygenase (HGO), maleylacetoacetate isomerase (MAAI), and fumarylacetoacetate hydrolase (FAH), homogentisate is catalyzed to generate fumarate and acetoacetate (Lindblad et al., 1977). Blockage of this pathway in animals results in metabolic disorder diseases (Lindblad et al., 1977; Ruppert et al., 1992; Grompe et al., 1993). For example, human FAH deficiency causes hereditary tyrosinemia type I (HT1), an inborn lethal disease (St-Louis and Tanguay, 1997). Although the homologous genes putatively encoding these enzymes exist in plants (Dixon et al., 2000; Lopukhina et al., 2001; Dixon and Edwards, 2006), it is unclear whether this pathway is essential for plant growth and development.In this study, we report the isolation and characterization of a recessive short-day sensitive cell death1 (sscd1) mutant in Arabidopsis. Map-based cloning of the corresponding gene revealed that SSCD1 encodes the Arabidopsis putative FAH. Further knockout of the gene encoding the Arabidopsis putative HGO completely eliminated the spontaneous cell death phenotype in the sscd1 mutant. Furthermore, we found that treatment of Arabidopsis wild-type seedlings with succinylacetone, an abnormal metabolite caused by loss of FAH in the Tyr degradation pathway (Lindblad et al., 1977), is able to mimic the sscd1 cell death phenotype. These results demonstrate that disruption of FAH leads to cell death in Arabidopsis and suggest that the Tyr degradation pathway is essential for plant survival under SD.  相似文献   

15.
16.
17.
18.
Low soil phosphorus (P) availability is a major constraint for crop production in tropical regions. The rice (Oryza sativa) protein kinase, PHOSPHORUS-STARVATION TOLERANCE1 (OsPSTOL1), was previously shown to enhance P acquisition and grain yield in rice under P deficiency. We investigated the role of homologs of OsPSTOL1 in sorghum (Sorghum bicolor) performance under low P. Association mapping was undertaken in two sorghum association panels phenotyped for P uptake, root system morphology and architecture in hydroponics and grain yield and biomass accumulation under low-P conditions, in Brazil and/or in Mali. Root length and root surface area were positively correlated with grain yield under low P in the soil, emphasizing the importance of P acquisition efficiency in sorghum adaptation to low-P availability. SbPSTOL1 alleles reducing root diameter were associated with enhanced P uptake under low P in hydroponics, whereas Sb03g006765 and Sb03g0031680 alleles increasing root surface area also increased grain yield in a low-P soil. SbPSTOL1 genes colocalized with quantitative trait loci for traits underlying root morphology and dry weight accumulation under low P via linkage mapping. Consistent allelic effects for enhanced sorghum performance under low P between association panels, including enhanced grain yield under low P in the soil in Brazil, point toward a relatively stable role for Sb03g006765 across genetic backgrounds and environmental conditions. This study indicates that multiple SbPSTOL1 genes have a more general role in the root system, not only enhancing root morphology traits but also changing root system architecture, which leads to grain yield gain under low-P availability in the soil.Increasing food production is one of the major global challenges in dealing with continuously growing population and food consumption (Godfray et al., 2010). One of the major obstacles to improve crop production in tropical regions is phosphorus (P) deficiency caused by P fixation in the soil clays. P is one of the most important plant nutrients, contributing approximately 0.2% of a plant’s dry weight, and is a component of key organic molecules such as nucleic acids, phospholipids, and ATP (Schachtman et al., 1998). On tropical soils, even when the total amount of soil P is high, its bioavailability is low due to P fixation by aluminum and iron oxides in clay minerals (Marschner, 1995) and immobilization into organic forms (Schachtman et al., 1998). Approximately half of the world’s agricultural lands occurs on low-P soils (Lynch, 2011); hence, crop adaptation to P insufficiency should be a major breeding target to enable sustainable agricultural production worldwide. In addition, because phosphate rock fertilizer is a nonrenewable resource that is being depleted by agricultural demands, increasing fertilizer prices negatively impact agriculture, particularly for small-holder farmers in developing countries in the tropics and subtropics (Cordell et al., 2009; Sattari et al., 2012). In sorghum (Sorghum bicolor), breeding strategies for low-P adaptation have been developed based on multienvironment trials in West Africa, indicating the importance of undertaking selection in low-P soil conditions (Leiser et al., 2012a, 2012b). Therefore, developing crops with greater ability to grow and maintain satisfactory yields on soils with reduced P availability is expected to substantially improve food security worldwide.Tolerance to P deficiency in plants can be achieved by mechanisms underlying both P acquisition and P internal utilization efficiency (Parentoni and Souza Junior, 2008). One of the major mechanisms that plants have evolved to overcome low-P availability is to maximize the ability of the roots to acquire and absorb P from the soil. Plants can mobilize P through the exudation of organic acids, acid phosphatases, and ribonucleases, resulting in enhanced P availability and uptake (Hinsinger, 2001; Ryan et al., 2001; Dakora and Phillips, 2002; Hammond and White, 2008; Ma et al., 2009; Pang et al., 2009). Another strategy to cope with low-P availability is to increase the soil volume accessed by root systems by forming mycorrhizal symbioses (Li et al., 2012; Smith and Smith, 2012; Rai et al., 2013). Due to low-P mobility on tropical soils, changes in root architecture and morphology enhance P uptake by facilitating soil exploration (Williamson et al., 2001; Ho et al., 2005; Walk et al., 2006; Svistoonoff et al., 2007; Lynch, 2011; Ingram et al., 2012; Niu et al., 2013). Root structural changes leading to higher P uptake include increased root hair growth (Yan et al., 2004; Haling et al., 2013; Lan et al., 2013) and length and enhancing lateral root over primary root growth (Williamson et al., 2001; Wang et al., 2013). In addition, increased root surface area is achieved by a combination of reduced root diameter and enhanced elongation of relatively thinner roots (Fitter et al., 2002). There is both intraspecific and interspecific genetic variation for P deficiency tolerance in crop species (Lynch and Brown, 2001, 2012; Mudge et al., 2002; Paszkowski et al., 2002; Rausch and Bucher, 2002; Huang et al., 2011; Zhang et al., 2011; Leiser et al., 2014a) that can be explored to develop P-efficient cultivars.In rice (Oryza sativa), Phosphorus uptake1 (Pup1), a major quantitative trait locus (QTL) for P deficiency tolerance donated by an aus-type Indian variety, Kasalath, was mapped to the long arm of chromosome 12 (Ni et al., 1998; Wissuwa et al., 1998, 2002; Heuer et al., 2009). Near-isogenic lines bearing the Kasalath allele at Pup1 showed 3-fold higher P uptake and grain yield in low-P trials compared with the recurrent parent, cv Nipponbare, which is intolerant to P starvation (Wissuwa and Ae, 2001). Following high-resolution mapping of Pup1, comparative sequence analyses of homologous bacterial artificial chromosomes showed that a Kasalath genomic fragment contained several genes not present in cv Nipponbare, highlighting an approximately 90-kb deletion in the cv Nipponbare reference genome that encompassed the Pup1 locus (Heuer et al., 2009). Within this insertion/deletion, OsPupK46-2, a gene encoding a Ser/Thr kinase of the Receptor-like Protein Kinase LRK10L-2 subfamily, was found to enhance grain yield and P uptake in rice lines overexpressing this gene, indicating that this protein kinase underlies the Pup1 locus (Gamuyao et al., 2012). OsPupK46-2, which is now designated PHOSPHORUS-STARVATION TOLERANCE1 (OsPSTOL1), was found to be up-regulated in the root tissues of tolerant near-isogenic lines under P-deficient conditions and was shown to increase P uptake by a physiological mechanism based on the enhancement of early root growth and development. Furthermore, lines overexpressing OsPupK46-2 showed an approximately 30% grain yield increase in comparison with the null lines, suggesting that PSTOL1 has potential for molecular breeding applications to improve crop performance under low-P conditions. Consistent with the proposed physiological mechanism underlying OsPSTOL1, the superior performance of the transgenic lines was related to enhanced root dry weight, root length, and root surface area (Gamuyao et al., 2012).Sorghum is the world’s fifth most important cereal crop and is a staple food for more than half a billion people. It is widely adapted to harsh environmental conditions, and more specifically, to arid and semiarid regions of the world (Doumbia et al., 1993, 1998). It has been estimated that rice diverged from its most recent common ancestor with sorghum and maize (Zea mays) approximately 50 million years ago (Kellogg, 1998; Paterson et al., 2000, 2004; Paterson, 2008). About 60% of the genes in the sorghum genome are located in syntenic regions to rice (Paterson et al., 2009), emphasizing the potential for using comparative genomics for cross-species identification of genes underlying abiotic stress tolerance in the grass family. Here, we applied association analysis to specifically study the role of sorghum homologs of rice OsPSTOL1 in tolerance to P starvation in sorghum. Single-nucleotide polymorphisms (SNPs) within PSTOL1 homologs in sorghum, collectively designated SbPSTOL1, were significantly associated with grain yield under low-P conditions and also root morphology and root system architecture (RSA) traits phenotyped from hydroponically grown plants. Under low P, SbPSTOL1 genes increased biomass accumulation and P content in the African landrace panel and grain yield in the sorghum association panel phenotyped in a low-P Brazilian soil. This suggests a stable effect across environments and sorghum genotypes that potentially can be used for molecular breeding applications. QTL mapping with a large sorghum recombinant inbred line population was used to validate the association results, indicating that SbPSTOL1 homologs colocalize with QTLs related to root morphology and performance under low P. Our results indicate that SbPSTOL1 homologs have the ability to enhance P uptake and sorghum performance in low-P soils by a mechanism related not only to early root growth enhancement, as was the case for rice OsPSTOL1, but also by modulating RSA.  相似文献   

19.
20.
Plants employ acentrosomal mechanisms to organize cortical microtubule arrays essential for cell growth and differentiation. Using structured illumination microscopy (SIM) adopted for the optimal documentation of Arabidopsis (Arabidopsis thaliana) hypocotyl epidermal cells, dynamic cortical microtubules labeled with green fluorescent protein fused to the microtubule-binding domain of the mammalian microtubule-associated protein MAP4 and with green fluorescent protein-fused to the alpha tubulin6 were comparatively recorded in wild-type Arabidopsis plants and in the mitogen-activated protein kinase mutant mpk4 possessing the former microtubule marker. The mpk4 mutant exhibits extensive microtubule bundling, due to increased abundance and reduced phosphorylation of the microtubule-associated protein MAP65-1, thus providing a very useful genetic tool to record intrabundle microtubule dynamics at the subdiffraction level. SIM imaging revealed nano-sized defects in microtubule bundling, spatially resolved microtubule branching and release, and finally allowed the quantification of individual microtubules within cortical bundles. Time-lapse SIM imaging allowed the visualization of subdiffraction, short-lived excursions of the microtubule plus end, and dynamic instability behavior of both ends during free, intrabundle, or microtubule-templated microtubule growth and shrinkage. Finally, short, rigid, and nondynamic microtubule bundles in the mpk4 mutant were observed to glide along the parent microtubule in a tip-wise manner. In conclusion, this study demonstrates the potential of SIM for superresolution time-lapse imaging of plant cells, showing unprecedented details accompanying microtubule dynamic organization.Plant cell growth and differentiation depend on dynamic cortical microtubule organization mechanisms (Ehrhardt, 2008). Such mechanisms include branched microtubule formation and release (Murata et al., 2005; Nakamura et al., 2010; Fishel and Dixit, 2013), microtubule-templated microtubule growth (Chan et al., 2009), angle-of-contact microtubule bundling or catastrophe induction (Dixit and Cyr, 2004; Tulin et al., 2012), severing at microtubule crossovers (Wightman and Turner, 2007), and unique dynamic behavior between steady-state treadmilling and dynamic instability (Shaw et al., 2003).Cortical microtubule dynamics have been studied in vivo and in vitro with total internal reflection microscopy (TIRFM; Vizcay-Barrena et al., 2011), variable-angle emission microscopy (VAEM; Wan et al., 2011), spinning-disc microscopy (SD; Shaw and Lucas, 2011), and confocal laser scanning microscopy (CLSM; Shaw et al., 2003). TIRFM and VAEM provide sufficient resolution and speed but at limited depth of imaging (approximately 200 nm; Martin-Fernandez et al., 2013) and inevitably a very narrow field of view when used for in vivo studies (Mattheyses et al., 2010). Dynamic CLSM imaging suffers from field-of-view limitations while also introducing phototoxicity to the imaged sample. Furthermore, CLSM is based on a speed-to-resolution tradeoff that will necessitate computational extrapolation to bring resolution to affordable levels (Rosero et al., 2014). Finally, SD can provide sufficient depth and speed but otherwise poor resolution, owing to aberrations arising from the sample and the properties of the optics commonly used (Shaw and Ehrhardt, 2013).Microtubule research evolved concomitant with optical microscopy and the development of fluorescent proteins markers, allowing the resolution of microtubule dynamics and organization at video rates (Marc et al., 1998; Shaw and Ehrhardt, 2013). However, the bulk of plant cells organized in tissues and the optical properties of cell walls hamper microscopic observations, so that the delineation of fine details of microtubule organization still relies on laborious transmission electron microscopy (Kang, 2010).Alternatively, in vitro assays using total internal reflection (TIRFM) or Allen’s video-enhanced contrast-differential interference contrast microscopy (Allen et al., 1981) with purified components have advanced the understanding of microtubule-microtubule-associated protein (MAP) interactions while providing mechanistic insight on the function of MAP65 proteins (Tulin et al., 2012; Portran et al., 2013; Stoppin-Mellet et al., 2013), kinesin motors (Song et al., 1997), katanin-mediated microtubule severing (Stoppin-Mellet et al., 2007), and microtubule dynamics (Moore et al., 1997). However, it is explicitly acknowledged that such in vitro assays should be addressed in biologically coherent systems with physiological relevance to microtubule dynamics (Gardner et al., 2013; Zanic et al., 2013). Thus, an ideal approach would be to address microtubule dynamics in the complex cellular environment at spatiotemporal resolutions achieved by in vitro assays.Subdiffraction optical microscopy techniques allow subcellular observations below Abbe’s resolution threshold (Verdaasdonk et al., 2014), complementing the use of transmission electron microscopy. Such approaches permit dynamic subcellular tracking of appropriately tagged structures within living cells (Tiwari and Nagai, 2013). Practically, two superresolution strategies exist. The first involves patterned light illumination, allowing superresolution acquisitions by two fundamentally different methods, stimulated emission depletion (STED; Hell, 2007) and structured illumination microscopy (SIM; Gustafsson, 2000). The second interrogates the precision of fluorophore localization and includes stochastic optical reconstruction microscopy (STORM; Kamiyama and Huang, 2012) and photoactivation localization microscopy (PALM; Sengupta et al., 2012). The above regimes differ in translational and axial resolution, and their temporal efficiency depends on the size of the imaged area. SIM is probably the best compromise for superresolution live imaging, as it offers reasonable lateral resolution (approximately 100 nm; Gustafsson, 2000), which may be reduced to 50 nm (Rego et al., 2012), and sufficient depth of imaging combined with a reasonable axial resolution (approximately 200 nm). SIM allows dynamic imaging in a broader field of view than STED, at biologically meaningful rates compared with PALM and STORM (Kner et al., 2009), and with deeper imaging capacity compared with other superresolution regimes and with TIRFM/VAEM (Leung and Chou, 2011). Superresolution approaches have received limited attention in the plant cell biology field (Fitzgibbon et al., 2010; Kleine-Vehn et al., 2011), and their resolution potential during live imaging was not quantified previously.Here, high-numerical aperture (NA) objectives were combined with SIM for the acquisition and systematic quantification of subdiffraction details of cortical microtubules labeled either with GFP fused to the microtubule-binding domain of mammalian MAP4 (GFP-MBD; Marc et al., 1998) or with GFP fused to alpha tubulin6 (GFP-TUA6; Shaw et al., 2003). For such studies, wild-type plants and a mitogen-activated protein kinase4 (mpk4) mutant, exhibiting extensive microtubule bundling due to the overexpression and underphosphorylation of MAP65-1 (Beck et al., 2010), were used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号