首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A DNA fragment coding for a cellodextrinase of Bacteroides succinogenes S85 was isolated by screening of a pBR322 gene library in Escherichia coli HB101. Of 100,000 colonies screened on a complex medium with methylumbelliferyl-beta-D-cellobioside as the indicator substrate, two cellodextrinase-positive clones (CB1 and CB2) were isolated. The DNA inserts from the two recombinant plasmids were 7.7 kilobase pairs in size and had similar restriction maps. After subcloning from pCB2, a 2.5-kilobase-pair insert which coded for cellodextrinase activity was isolated. The enzyme was located in the cytoplasm of the E. coli host. It exhibited no activity on carboxymethyl cellulose, Avicel microcrystalline cellulose, acid-swollen cellulose, or cellobiose but hydrolyzed p-nitrophenyl-beta-D-cellobioside and p-nitrophenyl-beta-D-lactoside. The Km (0.1 mM) for the hydrolysis of p-nitrophenyl-cellobioside by the enzyme expressed in E. coli was similar to that reported for the purified enzyme from B. succinogenes. Expression of the cellodextrinase gene was subjected to catabolite repression by glucose and was not induced by cellobiose. The origin of the DNA insert from B. succinogenes was confirmed by Southern blot analysis. Western blotting (immunoblotting) using antibodies raised against the purified B. succinogenes cellodextrinase revealed a protein with a molecular weight of approximately 50,000 in E. coli clones which comigrated with the native enzyme isolated from B. succinogenes. These data indicate that the cellodextrinase gene expressed in E. coli is fully functional and codes for an enzyme with properties similar to those of the native enzyme.  相似文献   

2.
A gene coding for xylanase synthesis in Bacteroides succinogenes was isolated by cloning, with Escherichia coli HB101 as the host. After partial digestion of B. succinogenes DNA with Sau3A, fragments were ligated into the BamHI site of pBR322 and transformed into E. coli HB101. Of 14,000 colonies screened, 4 produced clear halos on Remazol brilliant blue-xylan agar. Plasmids from two stable clones recovered exhibited identical restriction enzyme patterns, with the same 9.4-kilobase-pair (kbp) insert. The plasmid was designated pBX1. After subcloning of restriction enzyme fragments, a 3-kbp fragment was found to code for xylanase activity in either orientation when inserted into pUC18 and pUC19. The original clone possessed approximately 10-fold higher xylanase activity than did clones harboring the 3-kbp insert in pUC18, pUC19, or pBR322. The enzyme was partially secreted into the periplasmic space of E. coli. The periplasmic enzyme of the BX1 clone had 2% of the activity on carboxymethyl cellulose and less than 0.2% of the activity on p-nitrophenyl xyloside and a range of other substrates that it exhibited on xylan. The xylanase gene was not subject to catabolite repression by glucose or induction by either xylan or xylose. The xylanase activity migrated as a single broad band on nondenaturing polyacrylamide gels. The Km of the pBX1-encoded enzyme was 0.22% (wt/vol) of xylan, which was similar to that for the xylanase activity in an extracellular enzyme preparation from B. succinogenes. Based on these data it appears that the xylanase gene expressed in E. coli is fully functional and codes for an enzyme with properties similar to the B. succinogenes enzyme(s).  相似文献   

3.
A gene coding for xylanase synthesis in Bacteroides succinogenes was isolated by cloning, with Escherichia coli HB101 as the host. After partial digestion of B. succinogenes DNA with Sau3A, fragments were ligated into the BamHI site of pBR322 and transformed into E. coli HB101. Of 14,000 colonies screened, 4 produced clear halos on Remazol brilliant blue-xylan agar. Plasmids from two stable clones recovered exhibited identical restriction enzyme patterns, with the same 9.4-kilobase-pair (kbp) insert. The plasmid was designated pBX1. After subcloning of restriction enzyme fragments, a 3-kbp fragment was found to code for xylanase activity in either orientation when inserted into pUC18 and pUC19. The original clone possessed approximately 10-fold higher xylanase activity than did clones harboring the 3-kbp insert in pUC18, pUC19, or pBR322. The enzyme was partially secreted into the periplasmic space of E. coli. The periplasmic enzyme of the BX1 clone had 2% of the activity on carboxymethyl cellulose and less than 0.2% of the activity on p-nitrophenyl xyloside and a range of other substrates that it exhibited on xylan. The xylanase gene was not subject to catabolite repression by glucose or induction by either xylan or xylose. The xylanase activity migrated as a single broad band on nondenaturing polyacrylamide gels. The Km of the pBX1-encoded enzyme was 0.22% (wt/vol) of xylan, which was similar to that for the xylanase activity in an extracellular enzyme preparation from B. succinogenes. Based on these data it appears that the xylanase gene expressed in E. coli is fully functional and codes for an enzyme with properties similar to the B. succinogenes enzyme(s).  相似文献   

4.
The cel-3 gene cloned from Fibrobacter succinogenes into Escherichia coli coded for the enzyme EG3, which exhibited both endoglucanase and cellobiosidase activities. The gene had an open reading frame of 1,974 base pairs, coding for a protein of 73.4 kilodaltons (kDa). However, the enzyme purified from the osmotic shock fluid of E. coli was 43 kDa. The amino terminus of the 43-kDa protein matched amino acid residue 266 of the protein coded for by the open reading frame, indicating proteolysis in E. coli. In addition to the 43-kDa protein, Western immunoblotting revealed a 94-kDa membranous form of the enzyme in E. coli and a single protein of 118 kDa in F. succinogenes. Thus, the purified protein appears to be a proteolytic degradation product of a native protein which was 94 kDa in E. coli and 118 kDa in F. succinogenes. The discrepancy between the molecular weight expected on the basis of the DNA sequence and the in vivo form may be due to anomalous migration during electrophoresis, to glycosylation of the native enzyme, or to fatty acyl substitution at the N terminus. One of two putative signal peptide cleavage sites bore a strong resemblance to known lipoprotein leader sequences. The purified 43-kDa peptide exhibited a high Km (53 mg/ml) for carboxymethyl cellulose but a low Km (3 to 4 mg/ml) for lichenan and barley beta-glucan. The enzyme hydrolyzed amorphous cellulose, and cellobiose and cellotriose were the major products of hydrolysis. Cellotriose, but not cellobiose, was cleaved by the enzyme. EG3 exhibited significant amino acid sequence homology with endoglucanase CelC from Clostridium thermocellum, and as with both CelA and CelC of C. thermocellum, it had a putative active site which could be aligned with the active site of hen egg white lysozyme at the highly conserved amino acid residues Asn-44 and Asp-52.  相似文献   

5.
Fibrobacter succinogenes is one of the most active cellulolytic bacteria ever isolated from the rumen, but enzymes from F. succinogenes capable of hydrolyzing native (insoluble) cellulose at a rapid rate have not been identified. However, the genome sequence of F. succinogenes is now available, and it was hoped that this information would yield new insights into the mechanism of cellulose digestion. The genome has a single family 45 beta-glucanase gene, and some of the enzymes in this family have good activity against native cellulose. The gene encoding the family 45 glycosyl hydrolase from F. succinogenes S85 was cloned into Escherichia coli JM109(DE3) using pMAL-c2 as a vector. Recombinant E. coli cells produced a soluble fusion protein (MAL-F45) that was purified on a maltose affinity column and characterized. MAL-F45 was most active on carboxymethylcellulose between pH 6 and 7 and it hydrolyzed cellopentaose and cellohexaose but not cellotetraose. It also cleaved p-nitrophenyl-cellopentose into cellotriose and p-nitrophenyl-cellobiose. MAL-F45 produced cellobiose, cellotriose and cellotetraose from acid swollen cellulose and bacterial cellulose, but the rate of this hydrolysis was much too low to explain the rate of cellulose digestion by growing cultures. Because the F. succinogenes S85 genome lacks dockerin and cohesin sequences, does not encode any known processive cellulases, and most of its endoglucanase genes do not encode carbohydrate binding modules, it appears that F. succinogenes has a novel mechanism of cellulose degradation.  相似文献   

6.
A cosmid gene library was constructed in Escherichia coli from genomic DNA isolated from the ruminal anaerobe Fibrobacter succinogenes AR1. Clones were screened on carboxymethyl cellulose, and 8 colonies that produced large clearing zones and 25 colonies that produced small clearing zones were identified. Southern blot hybridization revealed the existence of at least three separate genes encoding cellulase activity. pRC093, which is representative of cosmid clones that produce large clearing zones, was subcloned in pGem-1, and the resulting hybrid pRCEH directed synthesis of endoglucanase activity localized on a 2.1-kb EcoRI-HindIII insert. Activity was expressed from this fragment when it was cloned in both orientations in pGem-1 and pGem-2, indicating that F. succinogenes promoters functioned successfully in E. coli. A high level of endoglucanase activity was detected on acid-swollen cellulose, ball-milled cellulose, and carboxymethyl cellulose; and a moderate level was detected on filter paper, Avicel, lichenan, and xylan. Most activity (80%) was localized in the periplasm of E. coli, with low but significant levels (16%) being detected in the extracellular medium. The periplasmic endoglucanase had an estimated molecular weight of 46,500, had an optimum temperature of 39 degrees C, and exhibited activity over a broad pH range, with a maximum at pH 5.0.  相似文献   

7.
A cosmid gene library was constructed in Escherichia coli from genomic DNA isolated from the ruminal anaerobe Fibrobacter succinogenes AR1. Clones were screened on carboxymethyl cellulose, and 8 colonies that produced large clearing zones and 25 colonies that produced small clearing zones were identified. Southern blot hybridization revealed the existence of at least three separate genes encoding cellulase activity. pRC093, which is representative of cosmid clones that produce large clearing zones, was subcloned in pGem-1, and the resulting hybrid pRCEH directed synthesis of endoglucanase activity localized on a 2.1-kb EcoRI-HindIII insert. Activity was expressed from this fragment when it was cloned in both orientations in pGem-1 and pGem-2, indicating that F. succinogenes promoters functioned successfully in E. coli. A high level of endoglucanase activity was detected on acid-swollen cellulose, ball-milled cellulose, and carboxymethyl cellulose; and a moderate level was detected on filter paper, Avicel, lichenan, and xylan. Most activity (80%) was localized in the periplasm of E. coli, with low but significant levels (16%) being detected in the extracellular medium. The periplasmic endoglucanase had an estimated molecular weight of 46,500, had an optimum temperature of 39 degrees C, and exhibited activity over a broad pH range, with a maximum at pH 5.0.  相似文献   

8.
Bacteroides ruminicola B(1)4, a noncellulolytic rumen bacterium, produces an endoglucanase (carboxymethylcellulase [CMCase]) that is excreted into the culture supernatant. Cultures grown on glucose, fructose, maltose, mannose, and cellobiose had high specific activities of CMCase (greater than 3 mmol of reducing sugar per mg of protein per min), but its synthesis was repressed by sucrose. B. rumincola did not grow on either ball-milled or acid-swollen cellulose even though the CMCase could hydrolyze swollen cellulose. The CMCase gene was cloned into Escherichia coli, and its nucleotide sequence contained a single open reading frame coding for a protein of 40,481 daltons. The enzyme was overproduced in E. coli under the control of the tac promoter and purified to homogeneity. The N-terminal sequence, amino acid composition, and molecular weight of the purified enzyme were similar to the values predicted from the open reading frame of the DNA sequence. However, the CMCase present in B. ruminicola was found to have a monomer molecular weight of 88,000 by Western immunoblotting. This discrepancy appeared to have resulted from our having cloned only part of the CMCase gene into E. coli. The amino acid sequence of the CMCase showed homology to sequences of beta-glucanases from Ruminococcus albus and Clostridium thermocellum.  相似文献   

9.
10.
Polyclonal and monoclonal antibodies to the Cl-stimulated cellobiosidase of Fibrobacter succinogenes subsp. succinogenes S85 reacted with numerous proteins of both higher and lower molecular weights from F. succinogenes subsp. succinogenes S85, but not with Escherichia coli proteins, and only one protein each from Butyrivibrio fibrisolvens and Ruminococcus albus. Different profiles were observed for Western blots (immunoblots) of peptide digests of both the purified enzyme from F. succinogenes and immunoreactive proteins of higher and lower molecular weights, demonstrating that they were different proteins. Therefore, F. succinogenes appeared to produce numerous proteins with one or more common antigenic determinants. However, with the exception of Cl-stimulated cellobiosidase, none were cellulases that have been characterized. An affinity-purified polyclonal antibody to Cl-stimulated cellobiosidase reacted with numerous proteins in cells of each of three fresh isolates of F. succinogenes subsp. succinogenes and one of F. succinogenes subsp. elongata when analyzed by Western blotting. Antibodies to periplasmic cellodextrinase, endoglucanase 2 (EG2), and EG3, when reacted in Western blots with the various cellulases, including Cl-stimulated cellobiosidase, revealed limited antigenic similarity among the different proteins and none with either B. fibrisolvens or R. albus proteins. The periplasmic cellodextrinase antibody reacted with an antigen with a size corresponding to cellodextrinase in each of the three F. succinogenes subsp. succinogenes isolates but not with any antigens from the F. succinogenes subsp. elongata isolate. The anti-EG2 antibody reacted with single antigens in each of the four isolates, while the anti-EG3 antibody reacted with only one of the four isolates.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Polyclonal and monoclonal antibodies to the Cl-stimulated cellobiosidase of Fibrobacter succinogenes subsp. succinogenes S85 reacted with numerous proteins of both higher and lower molecular weights from F. succinogenes subsp. succinogenes S85, but not with Escherichia coli proteins, and only one protein each from Butyrivibrio fibrisolvens and Ruminococcus albus. Different profiles were observed for Western blots (immunoblots) of peptide digests of both the purified enzyme from F. succinogenes and immunoreactive proteins of higher and lower molecular weights, demonstrating that they were different proteins. Therefore, F. succinogenes appeared to produce numerous proteins with one or more common antigenic determinants. However, with the exception of Cl-stimulated cellobiosidase, none were cellulases that have been characterized. An affinity-purified polyclonal antibody to Cl-stimulated cellobiosidase reacted with numerous proteins in cells of each of three fresh isolates of F. succinogenes subsp. succinogenes and one of F. succinogenes subsp. elongata when analyzed by Western blotting. Antibodies to periplasmic cellodextrinase, endoglucanase 2 (EG2), and EG3, when reacted in Western blots with the various cellulases, including Cl-stimulated cellobiosidase, revealed limited antigenic similarity among the different proteins and none with either B. fibrisolvens or R. albus proteins. The periplasmic cellodextrinase antibody reacted with an antigen with a size corresponding to cellodextrinase in each of the three F. succinogenes subsp. succinogenes isolates but not with any antigens from the F. succinogenes subsp. elongata isolate. The anti-EG2 antibody reacted with single antigens in each of the four isolates, while the anti-EG3 antibody reacted with only one of the four isolates.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Isolation of a Cellodextrinase from Bacteroides succinogenes   总被引:21,自引:13,他引:8       下载免费PDF全文
An enzyme which released the cellobiose group from p-nitrophenyl cellobioside was isolated from the periplasmic space of Bacteroides succinogenes grown on Avicel crystalline cellulose in a continuous cultivation system and separated from endoglucanases by column chromatography. The molecular weight of the enzyme was approximately 40,000, as estimated by gel filtration. The enzyme has an isoelectric point of 4.9. The enzyme exhibited low hydrolytic activity on acid-swollen cellulose and practically no activity on carboxymethyl cellulose, Avicel cellulose, and cellobiose, but it hydrolyzed p-nitrophenyl lactoside and released cellobiose from cellotriose and from higher cello-oligosaccharides. These data demonstrate that the enzyme is a cellodextrinase with an exotype of function.  相似文献   

13.
Penicillin G acylase gene from Bacillus megaterium ATCC 14945 has been isolated. Recombinant Escherichia coli clones were screened for clear halo forming activity on the lawn of Staphylococcus aureus ATCC 6538P using the enzymatic acylating reaction of 7-aminodeacetoxycephalosporanic acid (7-ADCA) and D-(alpha)-phenylglycine methylester. The gene was contained within a 2.8 kb DNA fragment and expressed efficiently when transferred from E. coli to Bacillus subtilis. A twenty times greater amount of enzyme was produced in B. subtilis transformant than that in B. megaterium. The purified enzyme from subcloned B. subtilis showed that the native enzyme consisted of two identical subunits, each with a molecular weight of 57,000. The enzyme was able to react on various cephalosporins, i.e., cephalothin, cefamandole, cephaloridine, cephaloglycin, cephalexin and cephradine.  相似文献   

14.
The metagenomic DNA of pulp sediments from paper mill effluent was extracted and purified. The 16S rDNA was amplified using the purified metagenomic DNA as template and a 16S rDNA library was prepared. Sequence analysis of 16S rDNA clones showed that diverse of uncultured bacteria inhabit in this environment, which can be classified into 4 clusters as Spirochaetes, Proteobacteria, Bacteroidetes and Firmicutes. A metagenomic library containing 10000 clones was constructed into cosmid vector, and the capacity of inserted DNA of which was 3.53 x 10(8) bp. Functional screening of the library resulted in isolation of two independent clones expressing endoglucanase activity, three independent clones expressing exoglucanase activity and two independent clones expressing beta-glucosidase activity. One clone expressing strongest enzyme activity from each activity category was chosen to be further analyzed. Three novel cellulase genes designated as umcel5L, umcel5M and umbgl3D were identified by subcloning, sequencing and expression. The umcel5L encodes an endoglucanase belonging to glycosyl hydrolase family 5, which is most related to an endoglucanase from Bradyrhizobium japonicum at 43% identity and 59% similarity. The umcel5M encodes a cellodextrinase belonging to glycosyl hydrolase family 5, which is most similar to a cellodextrinase from Fibrobacter succinogenes at 48% identity and 69% similarity. The umbgl3D encodes a putative beta-glucosidase belonging to glycosyl hydrolase family 3, which shares highest homology with a beta-glucosidase from Thermotoga maritima at 46% identity and 61% similarity. It is the first time to reveal the bacterial diversity of pulp sediments from paper mill effluent and clone novel cellulase genes from the bacteria by culture-independent method.  相似文献   

15.
Molecular cloning of a Bacillus subtilis xylanase gene in Escherichia coli   总被引:9,自引:0,他引:9  
R Bernier  H Driguez  M Desrochers 《Gene》1983,26(1):59-65
A gene coding for xylanase synthesis in Bacillus subtilis was isolated by direct shotgun cloning using Escherichia coli as a host. Following partial digestion of B. subtilis chromosomal DNA with PstI or EcoRI restriction enzymes, fragments ranging from 3 to 7 kb were introduced into the PstI or EcoRI sites of pBR325. Transformed colonies having lost either the ampicillin or chloramphenicol resistance markers were screened directly on 1% xylan plates. Out of 8000 transformants, ten xylanase-positive clones were identified by the clearing zone around lysozyme-treated colonies. Further characterization of one of the clones showed that the xylanase gene was present in a 3.9-kb insert within the PstI site of the plasmid pBR325. Retransformation of E. coli strain with the xylanase-positive hybrid plasmid pRH271 showed 100% transformation to xylanase production. The intracellular xylanase produced by the transformed E. coli was purified by ion exchange and gel permeation chromatography. The electrophoretic mobility of the purified xylanase indicated an Mr of 22 000.  相似文献   

16.
The celC gene, which codes for a new endoglucanase of Clostridium thermocellum, termed endoglucanase C, was found to be expressed when cloned in Escherichia coli. The enzyme was purified to electrophoretic homogeneneity from E. coli and its biochemical properties were studied. It differs from the previously studied endoglucanases A and B. In particular, endoglucanase C displays features common to endo- and exoglucanases, since it had a high activity on carboxymethylcellulose and on p-nitrophenyl-beta-D-cellobioside where only the agluconic bond was split. In addition, the enzyme was able to release cellobiose units from G3, G4 and G5 cellodextrins. Endoglucanase C was characterized by Western blot in a culture supernatant from C. thermocellum grown on cellulose, using an antiserum raised against the enzyme produced by E. coli.  相似文献   

17.
Organophosphorus acid (OPA) anhydrolase enzymes have been found in a wide variety of prokaryotic and eukaryotic organisms. Interest in these enzymes has been prompted by their ability to catalyze the hydrolysis of toxic organophosphorus cholinesterase-inhibiting compounds, including pesticides and chemical nerve agents. The natural substrates for these enzymes are unknown. The gene (opaA) which encodes an OPA anhydrolase (OPAA-2) was isolated from an Alteromonas sp. strain JD6.5 EcoRI-lambda ZAPII chromosomal library expressed in Escherichia coli and identified by immunodetection with anti-OPAA-2 serum. OPA anhydrolase activity expressed by the immunopositive recombinant clones was demonstrated by using diisopropylfluorophosphate (DFP) as a substrate. A comparison of the recombinant enzyme with native, purified OPAA-2 showed they had the same apparent molecular mass (60 kDa), antigenic properties, and enzyme activity against DFP and the chemical nerve agents sarin, soman, and O-cyclohexyl methylphosphonofluoridate. The gene expressing this activity was found in a 1.74-kb PstI-HindIII fragment of the original 6.1-kb EcoRI DNA insert. The nucleotide sequence of this PstI-HindIII fragment revealed an open reading frame of 1,551 nucleotides, coding for a protein of 517 amino acid residues. Amino acid sequence comparison of OPAA-2 with the protein database showed that OPAA-2 is similar to a 647-amino-acid sequence produced by an open reading frame which appears to be the E. coli pepQ gene. Further comparison of OPAA-2, the E. coli PepQ protein sequence, E. coli aminopeptidase P, and human prolidase showed regions of different degrees of similarity or functionally conserved amino acid substitutions. These findings, along with preliminary data confirming the presence of prolidase activity expressed by OPAA-2, suggest that the OPAA-2 enzyme may, in nature, be used in peptide metabolism.  相似文献   

18.
Fibrobacter succinogenes subsp. succinogenes S85 initiated growth on microcrystalline cellulose without a lag whether inoculated from a glucose, cellobiose, or cellulose culture. During growth on cellulose, there was no accumulation of soluble carbohydrate. When the growth medium contained either glucose or cellobiose in combination with microcrystalline cellulose, there was a lag in cellulose digestion until all of the soluble sugar had been utilized, suggesting an end product feedback mechanism that affects cellulose digestion. Cl-stimulated cellobiosidase and periplasmic cellodextrinase were produced under all growth conditions tested, indicating constitutive synthesis. Both cellobiosidases were cell associated until the stationary phase of growth, whereas proteins antigenically related to the Cl-stimulated cellobiosidase and a proportion of the endoglucanase were released into the extracellular culture fluid during growth, irrespective of the substrate. Immunoelectron microscopy of cells with a polyclonal antibody to Cl-stimulated cellobiosidase as the primary antibody and 10-nm-diameter gold particles conjugated to goat anti-rabbit antibodies as the second antibody revealed protrusions of the outer surface which were selectively labeled with gold, suggesting that Cl-stimulated cellobiosidase was located on the protrusions. These data support the contention that the protrusions have a role in cellulose hydrolysis; however, this interpretation is complicated by reactivity of the antibodies with a large number of other proteins that possess related antigenic epitopes.  相似文献   

19.
20.
A Fibrobacter succinogenes S85 gene that encodes endoglucanase hydrolysing CMC and xylan was cloned and expressed in Escherichia coli DH5 by using pUC19 vector. Recombinant plasmid DNA from a positive clone hydrolysing CMC and xylan was designated as pCMX1, harboring 2,043 bp insert. The entire nucleotide sequence was determined, and an open-reading frame (ORF) was deduced. The nucleotide sequence accession number of the cloned gene sequence in Genbank is U94826. The endoglucanase gene cloned in this study does not have amino sequence homology to the other endoglucanase genes from F. succinogenes S85, but does show sequence homology to family 5 (family A) of glycosyl hydrolases from several species. The ORF encodes a polypeptide of 654 amino acids with a measured molecular weight of 81.3 kDa on SDS-PAGE. Putative signal sequences, Shine-Dalgarno-type ribosomal binding site and promoter sequences (-10) related to the consensus promoter sequences were deduced. The recombinant endoglucanase by E. coli harboring pCMX1 was partially purified and characterized. N-terminal sequences of endoglucanase were Ala-Gln-Pro-Ala-Ala, matched with deduced amino sequences. The temperature range and pH for optimal activity of the purified enzyme were 55 approximately 65 degrees C and 5.5, respectively. The enzyme was most stable at pH 6 but unstable under pH 4 with a K(m) value of 0.49% CMC and a V(max) value of 152 U/mg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号