首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 185 毫秒
1.
Geminiviruses are plant DNA viruses with small genomes whose replication, except for the viral replication protein (Rep), depends on host proteins and, in this respect, are analogous to animal DNA tumor viruses, e.g. SV40. The mechanism by which these animal viruses create a cellular environment permissive for viral DNA replication involves the binding of a virally encoded oncoprotein, through its LXCXE motif, to the retinoblastoma protein (Rb). We have identified such a LXCXE motif in the Rep protein of wheat dwarf geminivirus (WDV) and we show its functional importance during viral DNA replication. Using a yeast two-hybrid system we have demonstrated that WDV Rep forms stable complexes with p130Rbr2, a member of the Rb family of proteins, and single amino acid changes within the LXCXE motif abolish the ability of WDV Rep to bind to p130Rbr2. The LXCXE motif is conserved in other members of the same geminivirus subgroup. The presence of an intact Rb binding motif is required for efficient WDV DNA replication in cultured wheat cells, strongly suggesting that one of the functions of WDV Rep may be the linking between viral and cellular DNA replication cycles. Our results point to the existence of a Rb-like protein(s) in plant cells playing regulatory roles during the cell cycle.  相似文献   

2.
The RepA protein of the plasmid Rts1, consisting of 288 amino acids, is a trans-acting protein essential for initiation of plasmid replication. To study the functional domains of RepA, hybrid proteins of Rts1 RepA with the RepA initiator protein of plasmid P1 were constructed such that the N-terminal portion was from Rts1 RepA and the C-terminal portion was from P1 RepA. Six hybrid proteins were examined for function. The N-terminal region of Rts1 RepA between amino acid residues 113 and 129 was found to be important for Rts1 ori binding in vitro. For activation of the origin in vivo, an Rts1 RepA subregion between residues 177 and 206 as well as the DNA binding domain was required. None of the hybrid initiator proteins activated the P1 origin. Both in vivo and in vitro studies showed, in addition, that a C-terminal portion of Rts1 RepA was required along with the DNA binding and ori activating domains to achieve autorepression, suggesting that the C-terminal region of Rts1 RepA is involved in dimer formation. A hybrid protein consisting of the N-terminal 145 amino acids of Rts1 and the C-terminal 142 amino acids from P1 showed strong interference with both Rts1 and P1 replication, whereas other hybrid proteins showed no or little effect on P1 replication.  相似文献   

3.
The product of the retinoblastoma susceptibility gene (Rb) controls the passage of mammalian cells through G1 phase. Animal virus oncoproteins interact with the Rb protein via an LXCXE motif and disrupt Rb-E2F complexes, driving cells into S-phase. Recently, we found that the RepA protein of a plant geminivirus contains an LXCXE motif that is essential for its function, a finding that predicts the existence of Rb-related proteins in plant cells. Here we report the isolation of a maize cDNA clone encoding a protein (ZmRb1) which, based on structural and functional studies, is closely related to the mammalian Rb family of growth regulatory proteins. ZmRb1 shows a high degree of amino acid conservation when compared with animal Rb members, particularly in the A/B 'pocket' domain, but ZmRb1 has a shorter N-terminal domain. ZmRb1 forms stable complexes with plant LXCXE-containing proteins, e.g. geminivirus RepA protein. Geminivirus DNA replication is reduced in plant cells transfected with plasmids encoding either ZmRb1 or human p130, a member of the Rb family. This suggests that ZmRb1 controls the G1/S transit in plant cells and is consistent with the fact that geminiviruses need an S-phase environment for DNA replication, as animal DNA tumor viruses do. Our results allow the extension of the Rb family of tumor suppressor proteins to plants and have implications on animal and plant strategies for cell growth control.  相似文献   

4.
5.
植物NAC转录因子的结构功能及其表达调控研究进展   总被引:8,自引:0,他引:8  
NAC转录因子是近十年来新发现的具有多种生物功能的植物特异转录因子。该家族转录因子的共同特点是其N端为保守的大约150个氨基酸的NAC结构域,C端为高度变异的转录调控区。它们在植物生长发育、激素调节和抵抗逆境等方面发挥着重要的作用。本文主要就植物NAC转录因子的基本结构特征、生物学功能、表达调控及其最新研究进展进行综述。  相似文献   

6.
7.
Replication of the single-stranded DNA genome of plant geminiviruses follows a rolling circle mechanism. It strictly depends on a 'rolling circle replication initiator protein', the M(r) 41 kDa viral Rep protein, encoded by the C1 or AC1 genes. Using wheat dwarf virus (WDV) and tomato yellow leaf curl virus (TYLCV) as examples, we show that not only the full-size Rep proteins, but also a putative 30 kDa translation product of WDV open reading frame C1-N as well as an artificially shortened 24 kDa Rep of TYLCV, cleave and join single-stranded origin DNA in vitro. Thus the pivotal origin recognition and processing activities of geminivirus Rep proteins must be mediated by the amino-terminal domain of Rep.  相似文献   

8.
Sharma R  Kachroo A  Bastia D 《The EMBO journal》2001,20(16):4577-4587
Using yeast forward and reverse two-hybrid analysis and biochemical techniques, we present novel and definitive in vivo and in vitro evidence that both the N-terminal domain I and C-terminal domain IV of the host-encoded DnaA initiator protein of Escherichia coli interact physically with plasmid-encoded RepA initiator of pSC101. The N-terminal, but not the C-terminal, region of RepA interacted with DnaA in vitro. These protein-protein interactions are critical for two very early steps of replication initiation, namely origin unwinding and helicase loading. Neither domain I nor IV of DnaA could individually collaborate with RepA to promote pSC101 replication. However, when the two domains are co-expressed within a common cell milieu and allowed to associate non-covalently with each other via a pair of leucine zippers, replication of the plasmid was supported in vivo. Thus, the result shows that physical tethering, either non-covalent or covalent, of domain I and IV of DnaA and interaction of both domains with RepA, are critical for replication initiation. The results also provide the molecular basis for a novel, potential, replication-based bacterial two-hybrid system.  相似文献   

9.
10.
ClpA, a member of the Clp/Hsp100 ATPase family, is a molecular chaperone and regulatory component of ClpAP protease. We explored the mechanism of protein recognition by ClpA using a high affinity substrate, RepA, which is activated for DNA binding by ClpA and degraded by ClpAP. By characterizing RepA derivatives with N- or C-terminal deletions, we found that the N-terminal portion of RepA is required for recognition. More precisely, RepA derivatives lacking the N-terminal 5 or 10 amino acids are degraded by ClpAP at a rate similar to full-length RepA, whereas RepA derivatives lacking 15 or 20 amino acids are degraded much more slowly. Thus, ClpA recognizes an N-terminal signal in RepA beginning in the vicinity of amino acids 10-15. Moreover, peptides corresponding to RepA amino acids 4-13 and 1-15 inhibit interactions between ClpA and RepA. We constructed fusions of RepA and green fluorescent protein, a protein not recognized by ClpA, and found that the N-terminal 15 amino acids of RepA are sufficient to target the fusion protein for degradation by ClpAP. However, fusion proteins containing 46 or 70 N-terminal amino acids of RepA are degraded more efficiently in vitro and are noticeably stabilized in vivo in clpADelta and clpPDelta strains compared with wild type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号