首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Recognition and uptake of oxidized LDL (oxLDL) by scavenger receptors of macrophages and foam cell formation are mediated by the oxidatively modified apolipoprotein B (ApoB) and lipid moiety of oxLDL. A great amount of oxidized phosphatidylcholine (oxPC) of oxLDL is hydrolyzed at the sn-2 position by lipoprotein associated phospholipase A2 (Lp-PLA2) to lysophosphatidylcholine and small oxidation products. This study examines the involvement of Lp-PLA2 in the uptake of oxLDL by mouse peritoneal macrophages. LDL with intact Lp-PLA2 activity [LDL (+)] and LDL with completely inhibited Lp-PLA2 activity [LDL (-)] were subjected to oxidation with 5 μM CuSO4 for 6 h [moderately oxLDL (MoxLDL)], or 24 h [heavily oxLDL (HoxLDL)] and peritoneal macrophages were incubated with these preparations. The uptake of MoxLDL(-) was about 30% increased compared with that of MoxLDL(+), and HoxLDL(-) uptake was about 20% increased compared with that of HoxLDL(+). Inhibition of Lp-PLA2 activity had no effect on the uptake of ApoB-liposomes conjugates with ApoB isolated from MoxLDL(-), MoxLDL(+), HoxLDL(-), and HoxLDL(+). Liposomes prepared from the lipid extract of MoxLDL(-), MoxLDL(+), HoxLDL(-), and HoxLDL(+) exhibited a similar pattern to that observed in the uptake of the corresponding intact lipoproteins. This study suggests that the progressive inactivation of Lp-PLA2 during LDL oxidation leads to an increased uptake of oxLDL by macrophages, which could be primarily attributed to the increased uptake of the oxidized phospholipids enriched lipid moiety of oxLDL.  相似文献   

2.
The effects of low-density lipoprotein (LDL) and chylomicron remnants on lipid accumulation in human monocyte-derived macrophages (HMDMs) and in macrophages derived from the human monocyte cell line THP-1 were compared. The HMDMs or THP-1 macrophages were incubated with LDL, oxidized LDL (oxLDL), chylomicron remnant-like particles (CMR-LPs), or oxidized CMR-LPs (oxCMR-LPs), and the amount and type of lipid accumulated were determined. As expected, the lipid content of both cell types was increased markedly by oxLDL but not LDL, and this was due to a rise in cholesterol, cholesteryl ester (CE), and triacylglycerol (TG) levels. In contrast, both CMR-LPs and oxCMR-LPs caused a considerable increase in cellular lipid in HMDMs and THP-1 macrophages, but in this case there was a greater rise in the TG than in the cholesterol or CE content. Lipid accumulation in response to oxLDL, CMR-LPs, and oxCMR-LPs was prevented by the ACAT inhibitor CI976 in HMDMs but not in THP-1 macrophages, where TG levels remained markedly elevated. The rate of incorporation of [(3)H]oleate into CE and TG in THP-1 macrophages was increased by oxLDL, CMR-LPs, and oxCMR-LPs, but incorporation into TG was increased to a greater extent with CMR-LPs and oxCMR-LPs compared with oxLDL. These results demonstrate that both CMR-LPs and oxCMR-LPs cause lipid accumulation in human macrophages comparable to that seen with oxLDL and that oxidation of the remnant particles does not enhance this effect. They also demonstrate that a greater proportion of the lipid accumulated in response to CMR-LPs compared with oxLDL is TG rather than cholesterol or CE and that this is associated with a higher rate of TG synthesis. This study, therefore, provides further evidence to suggest that chylomicron remnants have a role in foam cell formation that is distinct from that of oxLDL.  相似文献   

3.

Introduction

Osteoarthritis (OA) is associated with the metabolic syndrome, however the underlying mechanisms remain unclear. We investigated whether low density lipoprotein (LDL) accumulation leads to increased LDL uptake by synovial macrophages and affects synovial activation, cartilage destruction and enthesophyte/osteophyte formation during experimental OA in mice.

Methods

LDL receptor deficient (LDLr−/−) mice and wild type (WT) controls received a cholesterol-rich or control diet for 120 days. Experimental OA was induced by intra-articular injection of collagenase twelve weeks after start of the diet. OA knee joints and synovial wash-outs were analyzed for OA-related changes. Murine bone marrow derived macrophages were stimulated with oxidized LDL (oxLDL), whereupon growth factor presence and gene expression were analyzed.

Results

A cholesterol-rich diet increased apolipoprotein B (ApoB) accumulation in synovial macrophages. Although increased LDL levels did not enhance thickening of the synovial lining, S100A8 expression within macrophages was increased in WT mice after receiving a cholesterol-rich diet, reflecting an elevated activation status. Both a cholesterol-rich diet and LDLr deficiency had no effect on cartilage damage; in contrast, ectopic bone formation was increased within joint ligaments (fold increase 6.7 and 6.1, respectively). Moreover, increased osteophyte size was found at the margins of the tibial plateau (4.4 fold increase after a cholesterol-rich diet and 5.3 fold increase in LDLr−/− mice). Synovial wash-outs of LDLr−/− mice and supernatants of macrophages stimulated with oxLDL led to increased transforming growth factor-beta (TGF-β) signaling compared to controls.

Conclusions

LDL accumulation within synovial lining cells leads to increased activation of synovium and osteophyte formation in experimental OA. OxLDL uptake by macrophages activates growth factors of the TGF-superfamily.  相似文献   

4.
Macrophage foam cells are a defining pathologic feature of atherosclerotic lesions. Recent studies have demonstrated that at high concentrations associated with hypercholesterolemia, native LDL induces macrophage lipid accumulation. LDL particles are taken up by macrophages as part of bulk fluid pinocytosis. However, the uptake and metabolism of cholesterol from native LDL during foam cell formation has not been clearly defined. Previous reports have suggested that selective cholesteryl ester (CE) uptake might contribute to cholesterol uptake from LDL independently of particle endocytosis. In this study we demonstrate that the majority of macrophage LDL-derived cholesterol is acquired by selective CE uptake in excess of LDL pinocytosis and degradation. Macrophage selective CE uptake does not saturate at high LDL concentrations and is not down-regulated during cholesterol accumulation. In contrast to CE uptake, macrophages exhibit little selective uptake of free cholesterol (FC) from LDL. Following selective uptake from LDL, CE is rapidly hydrolyzed by a novel chloroquine-sensitive pathway. FC released from LDL-derived CE hydrolysis is largely effluxed from cells but also is subject to ACAT-mediated reesterification. These results indicate that selective CE uptake plays a major role in macrophage metabolism of LDL.  相似文献   

5.
Atherosclerosis, a chronic inflammatory disease, results in part from the accumulation of modified lipoproteins in the arterial wall and formation of lipid-laden macrophages, known as "foam cells." Recently, we reported that CD36, a scavenger receptor, contributes to activation of Vav-family guanine nucleotide exchange factors by oxidatively modified LDL in macrophages. We also discovered that CD36-dependent uptake of oxidized LDL (oxLDL) in vitro and foam cell formation in vitro and in vivo was significantly reduced in macrophages deficient of Vav proteins. The goal of the present study was to identify the mechanisms by which Vav proteins regulate CD36-dependent foam cell formation. We now show that a Vav-dynamin signaling axis plays a critical role in generating calcium signals in mouse macrophages exposed to CD36-specific oxidized phospholipid ligands. Chelation of intracellular Ca(2+) or inhibition of phospholipase C-γ (PLC-γ) inhibited Vav activation (85 and 70%, respectively, compared with vehicle control) and reduced foam cell formation (approximately 75%). Knockdown of expression by siRNA or inhibition of GTPase activity of dynamin 2, a Vav-interacting protein involved in endocytic vesicle fission, significantly blocked oxLDL uptake and inhibited foam cell formation. Immunofluorescence microscopy studies showed that Vav1 and dynamin 2 colocalized with internalized oxLDL in macrophages and that activation and mobilization of dynamin 2 by oxLDL was impaired in vav null cells. These studies identified previously unknown components of the CD36 signaling pathway, demonstrating that Vav proteins regulate oxLDL uptake and foam cell formation via calcium- and dynamin 2-dependent processes and thus represent novel therapeutic targets for atherosclerosis.  相似文献   

6.
During atherosclerosis, low-density lipoprotein (LDL)-derived cholesterol accumulates in macrophages to form foam cells. Macrophage uptake of LDL promotes foam cell formation but the mechanism mediating this process is not clear. The present study investigates the mechanism of LDL uptake for macrophage colony-stimulating factor (M-CSF)-differentiated murine bone marrow-derived macrophages. LDL receptor-null (LDLR−/−) macrophages incubated with LDL showed non-saturable accumulation of cholesterol that did not down-regulate for the 24 h examined. Incubation of LDLR−/− macrophages with increasing concentrations of 125I-LDL showed non-saturable macrophage LDL uptake. A 20-fold excess of unlabeled LDL had no effect on 125I-LDL uptake by wild-type macrophages and genetic deletion of the macrophage scavenger receptors CD36 and SRA did not affect 125I-LDL uptake, showing that LDL uptake occurred by fluid-phase pinocytosis independently of receptors. Cholesterol accumulation was inhibited approximately 50% in wild-type and LDLR−/− mice treated with LY294002 or wortmannin, inhibitors of all classes of phosphoinositide 3-kinases (PI3K). Time-lapse, phase-contrast microscopy showed that macropinocytosis, an important fluid-phase uptake pathway in macrophages, was blocked almost completely by PI3K inhibition with wortmannin. Pharmacological inhibition of the class I PI3K isoforms alpha, beta, gamma or delta did not affect macrophage LDL-derived cholesterol accumulation or macropinocytosis. Furthermore, macrophages from mice expressing kinase-dead class I PI3K beta, gamma or delta isoforms showed no decrease in cholesterol accumulation or macropinocytosis when compared with wild-type macrophages. Thus, non-class I PI3K isoforms mediated macropinocytosis in these macrophages. Further characterization of the components necessary for LDL uptake, cholesterol accumulation, and macropinocytosis identified dynamin, microtubules, actin, and vacuolar type H(+)-ATPase as contributing to uptake. However, Pak1, Rac1, and Src-family kinases, which mediate fluid-phase pinocytosis in certain other cell types, were unnecessary. In conclusion, our findings provide evidence that targeting those components mediating macrophage macropinocytosis with inhibitors may be an effective strategy to limit macrophage accumulation of LDL-derived cholesterol in arteries.  相似文献   

7.
Oxidatively modified low-density lipoprotein (LDL) has been found in vivo, and oxidized LDL (oxLDL) could bind to scavenger receptors, leading to foam cell formation. Macrophages bear a number of different scavenger receptors for oxLDL, and macrophages of different origins may have a different scavenger receptor repertoire. In addition, LDL oxidized to different degrees may differ in the ability to bind macrophage scavenger receptors. In this study, we characterized the patterns of the binding and uptake of differently oxidized LDL in mouse peritoneal macrophages (MPM) and human THP-1 macrophages, and the influence of negative charge and oxidation-specific epitopes in oxLDL on these processes. Thresholds of increased binding and uptake in MPM were found when LDL was oxidized to the degrees with a relative electrophoretic mobility (REM) of 2.6 (minor threshold) and 3.0 (major threshold), corresponding to 49 and 57%, respectively, of the loss of free amino groups in these oxLDL. There was no threshold for the binding of oxLDL to THP-1 macrophages, while for uptake, a major threshold with REM of 3.0 (57% free amino groups lost) was found. The presence of the F(ab')(2) fragments of the monoclonal antibody OB/04, which was raised against copper-oxidized LDL, led to the reduction of the binding and uptake, respectively, of Eu(3+)-oxLDL (REM:3.6) in MPM by 31 and 29%, and by 19 and 22% in THP-1 macrophages. It is concluded that LDL oxidized to different degrees binds differently to macrophages, and the patterns of binding and uptake are different for MPM and human THP-1 macrophages. Both, the negative charge and the oxidation-specific epitopes of oxLDL are involved in these processes.  相似文献   

8.
In blood circulation, low density lipoproteins (LDL) can undergo modification, such as oxidation, and become key factors in the development of atherosclerosis. Although the liver is the major organ involved in the elimination of oxidized LDL (oxLDL), the identity of the receptor(s) involved remains to be defined. Our work aims to clarify the role of the scavenger receptor class B type I (SR-BI) in the hepatic metabolism of mildly and standardly oxLDL as well as the relative contribution of parenchymal (hepatocytes) and nonparenchymal liver cells with a special emphasis on CE-selective uptake. The association of native LDL and mildly or standardly oxLDL labeled either in proteins or in cholesteryl esters (CE) was measured on primary cultures of mouse hepatocytes from normal and SR-BI knock-out (KO) mice. These in vitro assays demonstrated that hepatocytes are able to mediate CE-selective uptake from both LDL and oxLDL and that SR-BI KO hepatocytes have a 60% reduced ability to selectively take CE from LDL but not towards mildly or standardly oxLDL. When lipoproteins were injected in the mouse inferior vena cava, parenchymal and nonparenchymal liver cells accumulated more CE than proteins from native, mildly and standardly oxLDL, indicating that selective uptake of CE from these lipoproteins occurs in vivo in these two cell types. The parenchymal cells contribute near 90% of the LDL-CE selective uptake and SR-BI for 60% of this pathway. Nonparenchymal cells capture mainly standardly oxLDL while parenchymal and nonparenchymal cells equally take up mildly oxLDL. An 82% reduction of standardly oxLDL-CE selective uptake by the nonparenchymal cells of SR-BI KO mice allowed emphasizing the contribution of SR-BI in hepatic metabolism of standardly oxLDL. However, SR-BI is not responsible for mildly oxLDL metabolism. Thus, SR-BI is involved in LDL- and standardly oxLDL-CE selective uptake in parenchymal and nonparenchymal cells, respectively.  相似文献   

9.
Mac-1 exhibits a unique inhibitory activity toward IL-13-induced JAK/STAT activation and thereby regulates macrophage to foam cell transformation. However, the underlying molecular mechanism is unknown. In this study, we report the identification of IL-13Rα1, a component of the IL-13 receptor (IL-13R), as a novel ligand of integrin Mac-1, using a co-evolution-based algorithm. Biochemical analyses demonstrated that recombinant IL-13Rα1 binds Mac-1 in a purified system and supports Mac-1-mediated cell adhesion. Co-immunoprecipitation experiments revealed that endogenous Mac-1 forms a complex with IL-13Rα1 in solution, and confocal fluorescence microscopy demonstrated that these two receptors co-localize with each other on the surface of macrophages. Moreover, we found that genetic inactivation of Mac-1 promotes IL-13-induced JAK/STAT activation in macrophages, resulting in enhanced polarization along the alternative activation pathway. Importantly, we observed that Mac-1−/− macrophages exhibit increased expression of foam cell differentiation markers including 15-lipoxygenase and lectin-type oxidized LDL receptor-1 both in vitro and in vivo. Indeed, we found that Mac-1−/−LDLR−/− mice develop significantly more foam cells than control LDLR−/− mice, using an in vivo model of foam cell formation. Together, our data establish for the first time a molecular mechanism by which Mac-1 regulates the signaling activity of IL-13 in macrophages. This newly identified IL-13Rα1/Mac-1-dependent pathway may offer novel targets for therapeutic intervention in the future.  相似文献   

10.
Vascular smooth muscle cell (VSMC) foam cell formation is an important hallmark, especially in advanced atherosclerosis lesions. Acyl-coenzyme A:cholesterol acyltransferase 1 (ACAT1) promotes foam cell formation by promoting intracellular cholesteryl ester synthesis. The present study tests the hypothesis that oxidized low-density lipoprotein (oxLDL) increases the ACAT1 expression by activating the Toll-like receptor 4 (TLR4)-mediated inflammation, and ultimately promotes VSMC foam cell formation. Wild-type, ApoE−/−, TLR4−/− and ACAT1−/− mice on a C57BL/6J background were used. Increased TLR4, proinflammatory cytokines and ACAT1 were observed in high-fat (HF) diet-induced atherosclerotic plaque formation and in oxLDL-stimulated VSMCs. ACAT1 deficiency impeded the HF diet-induced atherosclerotic plaque formation and impaired the TLR4-manipulated VSMC foam cell formation in response to oxLDL. TLR4 deficiency inhibited the upregulation of myeloid-differentiating factor 88 (MyD88), nuclear factor-κB (NF-κB), proinflammatory cytokines and ACAT1, and eventually attenuated the HF diet-induced atherosclerotic plaque formation and suppressed the oxLDL-induced VSMC foam cell formation. Knockdown of MyD88 and NF-κB, respectively, impaired the TLR4-manipulated VSMC foam cell formation in response to oxLDL. Rosiglitazone (RSG) attenuated HF diet-induced atherosclerotic plaque formation in ApoE−/− mice, accompanied by reduced expression of TLR4, proinflammatory cytokines and ACAT1 accordingly. Activation of peroxisome proliferator-activated receptor γ (PPARγ) suppressed oxLDL-induced VSMC foam cell formation and inhibited the expression of TLR4, MyD88, NF-κB, proinflammatory cytokines and ACAT1, whereas inhibition of PPARγ exerted the opposite effect. TLR4−/− mice and VSMCs showed impaired atherosclerotic plaque formation and foam cell formation, and displayed no response to PPARγ manipulation. In conclusion, our data showed that oxLDL stimulation can activate the TLR4/MyD88/NF-κB inflammatory signaling pathway in VSMCs, which in turn upregulates the ACAT1 expression and finally promotes VSMC foam cell formation.Atherosclerosis remains the major cause of deaths worldwide, with deteriorated clinical consequence of cardiovascular diseases including myocardial infarction and stroke.1 In 2008, for example, 17.3 million deaths were caused by cardiovascular diseases, and this number will increase to 23.3 million by 2030.2 Therefore, a better understanding of mechanisms involved in atherosclerosis may advance the development of comprehensive therapeutic regimens.Foam cell formation from macrophages or vascular smooth muscle cells (VSMCs) is a crucial event in the development of atherosclerosis. Acyl-coenzyme A:cholesterol acyltransferase 1 (ACAT1) is an intracellular enzyme that converts free cholesterol into cholesteryl esters for storage in lipid droplets, and promotes foam cell formation in atherosclerotic lesions.3, 4, 5 ACAT1 activity is present in a variety of cells and tissues, including the macrophages, neurons, cardiomyocytes, VSMCs, mesothelial cells, alveolar and intestinal epithelial cells and hepatocytes.6 In macrophages, the involvement of ACAT1 in foam cell formation has been demonstrated by studies, and multiple molecular mechanisms have been put forward. A well-accepted mechanism is that inflammation increases the expression of ACAT1, promotes the intracellular lipid accumulation and ultimately leads to foam cell formation.7 However, in contrast, the mechanisms underlying VSMC foam cell formation, especially the role of ACAT1 in this process, remain largely unelucidated.It is widely accepted that atherosclerosis involves chronic inflammatory reaction.8 Toll-like receptor 4 (TLR4), one intensively investigated member of the TLR family, has a critical role in initiating inflammation, and participates in VSMC activation.9, 10 Lipopolysaccharide (LPS) is a TLR4-specific ligand that can trigger TLR4-mediated inflammation. A previous study showed that Chlamydia pneumoniae, which contains LPS in its outer membrane, promotes low-density lipoprotein-induced macrophage-derived foam cell formation via upregulation of the expression of ACAT1.11 This further enhanced the association between inflammation and intracellular lipid disorder. However, considering that VSMCs in normal conditions do not have inflammatory properties similar to macrophages, it is unclear whether the TLR4-mediated inflammatory mechanism is also involved in the regulation of ACAT1 in VSMC foam cell formation. Herein, the present study tests the hypothesis that oxidized low-density lipoprotein (oxLDL) increases the ACAT1 expression by activating the TLR4-mediated inflammation, and ultimately promotes VSMC foam cell formation.  相似文献   

11.
The LDL receptor (LDLR) and scavenger receptor class B type I (SR-BI) play physiological roles in LDL and HDL metabolism in vivo. In this study, we explored HDL metabolism in LDLR-deficient mice in comparison with WT littermates. Murine HDL was radiolabeled in the protein (125I) and in the cholesteryl ester (CE) moiety ([3H]). The metabolism of 125I-/[3H]HDL was investigated in plasma and in tissues of mice and in murine hepatocytes. In WT mice, liver and adrenals selectively take up HDL-associated CE ([3H]). In contrast, in LDLR−/− mice, selective HDL CE uptake is significantly reduced in liver and adrenals. In hepatocytes isolated from LDLR−/− mice, selective HDL CE uptake is substantially diminished compared with WT liver cells. Hepatic and adrenal protein expression of lipoprotein receptors SR-BI, cluster of differentiation 36 (CD36), and LDL receptor-related protein 1 (LRP1) was analyzed by immunoblots. The respective protein levels were identical both in hepatic and adrenal membranes prepared from WT or from LDLR−/− mice. In summary, an LDLR deficiency substantially decreases selective HDL CE uptake by liver and adrenals. This decrease is independent from regulation of receptor proteins like SR-BI, CD36, and LRP1. Thus, LDLR expression has a substantial impact on both HDL and LDL metabolism in mice.  相似文献   

12.
The transformation of macrophages into foam cells is a critical event in the development of atherosclerosis. The most studied aspect of this process is the uptake of modified LDL through the scavenger receptors. Another salient aspect is the effect of modified LDL immune complexes on macrophages activation and foam cell formation. Macrophages internalize oxidized LDL immune complexes (oxLDL-IC) via the Fc-gamma receptor and transform into activated foam cells. In this study we examined the effect of oxLDL-IC on sphingosine kinase 1 (SK1), an enzyme implicated in mediating pro-survival and inflammatory responses through the generation of the signaling molecule sphingosine-1-phosphate (S1P). Intriguingly, oxLDL-IC, but not oxLDL alone, induced an immediate translocation and release of SK1 into the conditioned medium as evidenced by fluorescence confocal microscopy. Immunoblot analysis of cell lysates and conditioned medium revealed a decrease in intracellular SK1 protein levels accompanied by a concomitant increase in extracellular SK1 levels. Furthermore, measurement of S1P formation showed that the activity of cell-associated SK decreased in response to oxLDL-IC compared to oxLDL alone, whereas the activity of SK increased extracellularly. Blocking oxLDL-IC binding to Fc-gamma receptors resulted in decreased levels of extracellular S1P. The data also show that cell survival of human U937 cells exposed to oxLDL-IC increased compared to oxLDL alone. Exogenously added S1P further increased cell survival induced by oxLDL-IC. Taken together, these findings indicate that S1P may be generated extracellularly in response to modified LDL immune complexes and may therefore promote cell survival and prolong cytokine release by activated macrophages.  相似文献   

13.
Uptake of modified lipoproteins by macrophages results in the formation of foam cells. We investigated how foam cell formation affects the inflammatory response of macrophages. Murine bone marrow-derived macrophages were treated with oxidized LDL (oxLDL) to induce foam cell formation. Subsequently, the foam cells were activated with lipopolysaccharide (LPS), and the expression of lipid metabolism and inflammatory genes was analyzed. Furthermore, gene expression profiles of foam cells were analyzed using a microarray. We found that prior exposure to oxLDL resulted in enhanced LPS-induced tumor necrosis factor (TNF) and interleukin-6 (IL-6) gene expression, whereas the expression of the anti-inflammatory cytokine IL-10 and interferon-beta was decreased in foam cells. Also, LPS-induced cytokine secretion of TNF, IL-6, and IL-12 was enhanced, whereas secretion of IL-10 was strongly reduced after oxLDL preincubation. Microarray experiments showed that the overall inflammatory response induced by LPS was enhanced by oxLDL loading of the macrophages. Moreover, oxLDL loading was shown to result in increased nuclear factor-kappaB activation. In conclusion, our experiments show that the inflammatory response to LPS is enhanced by loading of macrophages with oxLDL. These data demonstrate that foam cell formation may augment the inflammatory response of macrophages during atherogenesis, possibly in an IL-10-dependent manner.  相似文献   

14.
Accumulation of macrophage foam cells in atherosclerotic blood vessel intima is a critical component of atherogenesis mediated by scavenger receptor-dependent internalization of oxidized LDL. We demonstrated by coimmunoprecipitation and pull-down assays that the macrophage scavenger receptor CD36 associates with a signaling complex containing Lyn and MEKK2. The MAP kinases JNK1 and JNK2 were specifically phosphorylated in macrophages exposed to oxLDL. Using cells isolated from SRA, TLR2, or CD36 null mice, and phospholipid ligands specific for either SRA or CD36, we showed that JNK activation was mediated by CD36. Both foam cell formation and activation of JNK2 in hyperlipidemic mice were diminished in the absence of CD36. Furthermore, inhibition of Src or JNK blocked oxLDL uptake and inhibited foam cell formation in vitro and in vivo. These findings show that a specific CD36-dependent signaling pathway initiated by oxLDL is necessary for foam cell formation and identify potential targets for antiatherosclerosis therapy.  相似文献   

15.
There is accumulating evidence that LDL oxidation is essential for atherogenesis and antioxidants that prevent oxidation may either decelerate or reduce atherogenesis. Current study focused on the effect and mechanism of 3′,4′-dihydroxy-5,6,7,8-tetramethoxyflavone (DTF), a major metabolite of nobiletin (NOB, a citrus polymethoxylated flavone) on atherogenesis. We found DTF had stronger inhibitory activity than α-tocopherol on inhibiting Cu2+-mediated LDL oxidation measured by thiobarbituric acid-reactive substances assay (TBARS), conjugated diene formation and electrophoretic mobility. Monocyte-to-macrophage differentiation plays a vital role in early atherogenesis. DTF (10–20 μM) dose-dependently attenuated differentiation along with the reduced gene expression of scavenger receptors, CD36 and SR-A, in both PMA- and oxidized low-density lipoprotein (oxLDL)-stimulated THP-1 monocytes. Furthermore, DTF treatment of monocytes and macrophages led to reduction of fluorescent DiI-acLDL and DiI-oxLDL uptake. In conclusion, at least three mechanisms are at work in parallel: DTF reduces LDL oxidation, attenuates monocyte differentiation into macrophage and blunts uptake of modified LDL by macrophage. The effect is different from that of NOB, from which DTF is derived. This study thus significantly enhanced our understanding on how DTF may be beneficial against atherogenesis.  相似文献   

16.
17.
Metabolism of oxidized LDL by macrophages   总被引:2,自引:0,他引:2  
Oxidation products of lipids and proteins are found in atherosclerotic plaque and in macrophage foam cells. Macrophages avidly endocytose in-vitro oxidized LDL and accumulate sterols. What is the evidence that such a process is involved in in-vivo foam cell formation? The present review surveys current knowledge on the metabolism of oxidized LDL by macrophages, and the types, amounts and location of oxidation products that accumulate in these cells. Comparable studies of lesion lipoproteins and foam cells indicate that limited extracellular lipoprotein oxidation, perhaps followed by more extensive intracellular oxidation subsequent to uptake by macrophages, is a more likely scenario in vivo.  相似文献   

18.
19.
CD36 is a type 2 scavenger receptor with multiple functions. CD36 binding to oxidized LDL triggers signaling cascades that are required for macrophage foam cell formation, but the mechanisms by which CD36 signals remain incompletely understood. Mass spectrometry analysis of anti-CD36 immuno-precipitates from macrophages identified the tetraspanin CD9 as a CD36 interacting protein. Western blot showed that CD9 was precipitated from mouse macrophages by anti-CD36 monoclonal antibody and CD36 was likewise precipitated by anti-CD9, confirming the mass spectrometry results. Macrophages from cd36 null mice were used to demonstrate specificity. Membrane associations of the two proteins on intact cells was analyzed by confocal immunofluorescence microscopy and by a novel cross linking assay that detects proteins in close proximity (<40 nm). Functional significance was determined by assessing lipid accumulation, foam cell formation and JNK activation in wt, cd9 null and cd36 null macrophages exposed to oxLDL. OxLDL uptake, lipid accumulation, foam cell formation, and JNK phosphorylation were partially impaired in cd9 null macrophages. The present study demonstrates that CD9 associates with CD36 on the macrophage surface and may participate in macrophage signaling in response to oxidized LDL.  相似文献   

20.
The macrophage scavenger receptor CD36 plays a key role in the initiation of atherosclerosis through its ability to bind to and internalize oxidized low-density lipoproteins (oxLDL). Prompted by recent findings that the CD36 receptor also recognizes amyloid fibrils formed by beta-amyloid and apolipoprotein C-II, we investigated whether the oxidation of low-density lipoproteins (LDL) generates characteristic amyloid-like structures and whether these structures serve as CD36 ligands. Our studies demonstrate that LDL oxidized by copper ions, 2,2-azobis(2-amidinopropane) dihydrochloride (AAPH), or ozone react with the diagnostic amyloid dyes thioflavin T and Congo Red and bind to serum amyloid P component (SAP), a universal constituent of physiological amyloid deposits. X-ray powder diffraction patterns for native LDL show a diffuse powder diffraction ring with maximum intensity corresponding to an atomic spacing of approximately 4.7 A, consistent with the spacing between beta-strands in a beta-sheet. Ozone treatment of LDL generates an additional diffuse powder diffraction ring with maximum intensity indicating a spacing of approximately 9.8 A. This distance is consistent with the presence of cross-beta-structure, a defining characteristic of amyloid. Evidence that these cross-beta-amyloid structures in oxLDL are recognized by macrophages is provided by the observation that SAP strongly inhibits the association and internalization of (125)I-labeled copper-oxidized LDL by peritoneal macrophages. The ability of SAP to bind to amyloid-like structures in oxLDL and prevent lipid uptake by macrophages highlights the potential importance of these structures and suggests an important preventative role for SAP in foam cell formation and early-stage atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号