首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phytophthora cinnamomi-suppressivc soils were found to be widely distributed in nature. About 40 % of soil samples collected from locations with different vegetation, soil type or elevation throughout the island of Hawaii were suppressive to chlamydospore germination of Phytophthora cinnamomi. Soil samples collected from the same general areas varied greatly in degree of suppressive-ness to P. cinnamomi, ranging from conducive to strongly suppressive. Among the 155 soil samples tested, those with pH close to 4 or 8 tend to be more suppressive to P. cinnamomi than those with pH close to 6.  相似文献   

2.
Root rot caused by the fungus Phytophthora cinnamomi is a major disease of avocados worldwide. Heat sensitivity of a collection of P. cinnamomi isolates was determined by exposing agar discs containing mycelium or mycelium plus chlamydospores at various temperatures for different periods. Long‐term effectiveness of soil solarisation to control Phytophthora root rot was evaluated in two field trials. In the first, soil disinfestation by solarisation was applied in 1990 to a naturally infested plot before planting avocado (Persea americana) and viñatigo (Persea indica) seedlings. In the second trial, established avocado trees were solarised for four consecutive summers (1996–1999). Results for heat sensitivity showed that fungal mycelium was inactivated after 1–2 h at 38°C. However, 1–2 h at 40°C was needed to kill all propagules when chlamydospores were present. Fungal growth inhibition after thermal treatments was related to levels of time and temperature, and detrimental effects occurred as consequence of sublethal thermal doses. Soil solarisation presented long‐term positive effects when applied as a preplanting treatment. Five years after solarisation, disease severity (0–5 scale where 0 = healthy and 5 = dead plant) of avocado and viñatigo planted in solarised soil was 2.03 and 0.71, respectively, compared with 4.65 and 4.84 in controls. Eleven years after solarisation, the percentage of dead plants in solarised soil was 73% for avocado and 43% for viñatigo but 100% in controls. In contrast, an insufficient level of control was observed in established orchards, probably because of the lower temperature reached during solarisation under the shade of tree canopy. In this situation, maximum temperatures at 5‐cm depth were 10–13.7°C lower than under solar‐heated mulch, only exceeding 40°C in 1997.  相似文献   

3.
Soils collected from five districts of Hawaii county were infested with Rhtzoctonia solani in small inoculum particles and successfully planted with radish to induce suppression, Suppressiveness was induced in some, but not all, replicates of all. soils. When fresh inoculum was added, suppressiveness was demonstrated in some, but not all, replicates of two soils, but not in the other three soils. Acidity of soil was not important in successful induction of suppression. Characteristics of induced suppression in soil from one site (S. Kohala) were further investigated. Reduction of microbial population by heat treatment of suppressive soil completely nullified its inhibitory effect. The populations of actinomycetes, fungi in general and Trichoderma spp. in suppressive and conducive soil were not significantly different. However, the population of bacteria in suppressive soil was almost four times higher than that in conducive soil. The survival time of R. solani in suppressive soil was shorter than that in conducive soil. Hyphae of R. solani also lysed faster in suppressive soil than in conducive soil. It is suggested that suppressiveness of the South Kohala soil created by monoculture is due to enhanced competitive pressure generated by an increased bacterial population, which in turn causes the rapid autolysis of R. solani hyphae.  相似文献   

4.
Summary This experiment employed a factorial design combining 4 soil pH levels, 3 soil moisture levels, with and without the addition ofPhytophthora cinnamomi to the soil to evaluate the conditions that lead to Phytophthora root rot of avocado.An inverse relation between soil pH and leaf production (and root-weight) was observed in nondiseased plants. In soil infested withP. cinnamomi, plant growth and root weights were much depressed by low soil pH, and especially by low soil pH coupled with high soil moisture contents. These interactions were statistically highly significant. Root weights in pots withP. cinnamomi were closely related to the incidence of disease. A disease index was used to visually assess the conditions of roots. Isolation of the pathogen from diseased plant roots confirmed the accuracy of the disease index.A process of elimination suggsts that favorable soil Ca level and not high pHper se was responsible for disease suppression and that the devastating effects of low soil pH was produced by high Mn (and possibly Al) and associated low levels of Ca and P in soil solutions, which led to breakdown of biological control mechanisms.Journal Series No. 2801, Hawaii Institute of Tropical Agriculture and Human Resources.  相似文献   

5.
Yin  Bei  Scupham  Alexandra J  Menge  John A.  Borneman  James 《Plant and Soil》2004,259(1-2):19-27
Understanding the mechanisms of suppressive soils should lead to the development of new strategies to manage pests and diseases. For suppressive soils that have a biological nature, one of the first steps in understanding them is to identify the organisms contributing to this phenomenon. Here we present a new approach for identifying microorganisms involved in soil suppressiveness. This strategy identifies microorganisms that fill a niche similar to that of the pathogen by utilizing substrate utilization assays in soil. To demonstrate this approach, we examined an avocado grove where a Phytophthora cinnamomi epidemic created soils in which the pathogen could not be detected with baiting techniques, a characteristic common to many soils with suppressiveness against P. cinnamomi. Substrate utilization assays were used to identify rRNA genes (rDNA) from bacteria that rapidly grew in response to amino acids known to attract P. cinnamomi zoospores. Six bacterial rDNA intergenic sequences were prevalent in the epidemic soils but uncommon in the non-epidemic soils. These sequences belonged to bacteria related to Bacillus mycoides, Renibacterium salmoninarum, and Streptococcus pneumoniae. We hypothesize that bacteria such as these, which respond to the same environmental cues that trigger root infection by the pathogen, will occupy a niche similar to that of the pathogen and contribute to suppressiveness through mechanisms such as nutrient competition and antibiosis.  相似文献   

6.
Since the summer 2017, severe decline symptoms have been observed on 10- to 25-year-old avocado trees in almost all commercial orchards planted in the Mediterranean coastal region of Turkey. Young, newly planted trees in infected orchards were also affected by the disease. Affected trees showed wilting, leaf discoloration, defoliation and severe dieback. Some trees were completely desiccated. Although fine roots of symptomatic trees usually were decayed, reddish brown cankers also occurred on taproots and lateral roots of heavily infected trees. The pathogens were isolated from necrotic root and soil samples of symptomatic trees, using selective medium and soil baiting, and were identified based on morphological features and DNA sequences of the internal transcribed spacer (ITS) region. One isolate each of Phytophthora cryptogea and P. palmivora was identified, while all other isolates were P. cinnamomi. In addition, a subcortical fan-shaped mycelium, characteristic of Armillaria spp., was observed in the stem base of a symptomatic tree and identified as Armillaria gallica by DNA sequences of the internal transcribed spacer (ITS) and the translational elongation factor 1-α (EF 1-α) gene regions. Pathogenicity of Phytophthora isolates was tested by stem inoculation on one-year-old avocado seedlings. Two months after inoculation, canker lesions developed on stems of seedlings inoculated by any of the three Phytophthora spp. In contrast, collenchyma callus formed over the wound points on control plants over the same time period. This is the first report of P. cinnamomi, P. cryptogea, P. palmivora and A. gallica causing root rot of avocado trees in Turkey. In addition, P. cryptogea and A. gallica are reported for the first time associated with disease on this host. Due to the severe symptoms and widespread occurrence, P. cinnamomi should be considered a potential threat to avocado cultivation and natural ecosystems of this region of Turkey.  相似文献   

7.
The extent of soil microbial diversity in agricultural soils is critical to the maintenance of soil health and quality. The aim of this study was to investigate the influence of land use intensification on soil microbial diversity and thus the level of soil suppressiveness of cucumber Fusarium wilt. We examined three typical microbial populations, Bacillus spp., Pseudomonas spp. and Fuasarium oxysporum, and bacterial functional diversity in soils from three different land use types in China’s Yangtze River Delta, and related those to suppressiveness of cucumber Fusarium wilt. The land use types were a traditional rice wheat (or rape) rotation land, an open field vegetable land, and a polytunnel greenhouse vegetable land that had been transformed from the above two land use types since 1995. Results generated from the field soils showed similar counts for Bacillus spp. (log 5.87–6.01 CFU g−1 dw soil) among the three soils of different land use types, significantly lower counts for Pseudomonas spp. (log 5.44 CFU g−1 dw soil) in the polytunnel greenhouse vegetable land whilst significantly lower counts for Fusarium oxysporum (log 3.21 CFU g−1 dw soil) in the traditional rice wheat (or rape) rotation land. A significant lower dehydrogenase activity (33.56 mg TPF kg−1 dw day−1) was observed in the polytunnel greenhouse vegetable land. Community level physiological profiles (CLPP) of the bacterial communities in soils showed that the average well color development (AWCD) and three functional diversity indices of Shannon index (H′), Simpson index (D) and McIntosh index (U) at 96 h incubation in BIOLOG Eco Micro plates were significantly lower in the polytunnel greenhouse vegetable land than in both the traditional rice wheat (or rape) rotation land and the open field vegetable land. A further greenhouse experiment with the air-dried and sieved soils displayed significantly lower plant growth parameters of 10-old cucumber seedlings as well as significantly lower biomass and total fresh fruit yield at the end of harvesting at day 70 in the polytunnel greenhouse vegetable soil sources. The percentages of Fusarium wilt plant death were greatly increased in the polytunnel greenhouse vegetable plants, irrespective of being inoculated with or without Fusarium oxysporum f. sp. cucumerinum. Our results could provide a better understanding of the effects of land use intensification on soil microbial population and functional diversity as well as the level of soil suppressiveness of cucumber Fusarium wilt.  相似文献   

8.

Aims

The importance of soil properties as determinants of tree vitality and Phytophthora cinnamomi root infections was analysed.

Methods

The study comprised 96 declining stands in western Spain, where declining and non-declining holm oak (Quercus ilex L.) trees were sampled. Soil properties (soil depth, Ah horizon thickness, texture, pH, redox potential, soil bulk density and N-NH4 + and N-NO3 ? concentrations) and P. cinnamomi infections were assessed.

Results

Tree mortality rates increased with low soil bulk densities, which were also associated with more P. cinnamomi-infected trees. Occurrence of infected trees was higher in fine textured soils and in thick Ah horizons. Fine textured soils favoured trees, but with the presence of P. cinnamomi their health status deteriorated. Soil under declining trees had higher N-NO3 ?/N-NH4 + ratio values than under non-declining trees. Additional soil properties changes associated to grazing were not related to decline and P. cinnamomi infections.

Conclusions

The implications of P. cinnamomi in holm oak decline and the influence of soil properties as contributors to pathogen activity were demonstrated. Fine soil textures and thick Ah horizons, usually favourable for vigour and vitality of trees growing in the Mediterranean climate, were shown to be disadvantageous soil properties if P. cinnamomi was present. Fine soil textures and thick Ah horizons are frequently related with higher levels of soil moisture, which increase the inoculum of the pathogen and favours root infection. Grazing does not seem to be directly linked to Q. ilex health status or P. cinnamomi root rot.  相似文献   

9.
Soils from avocado (Persea americana Mill.) orchards in Israel (IS) and California (CA), both sites with a Mediterranean climate, were sampled and analyzed for the species and quantities of vesicular-arbuscular mycorrhizal fungus (VAMF) spores in them, and for soil physical and chemical characteristics.Numbers of spores were similar in soil from IS and CA but the dominant VAMF species were very different. In IS the most common fungi were Sclerocystis sinuosa and Glomus macrocarpum. In CA, Gl. constrictum was present in every orchard examined and Gl. fasciculatum was nearly as widespread. Acaulospora spp. and other Glomus spp. also were found, including A. elegans which has never before been reported from CA.The differences in VAMF populations and species constituents found on two continents but in areas with similar climates and soil types may be due to host or edaphic factors. Different avocado rootstocks are used in the two countries and lower pH and higher soil fertility levels were present in CA soils.The total VAMF spore populations in each orchard was about 275 per 100 mL soil. The population level was not correlated with any of the soil physical or chemical characteristics examined nor with avocado cultivar or age. In IS no fungus spores were found in three orchards; available P, Ca, Mg and Cu levels were high in these soils.  相似文献   

10.
One of the main avocado diseases in southern Spain is white root rot caused by the fungus Rosellinia necatrix Prill. The use of organic soil amendments to enhance the suppressiveness of natural soil is an inviting approach that has successfully controlled other soilborne pathogens. This study tested the suppressive capacity of different organic amendments against R. necatrix and analyzed their effects on soil microbial communities and enzymatic activities. Two-year-old avocado trees were grown in soil treated with composted organic amendments and then used for inoculation assays. All of the organic treatments reduced disease development in comparison to unamended control soil, especially yard waste (YW) and almond shells (AS). The YW had a strong effect on microbial communities in bulk soil and produced larger population levels and diversity, higher hydrolytic activity and strong changes in the bacterial community composition of bulk soil, suggesting a mechanism of general suppression. Amendment with AS induced more subtle changes in bacterial community composition and specific enzymatic activities, with the strongest effects observed in the rhizosphere. Even if the effect was not strong, the changes caused by AS in bulk soil microbiota were related to the direct inhibition of R. necatrix by this amendment, most likely being connected to specific populations able to recolonize conducive soil after pasteurization. All of the organic amendments assayed in this study were able to suppress white root rot, although their suppressiveness appears to be mediated differentially.  相似文献   

11.
Phytophthora cinnamomi occurs worldwide and has a host range in excess of 1,000 plant species. Avocados (Persea americana Mill) have been described as highly susceptible to this soil-borne pathogen. Here, the regulation of defence responses in avocado root seedlings inoculated with P. cinnamomi mycelia is described. A burst of reactive oxygen species (ROS) was observed 4 days after inoculation. The higher physiological concentration of H2O2 induced by P. cinnamomi on avocado roots had no effect on in vitro growth of the oomycete. Total phenols and epicathecin content showed a significant decrease, but lignin and pyocianidins exhibited no changes after inoculation. Also, increased nitric oxide (NO) production was observed 72 h after treatment. We studied the effects of one NO donor [sodium nitroprusside (SNP)], and one NO scavenger [2- to 4-carboxyphenyl-4,4,5,5-tetramethylimidazole-1-oxyl-3-oxide (CPTIO)] to determine the role of NO during root colonisation by P. cinnamomi mycelia. Pretreatment of the roots with CPTIO, but not with SNP, inhibited root colonisation suggesting an important role for NO production during the avocado–P. cinnamomi interaction. Our data suggest that although defence responses are activated in avocado roots in response to P. cinnamomi infection, these are not sufficient to avoid pathogen invasion.  相似文献   

12.
Riparian forests are subjected to multiple disturbances, such as tree diseases caused by invasive pathogens, whose consequences on stream functioning are unknown. We assessed the impact of Phytophthora cinnamomi infection, and interactions with temperature, on microbial decomposition of Castanea sativa leaves. Leaves from healthy, symptomatic and highly symptomatic trees were incubated in the laboratory at 13 and 18 °C for 64 d. Infection significantly increased polyphenolic concentration and leaf toughness, reducing leaf decomposition and microbial respiration rates irrespective of temperature. Aquatic hyphomycete communities differed significantly in leaves from highly symptomatic trees. Fungal biomass was highest at 18 °C, irrespective of tree health status. None of the parameters were influenced by the tree health status × temperature interaction, suggesting that temperature rise may not synergistically increase the cross-ecosystem effects caused by P. cinnamomi in streams where litter decomposition is microbial-driven. Infection by P. cinnamomi alters the nutritional quality of leaves affecting the functioning of aquatic ecosystems.  相似文献   

13.
Phytomanagement of trace element-contaminated soils can reduce soil toxicity and restore soil ecological functions, including the soil gas exchange with the atmosphere. We studied the emission rate of the greenhouse gases (GHGs) CO2, CH4, and N2O; the potential CH4 oxidation; denitrification enzyme activity (DEA), and glucose mineralization of a Cu-contaminated soil amended with dolomitic limestone and compost, alone or in combination, after a 2-year phytomanagement with a mixed stand of Populus nigra, Salix viminalis, S. caprea, and Amorpha fruticosa. Soil microbial biomass and microbial community composition after analysis of the phospholipid fatty acids (PLFA) profile were determined. Phytomanagement significantly reduced Cu availability and soil toxicity, increased soil microbial biomass and glucose mineralization capacity, changed the composition of soil microbial communities, and increased the CO2 and N2O emission rates and DEA. Despite such increases, microbial communities were evolving toward less GHG emission per unit of microbial biomass than in untreated soils. Overall, the aided phytostabilization option would allow methanotrophic populations to establish in the remediated soils due to decreased soil toxicity and increased nutrient availability.  相似文献   

14.
The invasive plant pathogen Phytophthora cinnamomi (Stramenopila, Oomycota) has been introduced into 15 of the 25 global biodiversity hotspots, threatening susceptible rare flora and degrading plant communities with severe consequences for fauna. We developed protocols to contain or eradicate P. cinnamomi from spot infestations in threatened ecosystems based on two assumptions: in the absence of living hosts, P. cinnamomi is a weakly competitive saprotroph; and in the ecosystems we treated, the transmission of the pathogen occurs mainly by root-to-root contact. At two P. cinnamomi-infested sites differing in climate and vegetation types, we applied increasingly robust treatments including vegetation (host) destruction, fungicides, fumigation and physical root barriers. P. cinnamomi was not recovered at three assessments of treated plots 6–9 months after treatments. Given the high rates of recovery of P. cinnamomi from untreated infested soil and the sampling frequency, the probability of failing to detect P. cinnamomi in treated soil was <0.0003. The methods described have application in containing large infestations, eradicating small infestations and protecting remnant populations of threatened species.  相似文献   

15.
Soils are one of the first selective environments a seed experiences and yet little is known about the evolutionary consequences of plant-soil feedbacks. We have previously found that plant phytochemical traits in a model system, Populus spp., influence rates of leaf litter decay, soil microbial communities and rates of soil net nitrogen mineralization. Utilizing this natural variation in plant-soil linkages we examined two related hypotheses: (1) Populus angustifolia seedlings are locally adapted to their native soils; and (2) Soils act as agents of selection, differentially affecting seedling survival and the heritability of plant traits. We conducted a greenhouse experiment by planting seedlings from 20 randomly collected P. angustifolia genetic families in soils conditioned by various Populus species and measured subsequent survival and performance. Even though P. angustifolia soils are less fertile overall, P. angustifolia seedlings grown in these soils were twice as likely to survive, grew 24% taller, had 27% more leaves, and 29% greater above-ground biomass than P. angustifolia seedlings grown in non-native P. fremontii or hybrid soils. Increased survival resulted in higher trait variation among seedlings in native soils compared to seedlings grown in non-native soils. Soil microbial biomass varied significantly across soil environments which could explain more of the variation in seedling performance than soil texture, pH, or nutrient availability, suggesting strong microbial interactions and feedbacks between plants, soils, and associated microorganisms. Overall, these data suggest that a “home-field advantage” or a positive plant soil feedback helps maintain genetic variance in P. angustifolia seedlings.  相似文献   

16.
Colonization and survival of Phytophthora cinnamomi in roots was tested in 3 months old, axenically grown seedlings of Eucalyptus maculata (field resistant) and E. sieberi (susceptible). The roots were inoculated, then one week later were excised and buried in three non-sterile, conducive soils; a lateritic gravel, an infertile duplex soil, a loamy sand as well as in a fertile, suppressive krasnozem. Pathogen viability, percentage root colonization and chlamydospore numbers were examined at matric potentials of ?1/3, ?5 and ?10 bar after periods of 10, 100 and 200 days at 21°C. At 10 days, survival was 100% in the form of mycelium and the only significant difference was between the two Eucalyptus species. At 100 days survival was solely due to chlamydospores, but the pathogen was viable in all inoculated roots and at each matric potential. At 200 days soils had dried to less than ?10 bars and the pathogen failed to survive. No significant differences were found between the two pathogen isolates but significant differences were obtained between the susceptible and field resistant Eucalyptus species. Pathogen viability, percentage root colonization and chlamydospore number were highly correlated with soil types and matric potential. These components declined with decreasing soil matric potential. The Krasnozem was only suppressive at relatively high soil matric potentials (?1/3 bar). At lower values (?5, ?10 bar) survival of the pathogen, chlamydospore numbers and percentage colonization of the roots in the Krasnozem were comparable with that of the 3 conducive soils tested. Chlamydospores were present, but in low numbers in roots buried in the suppressive soil at ?1/3 bar.  相似文献   

17.
Mechanisms of natural soil suppressiveness to soilborne diseases   总被引:1,自引:0,他引:1  
Suppressive soils are characterized by a very low level of disease development even though a virulent pathogen and susceptible host are present. Biotic and abiotic elements of the soil environment contribute to suppressiveness, however most defined systems have identified biological elements as primary factors in disease suppression. Many soils possess similarities with regard to microorganisms involved in disease suppression, while other attributes are unique to specific pathogen-suppressive soil systems. The organisms operative in pathogen suppression do so via diverse mechanisms including competition for nutrients, antibiosis and induction of host resistance. Non-pathogenic Fusarium spp. and fluorescent Pseudomonas spp. play a critical role in naturally occurring soils that are suppressive to Fusarium wilt. Suppression of take-all of wheat, caused by Gaeumannomyces graminis var. tritici, is induced in soil after continuous wheat monoculture and is attributed, in part, to selection of fluorescent pseudomonads with capacity to produce the antibiotic 2,4-diacetylphloroglucinol. Cultivation of orchard soils with specific wheat varieties induces suppressiveness to Rhizoctonia root rot of apple caused by Rhizoctonia solani AG 5. Wheat cultivars that stimulate disease suppression enhance populations of specific fluorescent pseudomonad genotypes with antagonistic activity toward this pathogen. Methods that transform resident microbial communities in a manner which induces natural soil suppressiveness have potential as components of environmentally sustainable systems for management of soilborne plant pathogens. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
Temperature has generally great effects on both the activity and composition of microbial communities in different soils. We tested the impact of soil temperature and three different boreal forest tree species on the archaeal populations in the bulk soil, rhizosphere, and mycorrhizosphere. Scots pine, silver birch, and Norway spruce seedlings were grown in forest humus microcosms at three different temperatures, 7–11.5°C (night–day temperature), 12–16°C, and 16–22°C, of which 12–16°C represents the typical mid-summer soil temperature in Finnish forests. RNA and DNA were extracted from indigenous ectomycorrhiza, non-mycorrhizal long roots, and boreal forest humus and tested for the presence of archaea by nested PCR of the archaeal 16S rRNA gene followed by denaturing gradient gel electrophoresis (DGGE) profiling and sequencing. Methanogenic Euryarchaeota belonging to Methanolobus sp. and Methanosaeta sp. were detected on the roots and mycorrhiza. The most commonly detected archaeal 16S rRNA gene sequences belonged to group I.1c Crenarchaeota, which are typically found in boreal and alpine forest soils. Interestingly, also one sequence belonging to group I.1b Crenarchaeota was detected from Scots pine mycorrhiza although sequences of this group are usually found in agricultural and forest soils in temperate areas. Tree- and temperature-related shifts in the archaeal population structure were observed. A clear decrease in crenarchaeotal DGGE band number was seen with increasing temperature, and correspondingly, the number of euryarchaeotal DGGE bands, mostly methanogens, increased. The greatest diversity of archaeal DGGE bands was detected in Scots pine roots and mycorrhizas. No archaea were detected from humus samples from microcosms without tree seedling, indicating that the archaea found in the mycorrhizosphere and root systems were dependent on the plant host. The detection of archaeal 16S rRNA gene sequences from both RNA and DNA extractions show that the archaeal populations were living and that they may have significant contribution to the methane cycle in boreal forest soil, especially when soil temperatures rise.  相似文献   

19.
Summary The mycorrhizal fungusGlomus fasciculatus stimulated growth of avocado seedlings in the presence or absence ofPhytophthora cinnamomi. It appeared thatG. fasciculatus had no effect upon infection byP. cinnamomi or subsequent disease development.  相似文献   

20.
Soil microbial communities have a profound influence on soil chemical processes and subsequently influence tree nutrition and growth. This study examined how the addition of a commercial inoculum or forest‐collected soils influenced nitrogen (N) and phosphorus (P) dynamics, soil microbial community structure, and growth in Liriodendron tulipifera and Prunus serotina tree saplings. Inoculation method was an important determinant of arbuscular mycorrhizal fungi (AMF) community structure in both species and altered soil N dynamics in Prunus and soil P dynamics in Liriodendron. Prunus saplings receiving whole forest soil transfers had a higher rhizosphere soil carbon/nitrogen ratio and ammonia content at the end of the first growing season when compared to unmanipulated control saplings. Inoculation with whole forest soil transfers resulted in increased inorganic phosphorus in Liriodendron rhizosphere soils. The number of AMF terminal restriction fragments was significantly greater in rhizosphere soils of Liriodendron saplings inoculated with whole forest soil transfers and Prunus saplings receiving either inoculum source than control saplings. Forest soil inoculation also increased AMF colonization and suppressed stem elongation in Liriodendron after 16 months; conversely, Prunus AMF colonization was unchanged and stem elongation was significantly greater when saplings were inoculated with whole forest soil transfers. Longer term monitoring of tree response to inoculation will be essential to assess whether early costs of AMF colonization may provide long‐term benefits. This study provides insight into how practitioners can use microbial inoculation to alter AMF community structure and functioning, subsequently influencing tree growth and nutrient cycling during the restoration of degraded lands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号