首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
氮代谢参与植物逆境抵抗的作用机理研究进展   总被引:2,自引:0,他引:2  
王新磊  吕新芳 《广西植物》2020,40(4):583-591
近年来,植物所受到的诸如干旱、盐、高温、低氧、重金属胁迫和营养元素缺乏等环境胁迫越来越多,严重影响了植物的生长发育及作物的质量和产量。氮素是植物生长发育所需的必需营养元素,同时也是核酸、蛋白质和叶绿素的重要组成成分,其代谢过程与植物抵抗逆境的能力息息相关。氮代谢是指植物对氮素的吸收、同化和利用的全过程,是植物体内基础代谢途径之一。氮代谢主要从氮素吸收、同化及氨基酸代谢等方面参与植物的抗逆性,并通过调节离子吸收和转运、稳定细胞形态和蛋白质结构、维持激素平衡和细胞代谢水平、减少体内活性氧(reactive oxygen species,ROS)生成以及促进叶绿素合成等生理机制来影响植物抵抗非生物胁迫的能力。因此,提高植物在逆境下的氮代谢水平是减轻外界胁迫对其损伤的一种潜在途径。该文从氮素同化的基本途径出发,分别阐述了氮代谢在干旱胁迫、盐胁迫和高温胁迫等多个方面的逆境抵抗过程中的作用机理,为氮代谢参与植物抗逆性研究提供了有利参考。  相似文献   

2.
在发育的新生组织中 ,来自种子胚乳储存蛋白的降解和氨基酸分解代谢产生的氨由谷氨酰胺合成酶 ( Glutamine synthetase,GS)重新同化 ,生成的谷氨酰胺 ( Gln)被转运到正在生长着的部分。GS是高等植物氮素代谢的关键酶 [1] ,这个酶能同化不同来源的氨。 GS有多种同工酶 ,存在于植物的各种组织和器官中。它们是由一小的同源但分离的核基因家族编码的 [2 3 ] ,这些不同的 GS在植物氮素同化中起着非重叠的作用 [4] ,它们的表达受到环境、发育进程以及组织或细胞类型等许多因素的影响。在大多数已研究过的植物叶片中存在两种 GS,即胞液型GS(…  相似文献   

3.
为了解不同类型小黑麦(×Triticosecale)氮代谢及籽粒蛋白质形成的差异,本文以加工型品种‘东农8809’、饲用型品种‘东农5305’和粮饲兼用型品种‘东农96026’为材料,采用随机区组设计,探究3个类型小黑麦品种氮同化、氮素积累及转运、蛋白质积累特性的变化。结果表明,加工型品种‘东农8809’花后氮素同化量高而氮素转运量低,籽粒蛋白质主要来源于花后植株的同化吸收;饲用型品种‘东农5305’硝酸还原酶(NR)和谷氨酰胺合成酶(GS)活性高,旗叶可溶性蛋白含量和游离氨基酸含量较高,对氮的贮存能力高,利于生育后期向籽粒转运;粮饲兼用型品种‘东农96026’的NR和GS活性较低,且生育后期GS降幅大,氮同化能力较低,氮素转运量和氮转运效率小,氮素转运能力弱。  相似文献   

4.
氮素水平对花生氮素代谢及相关酶活性的影响   总被引:10,自引:0,他引:10       下载免费PDF全文
 在大田高产条件下研究了氮素水平对花生(Arachis hypogaea)可溶性蛋白质、游离氨基酸含量及氮代谢相关酶活性的影响, 结果表明, 适当提高氮素水平既能增加花生各器官中可溶性蛋白质和游离氨基酸的含量, 又能提高硝酸还原酶、谷氨酰胺合成酶和谷氨酸脱氢酶等氮素同化酶的活性, 使其达到同步增加; 氮素水平过高虽能提高硝酸还原酶和籽仁蛋白质含量, 但谷氨酰胺合成酶(GS)和谷氨酸脱氢酶(GDH)的活性下降; N素施肥水平不改变花生植株各器官中可溶性蛋白质、游离氨基酸含量以及硝酸还原酶(NR)、谷氨酰胺合成酶、谷氨酸脱氢酶活性的变化趋势, 但适量施N (A2和A3处理)使花生各营养器官中GS、GDH活性提高; 氮素水平对花生各叶片和籽仁中GS、GDH活性的高低影响较大, 但对茎和根中GDH活性大小的影响较小。  相似文献   

5.
采用盆栽方法研究了氮素形态对不同专用型小麦开花后氮素同化关键酶活性及籽粒蛋白质含量的影响。结果表明:不同专用型小麦氮素同化关键酶硝酸还原酶、谷氨酰胺合成酶和谷氨酸合酶对氮素形态的反应不同。强筋小麦豫麦34施用酰胺态氮对旗叶硝酸还原酶和谷氨酰胺合成酶活性、籽粒谷氨酰胺合成酶和谷氨酸合酶活性具有明显的促进作用,最终籽粒蛋白质含量较高;中筋小麦豫麦4 9在施用铵态氮时,3种氮素同化关键酶活性均有较大增强,籽粒蛋白质含量最高;弱筋小麦豫麦5 0硝酸还原酶活性以铵态氮处理最高,而籽粒和旗叶谷氨酰胺合成酶和谷氨酸合酶活性在酰胺态氮处理下明显增强,酰胺态氮对籽粒中蛋白质含量的增加具有明显的促进作用。相关性分析表明,籽粒蛋白质含量与旗叶GS活性和籽粒GOGAT活性呈显著或极显著正相关,与旗叶NR活性和GS活性、籽粒GOGAT活性相关性不显著  相似文献   

6.
植物的硫同化及其相关酶活性在镉胁迫下的调节   总被引:11,自引:0,他引:11  
植物对土壤中硫的利用包括根系对硫酸盐的吸收、转运、同化、分配等过程,也是由一系列酶和蛋白质参与和调节的代谢过程。近年来的研究表明,在植物体内,硫同化与植物对镉等重金属元素的胁迫反应机制有着密切关系。镉胁迫能调节植物对硫酸盐的吸收、转运、同化,以及半胱氨酸、谷胱甘肽(glutathione,GSH)和植物螯合肽(Dhytochelatins,pc)的合成。植物在镉胁迫下通过多种调节机制,增强对硫酸盐的吸收和还原,迅速合成半胱氨酸和谷胱甘肽等代谢物,从而合成足够的PC,以满足植物生理的需要。  相似文献   

7.
蓝藻一类固氮生物固定空气中分子氮所形成的氨的进一步同化虽然不属于生物固氮的概念和研究范畴,但是,由于氨对蓝藻固氮酶有阻抑效应,所以细胞中要不断进行固氮作用,则必须将固氮产物氨立即通过氨基酸合成蛋白质。这一过程是通过谷氨酰胺合成酶(GS)和谷氨酸合成酶(GOGAT)的偶联,以及各种氨基酸和蛋白质合成酶参与下  相似文献   

8.
植物内生菌促进宿主氮吸收与代谢研究进展   总被引:6,自引:0,他引:6  
杨波  陈晏  李霞  任承钢  戴传超 《生态学报》2013,33(9):2656-2664
内生菌与植物共生能够提高宿主的氮吸收与氮代谢水平,这可能是由于内生菌在植物体内引发的多种效应的综合结果.植物内生菌能够通过促进植物根系发育和固氮作用为宿主植物提供更多的无机氮素;能够通过分泌多种胞外酶系如漆酶、蛋白水解酶等使宿主植物更好地利用有机氮素;能够提高宿主氮代谢关键酶如硝酸还原酶(NR)、谷氨酰胺合成酶(GS)等酶的活性;能够提高宿主植物激素水平和维生素含量从而促进宿主氮代谢;能够通过影响宿主植物氮代谢促进宿主植物分蘖、提高宿主植物叶绿素含量和光合速率等等.综述了国内外关于植物内生菌促进宿主氮代谢的相关报道,归纳了植物内生菌影响宿主氮素吸收与代谢的可能机制,并展望了关于植物内生菌促进宿主氮代谢机制方面的研究方向.  相似文献   

9.
索罗金小球藻异养转自养过程中基因表达的全局调控   总被引:1,自引:0,他引:1  
为提高异养条件下索罗金小球藻(Chlorella sorokiniana)蛋白质含量, 扩大该藻株在食品和饲料领域的应用, 研究发现当异养条件下培养的C. sorokiniana GT-1细胞转入光自养培养条件后, 蛋白质含量显著提高。通过转录组学分析揭示了C. sorokiniana GT-1在异养转自养过程中基因表达发生全局变化, 其中糖酵解途径与磷酸戊糖途径上调, 氮转运和同化途径中的关键酶的编码基因明显上调, 且谷氨酸族氨基酸和丙酮酸族氨基酸的生物合成途径的多个酶在转录水平上显著增强。研究还发现在异养条件下藻细胞仍然可以表达部分光合作用蛋白的编码基因, 当转入光自养条件后24h内绝大多数光合作用相关蛋白编码基因的转录被激活。结果表明在异养转自养条件过程中蛋白质含量的升高与氮的吸收及利用增加、还原能合成的增强、部分氨基酸的合成上调及光合作用蛋白质的大量合成有关。研究为后续如何通过培养条件优化或代谢工程改造提高C. sorokiniana GT-1产蛋白质的能力提出了新的思路。  相似文献   

10.
提高植物的氮素利用效率(NUE)不仅有利于保障全球粮食安全,也是实现农业可持续发展的重要途径。近半个世纪以来,植物氮素利用机理研究已取得重要进展,但NUE的调控机制仍不明确, NUE的提高仍然十分有限。高等植物集光合碳素同化和氮素同化于一体,只有碳氮代谢相互协调,才能维持植物体内的碳氮平衡,保证植物正常生长发育。由于C_3和C_4植物的光合氮素利用率(PNUE)存在差异,对氮素的利用效率也会存在差异。为了更有效地提高作物的NUE,须更全面地了解C_3和C_4植物对氮素吸收、转运、同化和信号转导等关键因子的功能和调控机制。此外,面对大气CO_2浓度增高和全球气候变暖条件下的植物碳氮同化及其机理的研究也不容忽视。该文综述了C_3和C_4植物氮素利用关键因素的差异及其调控机制,并对提高C_3禾本科作物氮素利用效率的遗传改良途径进行了展望。  相似文献   

11.
Under normal (full-strength) levels of calcium in hydroponics culture, alginate-derived oligosaccharides (ADOs) increased the activity of nitrate reductase (NR), glutamine synthetase (GS), glutamate dehydrogenase (GDH), and endpeptidase (EP) in leaves by 4.04–14.41%, 23.57–190.12%, 103.44–265.21%, and 7.22–157.41% respectively compared to that in leaves of the control plants; increased the concentration of NH4 +-N, total nitrogen, and protein nitrogen in leaves; and decreased the concentration of nitrate in shoots. Under low (5% of the full strength) levels of calcium, ADOs had no effect on the activity of NR and GS. These results serve to confirm the role of ADOs in regulating nitrogen metabolism, which is related to the supply of calcium. ADOs induce the release of calcium from cell organelles and the cell wall into the cytoplasm to activate the enzymes involved in nitrogen metabolism. Thus Ca regulates nitrogen metabolism in Chinese cabbage through ADOs.  相似文献   

12.
Nitrogen metabolism genes of Bacillus subtilis are regulated by the availability of rapidly metabolizable nitrogen sources, but not by any mechanism analogous to the two-component Ntr regulatory system found in enteric bacteria. Instead, at least three regulatory proteins independently control the expression of gene products involved in nitrogen metabolism in response to nutrient availability. Genes expressed at high levels during nitrogen-limited growth are controlled by two related proteins, GlnR and TnrA, which bind to similar DNA sequences under different nutritional conditions. The TnrA protein is active only during nitrogen limitation, whereas GlnR-dependent repression occurs in cells growing with excess nitrogen. Although the nitrogen signal regulating the activity of the GlnR and TnrA proteins is not known, the wild-type glutamine synthetase protein is required for the transduction of this signal to the GlnR and TnrA proteins. Examination of GlnR- and TnrA-regulated gene expression suggests that these proteins allow the cell to adapt to growth during nitrogen-limited conditions. A third regulatory protein, CodY, controls the expression of several genes involved in nitrogen metabolism, competence and acetate metabolism in response to growth rate. The highest levels of CodY-dependent repression occur in cells growing rapidly in a medium rich in amino acids, and this regulation is relieved during the transition to nutrient-limited growth. While the synthesis of amino acid degradative enzymes in B. subtilis is substrate inducible, their expression is generally not regulated in response to nitrogen availability by GlnR and TnrA. This pattern of regulation may reflect the fact that the catabolism of amino acids produced by proteolysis during sporulation and germination provides the cell with substrates for energy production and macromolecular synthesis. As a result, expression of amino acid degradative enzymes may be regulated to ensure that high levels of these enzymes are present in sporulating cells and in dormant spores.  相似文献   

13.
The polyamine metabolic pathway is intricately connected to metabolism of several amino acids. While ornithine and arginine are direct precursors of putrescine, they themselves are synthesized from glutamate in multiple steps involving several enzymes. Additionally, glutamate is an amino group donor for several other amino acids and acts as a substrate for biosynthesis of proline and γ-aminobutyric acid, metabolites that play important roles in plant development and stress response. Suspension cultures of poplar (Populus nigra × maximowiczii), transformed with a constitutively expressing mouse ornithine decarboxylase gene, were used to study the effect of up-regulation of putrescine biosynthesis (and concomitantly its enhanced catabolism) on cellular contents of various protein and non-protein amino acids. It was observed that up-regulation of putrescine metabolism affected the steady state concentrations of most amino acids in the cells. While there was a decrease in the cellular contents of glutamine, glutamate, ornithine, arginine, histidine, serine, glycine, cysteine, phenylalanine, tryptophan, aspartate, lysine, leucine and methionine, an increase was seen in the contents of alanine, threonine, valine, isoleucine and γ-aminobutyric acid. An overall increase in percent cellular nitrogen and carbon content was also observed in high putrescine metabolizing cells compared to control cells. It is concluded that genetic manipulation of putrescine biosynthesis affecting ornithine consumption caused a major change in the entire ornithine biosynthetic pathway and had pleiotropic effects on other amino acids and total cellular carbon and nitrogen, as well. We suggest that ornithine plays a key role in regulating this pathway.  相似文献   

14.
Metabolite profiles and activities of key enzymes in the metabolism of organic acids, nitrogen and amino acids were compared between chlorotic leaves and normal leaves of ‘Honeycrisp’ apple to understand how accumulation of non-structural carbohydrates affects the metabolism of organic acids, nitrogen and amino acids. Excessive accumulation of non-structural carbohydrates and much lower CO2 assimilation were found in chlorotic leaves than in normal leaves, confirming feedback inhibition of photosynthesis in chlorotic leaves. Dark respiration and activities of several key enzymes in glycolysis and tricarboxylic acid (TCA) cycle, ATP-phosphofructokinase, pyruvate kinase, citrate synthase, aconitase and isocitrate dehydrogenase were significantly higher in chlorotic leaves than in normal leaves. However, concentrations of most organic acids including phosphoenolpyruvate (PEP), pyruvate, oxaloacetate, 2-oxoglutarate, malate and fumarate, and activities of key enzymes involved in the anapleurotic pathway including PEP carboxylase, NAD-malate dehydrogenase and NAD-malic enzyme were significantly lower in chlorotic leaves than in normal leaves. Concentrations of soluble proteins and most free amino acids were significantly lower in chlorotic leaves than in normal leaves. Activities of key enzymes in nitrogen assimilation and amino acid synthesis, including nitrate reductase, glutamine synthetase, ferredoxin and NADH-dependent glutamate synthase, and glutamate pyruvate transaminase were significantly lower in chlorotic leaves than in normal leaves. It was concluded that, in response to excessive accumulation of non-structural carbohydrates, glycolysis and TCA cycle were up-regulated to “consume” the excess carbon available, whereas the anapleurotic pathway, nitrogen assimilation and amino acid synthesis were down-regulated to reduce the overall rate of amino acid and protein synthesis.  相似文献   

15.
16.
Nodulated lupins (Lupinus angustifolius cv. Wonga) were hydroponically grown under conditions of low phosphate (LP) or adequate phosphate (HP) to assess the effect of phosphoenolpyruvate carboxylase (PEPC)-derived organic acids on nitrogen assimilation in LP nodules. LP conditions are linked to altered organic acid metabolism, by the engagement of PEP metabolism via PEPC. In LP nodules, the enhanced organic acid synthesis may reduce the available organic carbon for nitrogen assimilation. The diversion of carbon between the organic acid- and amino acid pools was assessed through key nodular enzymes and (14)CO(2) metabolism. Under LP conditions, increased rates of organic acid synthesis via PEPC and malate dehydrogenase (MDH), coincided with reduced nitrogen assimilation via aspartate aminotransferase (AAT), aspartate synthetase (AS) and glutamine synthetase (GS)/glutamate synthase (GOGAT) activities. There was a preferential metabolism of nodular (14)CO(2) into organic acids and particularly into malate. High malate levels were associated with reduced N(2) fixation and synthesis of amino acids. These results indicate that phosphorus deficiency can enhance malate synthesis in nodules, but that excessive malate accumulation may inhibit N(2) fixation and nitrogen assimilation.  相似文献   

17.
Nitrogen use efficiency. 2. Amino acid metabolism   总被引:3,自引:0,他引:3  
In a previous article, we highlighted the latest developments in the isolation and characterisation of genes involved in the uptake of nitrogen from the soil, which might be used to improve the nitrogen use efficiency (NUE) of crop plants. In this article, we have concentrated on the genes controlling the enzymes of amino acid metabolism that may be involved in transferring nitrogen to the protein in the grain. Evidence is now accumulating from the use of knockout mutants, of the role of individual isoenzymes involved in amino acid metabolism, which are encoded by specific genes that are often members of a multigene family. In addition, a significant number of overexpressing plant lines have been obtained, which have increased activities of cytosol located, glutamine synthetase, asparagine synthetase and alanine aminotransferase that appear to have improved NUE.  相似文献   

18.
19.
模拟酸雨对杜仲叶氮代谢的影响   总被引:9,自引:0,他引:9       下载免费PDF全文
 探讨了春夏两季模拟酸雨对杜仲(Eucommia ulmoides Oliv.)叶氮代谢的几个关键酶及相关物质含量的影响。结果表明:春夏两季杜仲叶硝酸还原酶(NR)、谷酰胺合成酶(GS)、谷氨酸脱氢酶(GDH)和谷丙转氨酶(GPT)活性在一定pH值酸雨胁迫下随酸雨pH值的降低而降低,夏季各酶活性下降率比春季高。杜仲叶可溶性蛋白质和总氮含量春夏两季也随酸雨pH值降低而降低(夏季可溶性蛋白含量与pH值呈正相关),总游离氨基酸含量则随pH值的降低而升高(二者呈负相关)。由此可见,酸雨对杜仲叶氮代谢产生了显著影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号