首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Intensive reindeer grazing has been hypothesized to drive vegetation shifts in the arctic tundra from a low-productive lichen dominated state to a more productive moss dominated state. Although the more productive state can potentially host more herbivores, it may still be less suitable as winter grazing grounds for reindeer, if lichens, the most preferred winter forage, are less abundant. Therefore, such a shift towards mosses may have severe consequences for reindeer husbandry if ground-growing lichens have difficulties to recover. We tested if reindeer cause this type of vegetation state shifts in boreal forest floor vegetation, by comparing plant species composition and major soil processes inside and outside of more than 40-year-old exclosures. Lichen biomass was more than twice as high inside exclosures than in grazed controls and almost 5 times higher than in heavily grazed patches. Contrary to our predictions, net N mineralization and plant production were higher in the exclosures than in the grazed controls. The lack of response of phytometer plants in a common garden bioassay indicated that changed soil moisture may drive effects of reindeer on plant productivity in these dry Pine forest ecosystems.  相似文献   

2.
Reindeer grazing has a considerable influence on mineralization processes in northern Fennoscandian boreal forests, but the mechanisms underlying the observed differences between grazed and ungrazed areas are not well understood. We studied the below-ground impacts of reindeer grazing by comparing the carbon and nitrogen mineralization rates inside and outside long-term fenced reindeer exclosure areas in five oligotrophic, lichen-dominated and five mesotrophic, dwarf-shrub dominated forests. The soil C mineralization rates and microbial metabolic activity (qCO2) were significantly lower in the grazed than the ungrazed areas in both oligotrophic and mesotrophic forests. The reductions occurred irrespective of the impact on soil moisture. We conclude that reindeer grazing causes a reduction in the supply of labile C substrates to microbes, resulting in reduced organic matter decomposition rates through changes in the activity of the microbial biomass. Simultaneously, grazing had no consistent effect on the microbial N dynamics, but the impact ranged from no change to increased or decreased in N mineralization rates at the different study sites. The impact of grazing on the N mineralization potential thus seems to be site-specific and uncoupled from the impact of grazing on soil C mineralization. Reciprocal transplant incubations showed no interactions between N mineralization rates and the reindeer-mediated impact on the soil microclimate. We suggest that plant root damage due to trampling by reindeer may be an important mechanism for the deceleration of soil C cycling. In some cases, however, the impact of grazing on the soil active N pool may be strong enough to outweigh the reduction in soil organic matter decomposition, and by these means uncouple soil N dynamics from soil C quality.  相似文献   

3.
In oceanic, nutrient-rich Fennoscandian arctic-alpine tundra heaths, grazing by reindeer has been found to increase herbs and graminoids in relation to dwarf shrubs. In continental lichen heaths in the inland with nutrient-poor conditions, however, slowly decomposable dwarf shrubs are favoured by grazing. According to a hypothesis, by favouring easily decomposing plants in nutrient-rich conditions and slowly decomposing plants in nutrient-poor conditions, herbivory enhances soil nutrient cycling in nutrient-rich and retards it in nutrient-poor areas. We tested this hypothesis by comparing the impact of reindeer grazing on soil C and N mineralization between two oceanic and two continental arctic-alpine tundra heaths.
Although soil respiration and microbial metabolic activity were enhanced by grazing in the suboceanic but not in the subcontinental tundra heaths, gross N mineralization rates were higher in the grazed areas in soils from all study sites, indicating that reindeer grazing leads to increased rates of nutrient cycling in both nutrient-poor and nutrient-rich tundra heaths. Thus, in the subcontinental tundra heaths, the increase in soil N concentrations due to mammalian waste products enhances N mineralization rates, even though the organic C quality is not improved by reindeer grazing. There was some site-specific variation in the strength of the reindeer effects on various microbial processes and soil properties, which can be related to spatial variation in grazing intensity and timing, as these factors in turn affect the nutrient sink strength of the vegetation.  相似文献   

4.
Reindeer lichens are an important component of northern ecosystems. The aim of this study was to measure the growth rate of terricolous lichens as it is a key parameter involved in productivity of these ecosystems and an important part of lichen tolerance to reindeer grazing. Furthermore, the natural succession and the long-term effects of reindeer grazing on lichen community characteristics in two contrasting habitats were investigated as well as the interactions between lichen cover and mosses and vascular plants. Biomass and coverage measurements were conducted in a lichen woodland and in a subarctic heath with grazed and ungrazed areas in northern Finland. Measurements spanning over 13 yr of undisturbed development show that the growth rate of Cladina stellaris can be as high as >0.17 g g−1 produced annually, although in average growth rates were much lower. During the succession of ground vegetation, C. stellaris , C. rangiferina , C. mitis and Cetraria nivalis increased in biomass in fenced areas and were reduced most in biomass by reindeer in unprotected areas. Reindeer grazing and trampling seem to change the vegetation towards a type that is dominated by small dwarf shrubs, bare soil and minute-cup lichens ( Cladonia spp.). Removing the lichen layer by reindeer may reduce natural regeneration of pine trees as implied by increasing numbers of pine seedlings with increasing lichen cover.  相似文献   

5.
《Small Ruminant Research》2001,39(2):121-130
Winter grazing of semi-domesticated reindeer (Rangifer t. tarandus) was investigated at the woodland lichen pasture (lichen approximately 550 kg DM ha−1) in Kaamanen, northern Finland during the winter 1996–1997. Nine female reindeer mainly dug their food in the snow for 122 days (3 December–4 April) in a fenced area of 36.3 ha. Over half of the fenced area was lichen dominated dry pine forest. The amount of lichens in lichen forest inside the fence was estimated before and after grazing. Area of grazed and condition of reindeer as well as snow conditions were monitored. Reindeer grazed over the whole area of lichen forest in early winter but from mid-winter they tended to graze on the areas with the greatest lichen abundancy. The amount of lichens measured decreased in the latter areas by 40% and in the other part of the lichen pasture by 17%, respectively. In both of these areas the residual amounts of lichens left after grazing were similar. Of the dominant lichens, the amount of C. stellaris decreased the most and the amount of Cl. uncialis the least. During the study, the estimated average daily area grazed varied from 4 to 87 m2 per reindeer. It was calculated that individual reindeer obtained 2.6 kg of lichen DM per day during the most intensive digging period when the body condition score and weight of reindeer increased. Otherwise, the body condition score and weight decreased. Reindeer finished foraging for ground lichens and started to search for arboreal lichens in mid-March when the snow layer was 70–80 cm thick and contained some hard snow layers which lifted reindeer. Both the amount of lichens in the pasture and the snow conditions essentially affect the nutritional status of reindeer in the woodland region during winter. Assuming that a reindeer is able to graze around 30 m2 per day in the snow during mid and late winter, there should be, on the basis of energy demand and grazing behaviour of reindeer as well as the nutritive value of lichen, an estimated 1000 kg lichen DM ha−1 available in a good condition woodland lichen pasture.  相似文献   

6.
Thirty and fifty years old exclosures established in northeastern Fennoscandia in lichen-rich oligotrophic pine Pinus sylvestris forests on podzolised soil were used to study the effect of reindeer grazing on pine fine roots, microbial activity, and on bryophyte, dwarf shrub and lichen biomasses. There were significantly less lichens, especially Cladina stellaris , at grazed than at ungrazed sites. Coverage of other lichens like C. arbuscula and C. rangiferina and bryophytes, especially Dicranum spp., benefitted from grazing. The biomass of vascular plants, mainly Calluna vulgaris, Empetrum nigrum and Vaccinium vitis-idaea , was reduced at grazed sites, although their coverage was not influenced. Microbial activity was significantly lower at grazed sites. The influence of grazing is most obviously mediated by reduced soil moisture during dry periods at grazed sites. Fine root parameters (per soil and stem volumes) were lower at grazed sites (pPCA = 0.072), the first principal component consisting of a number of fine root tips, length and weight. Grazing decreased all exchangeable nutrients by 30–60% in organic layer. Based on PCA the decrease was significant for exchangeable nutrients, although of individual elements only P and S showed statistically significant difference. The extent of heavy grazing in northeastern Fennoscandia coniferous forest was revealed by remote sensing. It revealed extensive area in which reindeer lichens are reduced in northeastern Finland. The Finnish-Russian border can be clearly distinguished in the satellite image composite.  相似文献   

7.
Heavy grazing and trampling by reindeer increase nutrient cycling and primary production in areas where grasslands have replaced shrub and moss tundra. One way in which herbivores can affect nutrient cycling is through changing the litter decomposition processes. We studied the effect of herbivory on litter decomposition rate by reciprocal transplantation of litter between lightly grazed and heavily grazed areas, using the litterbag technique. We used litter from two of the most common species on the lightly grazed side, Betula nana and Empetrum nigrum , and two of the most common species on the heavily grazed side, Carex bigelowii and Deschampsia flexuosa . We found that herbivory improved litter quality by favouring species with easily decomposed litter. However, herbivory also improved litter quality by increasing the nitrogen content and lowering the C/N ratio of each species. Decomposition rates even correlated with the abundance of the plant category in question. Shrub litter decomposed faster in the lightly grazed area where shrubs were common, and graminoid litter decomposed faster in the heavily grazed area where graminoids were common. These results indicate that the decomposer micro-organisms are adapted to the most common litter types. This study shows that detailed information about the effect of herbivory on litter quality is important to understand differences between the short-term and long-term effects of herbivory on nutrient cycling and primary production.  相似文献   

8.
Abstract. We studied the effects of Svalbard reindeer on the abundance of lichens in Spitsbergen. A survey was carried out in 14 areas with contrasting reindeer densities. Separate cover estimates for crustose, fructose and foliose lichens were taken in each area, and related to the density of reindeer pellet groups, a measure of reindeer density. Dominant macro lichen families were identified in 10 areas, and a full record of macrolichen species was taken in four additional areas. Variation in reindeer density is partially due to past overhunting, and subsequent incomplete recovery, releasing some areas from reindeer grazing for 100–200 yr. The cover of fruticose lichens was negatively related to reindeer pellet group density, indicating suppression by Svalbard reindeer. This makes their impact comparable to other members of the Rangifer genus around the northern hemisphere. The generally recorded low abundance of lichens in the diet of Svalbard reindeer compared to other Rangifer species, therefore, was interpreted as the depletion of fruticose lichens in Spitsbergen, and a subsequent switch to alternative foods. Of all fruticose lichens, Stereocaulon spp. appeared least sensitive to grazing. Crustose and foliose lichen cover was independent of reindeer pellet group density. The cover of crustose lichens was significantly related to latitude, with greater cover in more northern areas. Foliose lichens were more abundant in places where moss cover was high. We conclude that the impact of Svalbard reindeer on lichens is dependent on growth form, with fruticose lichens suffering from grazing, whereas foliose lichens might indirectly benefit from higher densities of reindeer or, like crustose lichens, be controlled by other factors.  相似文献   

9.
Large migratory grazers commonly influence soil processes in tundra ecosystems. However, the extent to which grazing effects are limited to intensive grazing periods associated with migration has not previously been investigated. We analyzed seasonal patterns in soil nitrogen (N), microbial respiration and extracellular enzyme activities (EEAs) in a lightly grazed tundra and a heavily grazed tundra that has been subjected to intensive grazing during reindeer (Rangifer tarandus L.) migration for the past 50 years. We hypothesized that due to the fertilizing effect of the reindeer, microbial respiration and EEAs related to microbial C acquisition should be higher in heavily grazed areas compared to lightly grazed areas and that the effects of grazing should be strongest during reindeer migration. Reindeer migration caused a dramatic peak in soil N availability, but in contrast to our predictions, the effect of grazing was more or less constant over the growing season and the seasonal patterns of microbial activities and microbial N were strikingly uniform between the lightly and heavily grazed areas. Microbial respiration and the EEAs of β-glucosidase, acid-phosphatase, and leucine-aminopeptidase were higher, whereas that of N-acetylglucosamidase was lower in the heavily grazed area. Experimental fertilization had no effect on EEAs related to C acquisition at either level of grazing intensity. Our findings suggest that soil microbial activities were independent of grazing-induced temporal variation in soil N availability. Instead, the effect of grazing on soil microbial activities appeared to be mediated by substrate availability for soil microorganisms. Following a shift in the dominant vegetation in response to grazing from dwarf shrubs to graminoids, the effect of grazing on soil processes is no longer sensitive to temporal grazing patterns; rather, grazers exert a consistent positive effect on the soil microbial potential for soil C decomposition.  相似文献   

10.
Abstract. Data on floristic composition and environmental variables were collected in floristically homogeneous oligotrophic pine (Pinus sylvestris) forests with heath-like under- storey vegetation in eastern Fennoscandia, and ordinated by non-linear multidimensional scaling (NMDS) in order to study the effect of lichen grazing by reindeer on the understorey vegetation. The study sites included areas with varying grazing pressure, as well as 50-yr old grazing exclosures. Sites rich in respectively bryophytes and lichens were placed at opposite ends of the ordination axes, and heavily grazed sites were placed in between them. Reindeer grazing increased the abundance of bryophytes, especially Dicranum spp. and Pleurozium schreberi. Grazing changed the vegetation to the extent that it resembled more mesotrophic sites, but this did not show any relationship with tree volume or other site productivity indicators. This was observed both in the ordination and, in a more compelling way, when exclosures with adjacent grazed areas were compared. No such signs were evident at ungrazed sites, where especially Cladina spp. spatially replace Cladonia spp. and tiny bryophytes like Barbilophozia spp., Polytrichum spp. and Pohlia nutans during succession. Cladina stellaris had almost disappeared from the most intensively grazed sites. The soil at ungrazed sites was characterized by high Al and Fe concentrations and bryophyte-rich sites by high Mn concentrations. Shannon's diversity index, depth of humus layer and proportion of bare ground also increased in sites getting richer in bryophytes.  相似文献   

11.
Herbivores are reported to slow down as well as enhance nutrient cycling in grasslands. These conflicting results may be explained by differences in herbivore type. In this study we focus on herbivore body size as a factor that causes differences in herbivore effects on N cycling. We used an exclosure set-up in a floodplain grassland grazed by cattle, rabbits and common voles, where we subsequently excluded cattle and rabbits. Exclusion of cattle lead to an increase in vole numbers and a 1.5-fold increase in net annual N mineralization at similar herbivore densities (corrected to metabolic weight). Timing and height of the mineralization peak in spring was the same in all treatments, but mineralization in the vole-grazed treatment showed a peak in autumn, when mineralization had already declined under cattle grazing. This mineralization peak in autumn coincides with a peak in vole density and high levels of N input through vole faeces at a fine-scale distribution, whereas under cattle grazing only a few patches receive all N and most experience net nutrient removal. The other parameters that we measured, which include potential N mineralization rates measured under standardized laboratory conditions and soil parameters, plant biomass and plant nutrient content measured in the field, were the same for all three grazing treatments and could therefore not cause the observed difference. When cows were excluded, more litter accumulated in the vegetation. The formation of this litter layer may have added to the higher mineralization rates under vole grazing, through enhanced nutrient return through litter or through modification of microclimate. We conclude that different-sized herbivores have different effects on N cycling within the same habitat. Exclusion of large herbivores resulted in increased N annual mineralization under small herbivore grazing.  相似文献   

12.
丁小慧  宫立  王东波  伍星  刘国华 《生态学报》2012,32(15):4722-4730
放牧通过畜体采食、践踏和排泄物归还影响草地群落组成、植物形态和土壤养分,植物通过改变养分利用策略适应环境变化。通过分析呼伦贝尔草原放牧和围封样地中的群落植物和土壤的碳氮磷养分及化学计量比,探讨放牧对生态系统化学计量学特征和养分循环速率的影响机制。结果如下:(1)群落尺度上,放牧和围封草地植物叶片C、N和P的含量没有显著差异;但是在种群尺度上,放牧草地植物叶片N含量显著高于围封草地;(2)放牧草地土壤全C、全N、有机C、速效P含量,低于围封草地,硝态N含量高于围封草地;土壤全P和铵态N指标没有显著差异;(3)放牧草地植物C∶N比显著低于围封草地,植物残体分解速率较快,提高了生态系统养分循环速率。  相似文献   

13.
The effects of grazing intensity on selected soil characteristics in the feather-grass steppes of the autonomous region of Ningxia (northern China) were investigated by a comparison of non-grazed areas (grazing intensity 0), slightly grazed areas (grazing intensity I), moderately grazed areas (II), intensively grazed areas (III) and over-grazed areas (IV). Even in areas used only minimally for grazing activities (I), a serious increase (doubling) in soil hardness was apparent in the upper soil layer. A continual decrease in organic matter in the surface soil can be correlated directly to soil compaction. The content of organic matter in soil of degree IV amounts to only a third of the organic matter found in non-grazed areas. This decrease can be attributed partly to the poor living conditions for soil organisms in compacted soils, but also to a significant reduction in litter. This is because intensive grazing causes reduced vegetation cover leading to litter being blown away by wind or washed away by heavy rainfall. Thus in level III hardly any plant litter remained to be incorporated into the soil as humus. Likewise root density also suffered its largest decrease in areas with a grazing intensity level III. With regard to the content of nitrogen and phosphorous (total and available) hardly any difference between soils of grazing intensity 0 and I was observed, whereas a noticeable decrease was apparent between levels I and II. Available Potassium was similar for all grazing levels. The pH-value of the soil solution is not significantly affected by grazing. We did not observe differences in the soils of the two main types of steppe vegetation (Stipa grandis and Stipa bungeana steppe) in response to grazing. Only the amount of litter in the S. grandis-steppe in non-grazed or slightly grazed areas is noticeably higher than in the S. bungeana steppe.  相似文献   

14.
Large herbivores may alter carbon and nutrient cycling in soil by changing above- and below-ground litter decomposition dynamics. Grazing effects may reflect changes in plant allocation patterns, and thus litter quality, or the site conditions for decomposition, but the relative roles of these broad mechanisms have rarely been tested. We examined plant and soil mediated effects of grazing history on litter mass loss and nutrient release in two grazing-tolerant grasses, Lolium multiflorum and Paspalum dilatatum, in a humid pampa grassland, Argentina. Shoot and root litters produced in a common garden by conspecific plants collected from grazed and ungrazed sites were incubated under both grazing conditions. We found that grazing history effects on litter decomposition were stronger for shoot than for root material. Root mass loss was neither affected by litter origin nor incubation site, although roots from the grazed origin immobilised more nutrients. Plants from the grazed site produced shoots with higher cell soluble contents and lower lignin:N ratios. Grazing effects mediated by shoot litter origin depended on the species, and were less apparent than incubation site effects. Lolium shoots from the grazed site decomposed and released nutrients faster, whereas Paspalum shoots from the grazed site retained more nutrient than their respective counterparts from the ungrazed site. Such divergent, species-specific dynamics did not translate into consistent differences in soil mineral N beneath decomposing litters. Indeed, shoot mass loss and nutrient release were generally faster in the grazed grassland, where soil N availability was higher. Our results show that grazing influenced nutrient cycling by modifying litter breakdown within species as well as the soil environment for decomposition. They also indicate that grazing effects on decomposition are likely to involve aerial litter pools rather than the more recalcitrant root compartment.  相似文献   

15.
Reindeer influence on ecosystem processes in the tundra   总被引:8,自引:0,他引:8  
J. Olofsson  S. Stark  L. Oksanen 《Oikos》2004,105(2):386-396
Reindeer have been recorded to increase nutrient cycling rate and primary production in studies from fences almost 40 years old that separate areas with different grazing regimes in northern Fennoscandia. To further understand the mechanism behind the effects of herbivores on primary production, we measured the size of the major C and N pools, soil temperature, litter decomposition rate and N mineralization rate in lightly, moderately and heavily grazed areas along two of these fences.
Plant N found in new biomass, indicative of plant N assimilation, was significantly higher in moderately and heavily grazed areas than in lightly grazed areas, which corresponded to a decreased amount of N in old plant parts. The amount of N found in plant litter or organic soil layer did not differ between the grazing treatments. Together with soil N concentrations and litter decomposition rates, soil temperatures were significantly higher in moderately and heavily grazed areas.
We conclude that the changes in soil temperature are important for the litter decomposition rate and thus on the nutrient availability for plant uptake. However, the changes in plant community composition appear to be more important for the altered N pools and thus the enhanced primary production. The results provide some support for the keystone herbivore hypothesis, which states that intensive grazing can promote a transition from moss-rich tundra heath to productive grasslands. Grazing altered N fluxes and pools, but the total N pools were similar in all grazing treatments. Our study thus indicates that grazing can increase the primary production through enhancing the soil nutrient cycling rate, even in a long term perspective on an ecological timescale.  相似文献   

16.
We aimed to determine the grazing impact on soil nitrogen (N) mineralization and N leaching in a temperate mixed forest on Mt. Ohdaigahara, central Japan, where Sika deer (Cervus nippon Temminck; hereafter deer) grazing has decreased biomass of Sasa nipponica Makino et Shibata (hereafter sasa) that dominates the forest understory. Soil N mineralization and N leaching of the top 0.3-m layer were measured in situ from 2006 to 2007 by an ion-exchange resin core method inside and outside a deer exclosure. Deer grazing decreased the carbon to nitrogen (C:N) ratio of sasa litter because of the declining dead culm C:N ratio and the increasing ratio of leaves with a lower C:N ratio than culms in the aboveground biomass. Grazing increased N mineralization and nitrification rates as well as annual N (ammonium-N and nitrate-N) and nitrate-N leaching. In contrast, deer grazing did not increase the total soil C and N content. The positive effect of grazing on the N mineralization rate may have resulted from a qualitative change in sasa litter due to grazing. The higher annual N leaching resulting from deer grazing may have been related to the facilitated N mineralization rate and decreased N uptake in plants, e.g., sasa with less aboveground biomass due to grazing.  相似文献   

17.
Exclosures are used to regenerate native vegetation as a way to reduce soil erosion, increase rain water infiltration and provide fodder and woody biomass in degraded grazing lands. Therefore, this study assessed the impact of grazing exclosure on carbon sequestration and soil nutrients under 5 and 10 years of grazing exclosures and freely grazed areas in Tigray, northern Ethiopia. Carbon stocks and soil nutrients increased with increasing grazing exclusion. However, open grazing lands and 5 years of grazing exclosure did not differ in above‐ and belowground carbon stocks. Moreover, 10 years of grazing exclosure had a higher (p < 0.01) grass, herb and litter carbon stocks compared to 5 years exclosure and open grazing lands. The total carbon stock was higher for 10 years exclosure (75.65 t C ha‐1) than the 5 years exclosure (55.06 t C ha‐1) and in open grazing areas (51.98 t C ha‐1). Grazing lands closed for 10 years had a higher SOC, organic matter, total N, available P, and exchangeable K + and Na + compared to 5 year's exclosure and open grazing lands. Therefore, establishment of grazing exclosures had a positive effect in restoring degraded grazing lands, thus improving carbon sequestration potentials and soil nutrients.  相似文献   

18.
Nitrogen dynamics in an Alaskan salt marsh following spring use by geese   总被引:1,自引:0,他引:1  
Lesser snow geese (Anser caerulescens caerulescens) and Canada geese (Branta canadensis) use several salt marshes in Cook Inlet, Alaska, as stopover areas for brief periods during spring migration. We investigated the effects of geese on nitrogen cycling processes in Susitna Flats, one of the marshes. We compared net nitrogen mineralization, organic nitrogen pools and production in buried bags, nitrogen fixation by cyanobacteria, and soil and litter characteristics on grazed plots versus paired plots that had been exclosed from grazing for 3 years. Grazed areas had higher rates of net nitrogen mineralization in the spring and there was no effect of grazing on organic nitrogen availability. The increased mineralization rates in grazed plots could not be accounted for by alteration of litter quality, litter quantity, microclimate, or root biomass, which were not different between grazed and exclosed plots. In addition, fecal input was very slight in the year that we studied nitrogen cycling. We propose that trampling had two effects that could account for greater nitrogen availability in grazed areas: litter incorporation into soil, resulting in increased rates of decomposition and mineralization of litter material, and greater rates of nitrogen fixation by cyanobacteria on bare, trampled soils. A path analysis indicated that litter incorporation by trampling played a primary role in the nitrogen dynamics of the system, with nitrogen fixation secondary, and that fecal input was of little importance.  相似文献   

19.
Abstract: Nitrogen mineralization rate was studied in grazing trials with three different stocking rates (0, 3, 10 sheep ha-1) in two man-made salt marshes, viz. a Puccinellia maritima -dominated low salt marsh and a high salt marsh dominated by Festuca rubra. Mineralization rates were derived from the amounts of mineral N which accumulated in situ during six-week incubation periods in tubes containing undisturbed soil cores from the upper 10 cm soil layer. The annual rates of net N mineralization were significantly higher in the better drained, high salt marsh (71 - 81 kg ha-1 yr-1) than in the low salt marsh (39 - 49 kg ha-1 yr-1). High amounts of belowground litter accumulated in the low salt marsh due to frequent water logging. Both N mineralization and nitrification rate were negatively correlated with soil water content. In the Puccinellia maritima salt marsh, grazing had neither an effect on N mineralization rates during any of the incubation periods nor on annual mineralization rates. In the Festuca rubra salt marsh, N mineralization rates increased earlier during spring at the intensively grazed site than at the moderately grazed and the ungrazed site. N mineralization and nitrification rates were significantly higher at the ungrazed site than at the intensively grazed site during the period of peak net N mineralization from the end of April until mid-June. Although sheep grazing affected the seasonal pattern of N mineralization in the high marsh, grazing did not affect the annual rate of net N mineralization.  相似文献   

20.
《新西兰生态学杂志》2011,27(2):179-189
Soil characteristics were examined within and adjacent to two vegetation exclosures near Porters Pass, Canterbury retired from grazing 45 years ago. Soils were analysed for a range of simple physical (topsoil depth, bulk density), chemical (pH, exchangeable cations, P, S, total C and N) and biochemical (microbial carbon) properties to determine whether the vegetation recovery inside the exclosures was reflected in soil differences. At both sites there were few significant differences between the exclosure and the surrounding grazed area, despite vegetation recovery since exclusion of grazing. At Starvation Gully topsoil depth and Na were higher, and bulk density, pH, K, total C, total N and microbial C mass, and the microbial C to total C ratio were lower in the exclosure. At Cloudy Knell Ca, Mg, total C and N were higher and Na was lower in the exclosure. There was a marked contrast in the trends at the two sites, with slightly lower nutrient status and organic matter in the exclosure at Starvation Gully, and the reverse at Cloudy Knell. The differences between the sites probably reflect differences in the partitioning of nutrients and organic matter between vegetation, litter and soil at the two sites. The results suggest a slow rate of change of soil properties following cessation of grazing and the need to sample soils, litter and vegetation when determining trends in organic matter and chemical fertility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号