首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lymph node and spleen cells from mice infected with Babesia microti of human origin developed the ability to transfer adoptive immunity to naive mice within 25 days after infection. This protective activity was greater in cells obtained at 32 days than in cells obtained at 25 days postinfection and remained stable up to 52 days postinfection. Recipients of lymph node cells and spleen cells displayed similar peak parasitemias although 2 days after peak parasitemia, immune spleen cell recipients had significantly lower parasitemias than immune lymph node cell recipients. Strong protective activity was demonstrated when cells were transferred 1 day postinfection, while equal numbers of cells, transferred 3 days postinfection did not confer significant protection over nonimmune cells. There was also a suggestion that the number of immune spleen cells necessary for significant protection was directly related to the number of parasites inoculated. The subpopulation of lymphocytes responsible for the transfer of adoptive immunity to B. microti of human origin was then studied in BALB/c mice depleted of T lymphocytes by thymectomy and lethal irradiation. One day after infection with B. microti, T-cell-depleted mice were given complement-treated immune spleen cells, anti-θ serum-treated immune spleen cells, nonimmune spleen cells, or no cells. Similar experiments were performed comparing the effects of anti-immunoglobulin serum-treated and unfractionated immune spleen cells on B. microti parasitemia. Treatment with anti-θ serum abrogated the protective activity of immune spleen cells while anti-immunoglobulin serum treatment had no effect. These results suggest that immunologic memory of B. microti in BALB/c mice is modulated by T rather than B lymphocytes.  相似文献   

2.
Mesenteric lymph node cells obtained from donor mice (BALB/c strain) actively immunized by oral inoculation with Hymenolepis nana eggs were syngeneically transferred by intravenous injection into athymic nude mice previously uninfected. The adoptively immunized recipients were then challenged with 1000 H. nana eggs 2 days after cell transfer. The degree of immunity transferred was assessed by examining cysticercoids developed in the intestinal villi of the recipients on Day 4 of challenge infection. The criterion for success in cell transfer of immunity was the complete rejection of cysticercoids as was generally expected in mice infected previously. The transfer of 1.5 X 10(8) immune mesenteric lymph node cells obtained from donors immunized 4 days before cell collection resulted invariably in the complete rejection of cysticercoids, though not less than this cell dosage. The immunity was passively transferable to recipients by T cells, especially by T-cell subset of phenotype Lyt-1 but not those of phenotype Lyt-2.3 and Lyt-1.2.3. However, 1.5 X 10(8) immune mesenteric lymph node cells obtained from donors immunized 21 days before cell transfer and 1.5 X 10(8) immune spleen cells obtained from donors immunized 4 days before cell transfer had little or no effect on the rejection of cysticercoids.  相似文献   

3.
Immune CD8 cells, which play an essential role in the adoptive transfer of antilisterial immunity, can specifically lyse Listeria-bearing macrophages in vitro in an MHC-unrestricted manner. In contrast, the adoptive transfer of immunity by unseparated immune lymphocytes has been reported to be MHC-restricted. To address the restriction properties of CD8 effectors in vivo, we assessed their efficacy in protecting syngeneic and allogeneic recipients. Protection was determined by comparing the number of viable splenic Listeria in naive mice and in recipients of 60 million CD8-enriched, L3T4-depleted, Listeria-immune spleen cells, 2 days after the infusion of 10,000 Listeria. Donor cells from B6 (H-2b) mice transferred about 4 logs of protection in syngeneic recipients and more than 2 logs in allogeneic B10.A (H-2a) or B10.BR (H-2k) mice. Immune B10.A CD8 cells transferred equivalent protection to B6 mice. Protection was almost completely abrogated by the lysis or lethal irradiation of CD8 cells before transfer in vivo. On the other hand, the depletion of macrophages or NK cells did not impair adoptive transfer. By comparison, nonimmune CD8 cells from normal mice or from mice stimulated with an irrelevant Ag in vivo did not transfer substantial immunity to allogeneic recipients. We have noted previously that protective CD8 cells inhibit phagocyte accumulation in the spleen of Listeria-infected syngeneic recipients. In the present studies, we observed similar changes in adoptively immunized allogeneic mice. Reduced phagocyte accumulation may reflect Listeria-dependent lysis of infected phagocytes by immune CD8 cells. In support of this, we showed that Listeria-immune donor cells rapidly acquired the capacity to mediate Listeria-dependent, MHC-unrestricted lysis of macrophages after incubation with small amounts of IL-2 in vitro. In sum, our data establish that Listeria-immune CD8 cells can function in vivo in MHC incompatible hosts, and indirectly support the hypothesis that the destruction of infected phagocytes may be important in T cell-mediated immunity against Listeria and perhaps other intracellular pathogens.  相似文献   

4.
The malaria parasite, Plasmodium yoelii 17X, causes a self-limited, nonlethal infection characterized, in the blood stage, by preferential invasion of reticulocytes. Previous studies have suggested that immunity to the blood stage infection may be related to enhanced levels of class I MHC Ag on the parasitized reticulocyte surface and can be adoptively transferred to immunodeficient mice by immune CD8+ T cells in the absence of CD4+ T cells. To further examine the mechanisms of CD8+ T cell involvement in immunity to blood stage P. yoelii infection, we performed in vivo CD8 depletion and adoptive transfer experiments. Depletion of CD8+ T cells during primary blood stage infection in BALB/c mice did not diminish the ability of the mice to resolve their infections. Spleen cells from immune BALB/c and C57BL/10 mice were transferred to BALB/c-nu/nu and C57BL/10-nu/nu mice, respectively. The recipient mice were CD4 depleted in vivo to kill any transferred CD4+ T cells. The mice failed to control the infection. Populations of CD4-, CD8+ T cells were transferred from immune CBA/CaJ donors to in vivo CD4-depleted CBA/CaJ recipients. The mice were unable to control the infection. Although immune unfractionated spleen cells transferred rapid protection in all three mouse strains and immune CD4+ T cells transferred immunity in the two mouse strains studied, CD8+ T cells by themselves were neither protective nor did they enhance immunity.  相似文献   

5.
BALB/c mice develop specific and relatively long lasting immunity after exposure to sublethal numbers of viable Listeria monocytogenes. This immunity can be passively transferred to naive recipients with maximal protection conferred by spleen cells obtained from donors 6 days after immunization. Immunity that can be directly transferred to syngeneic recipients is surprisingly short lived. Cell recipients lose immunity as early as 72 hr after transfer, and recipients express no detectable immunity after 1 wk. This short lived immunity requires both L3T4+ and Lyt-2+ T cell populations for full expression. Both the level of immunity transferred and the duration of the protective response expressed in recipients are dramatically increased if the spleen cell population is cultured in vitro with concanavalin A before cell transfer. Recipients of concanavalin A-activated cells express antigen-specific levels of immunity increased 100- to 1000-fold compared with syngeneic recipients of directly transferred immune spleen cells. In addition, this elevated level of adoptively transferred immunity remains constant for at least 8 wk. Transfer of this culture-enhanced immunity requires only an Lyt-2+ T cell population and is not influenced by cells of the L3T4+T cell subpopulation. Both direct as well as culture-enhanced transfer of immunity require major histocompatibility complex-compatible recipients. These findings suggest that two phenotypically distinct T cell subpopulations function in the development of the immune response to L. monocytogenes and that only one cell subpopulation is required for expression of immunity to this intracellular parasite.  相似文献   

6.
Adoptive immunization of A/Tru mice with splenic B cells or T cells from syngeneic donors with a primary, nonvirulent, Plasmodium yoelii (17X) infection confers on these recipients the capacity to resist a challenge infection with a virulent strain (YM) of P. yoelii. Unfractionated spleen cells as well as spleen cells enriched for T or B cells capable of transferring protective immunity were detected as early as Day 7 of the primary nonvirulent infection, and reached peak levels on Day 14. Spleen cells that were harvested from donor animals after resolution of the immunizing infection [on Days 21 or 28] were incapable of transferring protective immunity. The capacity of 7-day immune spleen cells to transfer immunity could be abolished by pretreatment with mitomycin C. In addition, it was found that immunocompetent recipient mice were required for successful adoptive immunization, since thymectomized, irradiated, bone marrow reconstituted mice infused with immune spleen cells failed to survive lethal challenge infections.  相似文献   

7.
The cellular basis of immunity to sporozoites was investigated by examing the effect of immunization of T and B cell-deficient C57BL/6N X BALB/c AnN F1 (BLCF1) mice compared to immunocompetent controls. Immunization of T cell-deficient (ATX-BM-ATS) BLCF1 mice with x-irradiated sporozoites did not result in the generation of protective immunity. The same immunization protocols protected all immunocompetent controls. In contrast, B cell-deficient (micron-suppressed) BLCF1 mice were protected by immunization in the majority of cases. The absence of detectable serum circumsporozoite precipitins or sporozoite neutralizing activity in the micron-suppressed mice that resisted a sporozoite challenge suggests a minor role for these humoral factors in protection. These data demonstrate a preeminent role for T cells in the induction of protective immunity in BLCF 1 mice against a P. berghei sporozoite infection.  相似文献   

8.
Immune, hyperimmune, and nonimmune serum samples were collected from inbred rats following 10 to 15 weeks of one [5 metacercariae (mc)/rat], two (5 mc followed by 30 mc/rat) or no (uninfected) exposure to Fasciola hepatica. Lymphoid cells also were collected from these donors. Inbred, naive rats in groups receiving immune serum, hyperimmune serum, nonimmune serum (serum control), immune cells, hyperimmune cells, and nonimmune cells (cell control) received intraperitoneally either a total of 20 ml of serum or a total of 3 x 10(8) viable lymphoid cells. A challenge infection of 30 mc/rat was administered orally at about the time of serum or cell transfer. The transfer of immunity was evaluated by examining recipient rats for parasites 4 and 8 weeks after challenge. Some hematological parameters and the precipitating antibody response of the recipients were monitored also. Hyperimmune serum, unlike immune serum, consistently provided a significant degree of protection in recipient rats. The precipitating antibody titre of this serum was higher than that obtained from the immune donor group. The importance of a second sensitization to obtain sufficiently potent serum was demonstrated. Lymphoid cells from infected donors did not consistently confer protection on recipients. Thus, the expression of protective immunity against F. hepatica seemed to be more dependent on the presence of antibodies than on cells. The hematological parameters of the recipients, in general, supported this observation. The precipitating-antibody response of protected rats was lower than that of unprotected animals following challenge, presumably because the development of fewer worms in the former provided less antigenic stimulation.  相似文献   

9.
We studied immunity to the blood stage of the rodent malaria, Plasmodium vinckei vinckei, which is uniformly lethal to mice. BALB/c mice develop solid immunity after two infections and drug cure. The following experiments define the basis of this immunity. Transfer of pooled serum from such immune mice renders very limited protection to BALB/c mice and no protection to athymic nu/nu mice. Moreover, B cell-deficient C3H/HeN mice develop immunity to P. vinckei reinfection in the same manner as immunologically intact mice, an observation made earlier. In vivo depletion of CD4+ T cells in immune mice abrogates their immunity. This loss of immunity could be reversed through reconstitution of in vivo CD4-depleted mice with fractionated B-, CD8-, CD4+ immune spleen cells; however, adoptive transfer of fractionated CD4+ T cells from immune spleen into naive BALB/c or histocompatible BALB/c nude mice does not render recipients immune. In vivo depletion of CD8+ T cells did not influence the parasitemia in nonimmune or immune mice. Splenectomy of immune mice completely reverses their immunity. Repletion of splenectomized mice with their own spleen cells does not reconstitute their immunity. We conclude that some feature of the malaria-modified spleen acts in concert with the effector/inducer function of CD4+ T cells to provide protection from P. vinckei. To be consistent with this finding, a malaria vaccine may require a combination of malaria Ag to induce immune CD4+ T cells and an adjuvant or other vaccine vehicle to alter the spleen.  相似文献   

10.
The effector cells responsible for protection to Salmonella typhimurium in C3H/HeJ mice, conferred by L-form S. typhimurium, were determined by cell transfer test. Nonfractionated spleen cells from 6-week immune mice but not from 24-week immune animals transferred anti-S. typhimurium immunity. Treatment with anti-macrophage antiserum and complement most effectively abolished protective capacity in 6-week immune cells, while anti-T cell monoclonal antibody plus complement reduced it to a lesser extent. However, adoptive protection was achieved only by transfer of immune macrophages along with Lyt-2+ T cells selected from 6-week immune spleen cells. These Lyt-2+ T cells were cytotoxic to Kupffer cells from C3H/HeJ mice which had been infected 48 hr previously and from the mice which had been immunized 1 week previously, but not to the cells from 6-week immune mice and from normal animals. Moreover, protective capacity in immune macrophages seemed to be correlated to the degree of colonization by the L forms, and the inability to transfer immunity of 24-week immune spleen cells may be due to the decrease in the L form-colonization. These results suggest that cooperation between the L form-colonized macrophages and L form-induced cytotoxic Lyt-2+ T cells contributes to anti-S. typhimurium immunity, and might imply the immunological difference between the 6-week immune phagocytes and the cells at an early stage of infection or immunization.  相似文献   

11.
The relative role of thymus-derived (T-) lymphocytes and bone marrow-derived (B-) cells in acquired immunity to salmonellosis was examined in mice. The results demonstrate that the protective capacity of the donor immunized mice could be passively transferred to the recipient mice by spleen cells but not with peritoneal exudate cells or sera. A high cell number of spleen cells (2 X 10(8)/mouse) were required before passive transfer of immunity could be obtained. Of the T-lymphocytes and B-cell populations of spleen cells, T-cells from immune mice were effective in conferring protection to the recipient mice.  相似文献   

12.
Heat- or merthiolate-inactivated Trypanosoma equiperdum was administered to recipient mice that were subsequently challenged with viable inocula of the same stabilate. Only mice inoculated with merthiolate-killed parasites were completely protected from a challenge inoculum of 10(3) trypanosomes, an effect that was abolished by prior immunosuppression of mice. Immune sera from protected animals contained high levels of interferon (IFN)-gamma and specific IgG2a antibodies. Spleen cells from these mice produced high amounts of interleukin (IL)-2 and IFN-gamma in vitro in response to specific antigen or concanavalin A, whereas splenocytes from mice receiving heat-killed parasites produced high amounts of IL-6. In contrast, the production of tumor necrosis factor (TNF)-alpha and colony-stimulating activity (CSA) was not significantly different in mice receiving either killed parasite preparation. The protection in immunized mice was associated with the detection of strong delayed-type hypersensitivity (DTH) to T. equiperdum antigens, an effect that could be adoptively transferred onto naive recipients by specifically immune CD4+ lymphocytes. These results suggest that the development of protective immunity in mice to T. equiperdum by our immunization protocol may involve the activity of helper/DTH T cells, particularly those of the Th1 subset.  相似文献   

13.
Lethally irradiated mice reconstituted with syngeneic bone marrow cells were grafted with allogeneic skin grafts 6-7 weeks after irradiation and reconstitution. Mice with intact thymuses rejected the grafts whereas the mice thymectomized before irradiation and reconstitution did not. Thymectomized irradiated mice (TIR mice) reconstituted with bone marrow cells from donors immune to the allografts rejected the grafts. Bone marrow cells from immunized donors, pretreated with Thy 1.2 antibody and C', did not confer immunity to TIR recipients. To determine the number of T lymphocytes necessary for the transfer of immunity by bone marrow cells from immunized donors, thymectomized irradiated mice were reconstituted with nonimmune bone marrow cells treated with Thy 1.2 antibody and C' and with various numbers of splenic T lymphocytes from nonimmune and immune donors. Allogeneic skin graft rejection was obtained with 10(6) nonimmune or 10(4) immune T cells. The effect of immune T cells was specific: i.e., immune T cells accelerated only rejection of the relevant skin grafts whereas against a third-party skin grafts acted as normal T lymphocytes.  相似文献   

14.
SYNOPSIS. Different numbers of spleen and lymph node cells of 6-week and 6–8 month A/J mice, immune to Plasmodium berghei, were transferred into normal 4-week old mice. Better protection was observed with 2.5 × 10s than with 107 spleen cells, and spleen cells afforded better protection than an equal number of lymph node cells. Further, spleen cells from older mice were more effective than those from young animals. Possible mechanisms of immunity transfer are discussed.  相似文献   

15.
SRBC tolerance was induced in mice (CBA X C57BL/6) F1 by single intraperitoneal injection of 6 X 10(9) SRBC and of cyclophosphamide (100-200 mg/kg) in 44-46 hours. Spleen cells of tolerant mice obtained at various periods after the tolerance induction (in 12-26 days) failed to decrease their immune response to SRBC after administration to intact syngeneic recipients. Contrary to intact mice, tolerant animals were incapable of producing suppressor cells after a single SRBC immunization. Only when 3 additional injections of high SRBC doses (6 X 10(9)) were given to tolerant mice the spleen cells in them acquired the capacity to inhibit the immune response after administration to normal mice. It is supposed that the absence of suppressor cells in induction of the immunological tolerance by means of cyclophosphane was caused by the processes of clone elimination. Suppressor cells can originate in tolerant animals under the effect of intensive antigenic stimulation, this leading to enhancement of the tolerance state as a result of additional SRBC injections.  相似文献   

16.
Immunity against TEPC-15 tumor cells was induced in BALB/c mice by injecting semi-allogeneic hybrid cells derived from fusion of TEPC-15 tumor cells with LM(TK?) cells of the C3H origin. Adoptive transfer of spleen cells from the immune mice into normal BALB/ c recipients rendered them free from tumors following tumor challenge; the recipients were most significantly protected from the tumor when tumor cells were injected 7–14 days after the adoptive transfer of immune cells. Such immunity following adoptive transfer appeared to persist in the recipients for at least 60 days. Moreover, the tumor-specific immunity was consecutively transferable (more than nine passages) into normal BALB/c recipients by serially passing spleen cells from the recipients every 14 days, without further stimulation with the hybrid cells or inactivated TEPC-15 tumor cells. Such consecutive transfer of the immune spleen cells induced splenomegaly in the recipients: a two- to five-fold increase over normal spleen cell recipients. The ability of spleen cells to transfer immunity, but not splenomegaly, was abrogated by treatment with mitomycin C. These results suggest that proliferation of donor cells is necessary to transfer immunity, and that splenomegaly alone does not manifest such immunity in the recipients.  相似文献   

17.
The onset of protective immunity against Trypanosoma cruzi in mice was determined by adoptively immunizing newly infected recipients with spleen cells from normal or infected donor mice. It was found that spleen cells from animals with 3 day and 6 day infections did not provide protection but that spleen cells from infections of 9, 12, 15 and 18 days significantly increased longevity in infected recipient animals. The protective capacity per spleen cell was found to increase in proportion to the duration of infection of donor mice. It was further noted that immune protection, as reflected in increased longevity, did not result in decreased development of parasitemia. Immunized mice which demonstrated the greatest longevity developed parasitemias over twice that observed in contrrol groups.  相似文献   

18.
Protective immunity and production of anti-sporozoite (CSP) antibody was studied in A/J mice injected with X-irradiated sporozoites using different immunization schedules and antigen doses. Data were also obtained on the immunogenicity of X-irradiated as compared to nonirradiated sporozoites. After a single immunization (1.5 × 105 or 7.5 × 104 X-irradiated sporozoites) a number of animals was completely protected when challenged, but the percentage of protected mice varied considerably from experiment to experiment. Maximal protection was obtained 7 days after the immunization. When the first injection of parasites was followed by a single booster administered 3, 4 or 5 days later, protection was considerably enhanced and the results more consistent. After a single injection of 1.5 × 105 or 7.5 × 104 sporozoites, CSP antibody was detectable from the 19th and 23rd day, respectively, i.e., at a time point when protection was diminishing. This antibody persisted only for a short period. When a single booster was given soon after the first injection, CSP antibody was present in the sera of all the mice from the ninth day on and persisted for greater than 80 days. A single dose of X-irradiated sporozoites injected into rats, induced antibody (CSP) formation which reached a peak after 2 weeks and persisted at this level for more than 3 months. However in rats injected with viable sporozoites, the antibody titers fell rapidly and became undetectable after 4 weeks.From these data we can conclude that (a) the immune response induced by attenuated X-irradiated sporozoites is considerably longer-lasting than that induced by viable sporozoites; (b) CSP antibodies are not detectable during the early stages of the immune response; and (c) protective immunity precedes the presence of detectable serum and antibodies.  相似文献   

19.
MHC class Ia-deficient mice (H2 Kb-/- Db-/-) inoculated with the intracellular pathogen Listeria monocytogenes (LM) displayed a three- to fourfold expansion of splenic CD8+ T cells 6 days following infection. Culture of these spleen cells in vitro gave rise to CTL that recognized LM-infected target cells and were restricted by the class Ib molecules, Qa1b and M3. Exposure of target cells to heat-killed LM (HKLM) rather than live bacteria did not result in CTL-mediated lysis. Target cells pulsed with three LM peptides known to bind M3, f-MIGWII, f-MIVTLF, and f-MIVIL, were recognized by effector cells from both B6 and Kb-/- Db-/- animals. In vivo analysis showed that B6 and Kb-/- Db-/- mice clear LM from the spleen and liver rapidly with similar kinetics, whereas TAP.1-/- mice, which are deficient in class Ia and Ib molecules, clear LM slowly upon infection. To establish the in vivo role of CD8+ T cells in Kb-/- Db-/- animals, we showed that depletion of such cells from the spleens of immune mice prevented the adoptive transfer of protective immunity to syngeneic recipients. Spleen cells from Kb-/- Db-/- mice were also capable of generating responses directed against syngeneic as well as allogeneic class Ia molecules in vitro. Thus, class Ia-deficient animals have a CD8+ T cell repertoire capable of recognizing both class Ia and class Ib molecules and can generate protective immunity to LM.  相似文献   

20.
A plasmid DNA vaccine encoding the circumsporozoite protein of malaria (pCSP) induces tolerance rather than immunity when administered to newborn mice. We find that this tolerance persists for >1 yr after neonatal pCSP administration and interferes with the induction of protective immunity in animals challenged with live sporozoites. Susceptibility to tolerance induction wanes rapidly with age, disappearing within 1 wk of birth. Higher doses of plasmid are more tolerogenic, and susceptibility to tolerance is not MHC-restricted. CD8+ T cells from tolerant mice suppress the in vitro Ag-specific immune response of cells from adult mice immunized with pCSP. Similarly, CD8+ T cells from tolerant mice transfer nonresponsiveness to naive syngeneic recipients. These findings clarify the cellular basis and factors contributing to the development of DNA vaccine-induced neonatal tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号