首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell-free translation of total RNA from rabbit intestinal mucosa in a rabbit reticulocyte lysate, after immunoprecipitation with antibodies directed against sucrase-isomaltase, yielded a polypeptide of 200 kDa, which was identified as pro-sucrase-isomaltase. Addition of dog pancreatic microsomal vesicles to the translation system resulted in the appearance of an additional 220-kDa polypeptide. The 220-kDa polypeptide was associated with the membranes in a way that made it inaccessible to proteolysis; this protection was abolished by lytic detergent concentrations, indicating that the polypeptide was segregated into the microsomal vesicle. The 220-kDa polypeptide was glycosylated as evidenced by it being bound to concanavalin A-Sepharose and eluted with alpha-methyl-D-mannopyranoside. The increase in apparent molecular mass (approximately 20 kDa) of the primary translation product upon translocation was due to the addition of carbohydrate; treatment of the 220-kDa polypeptide with endo-beta-N-acetylglucosaminidase H increased its electrophoretic mobility to that of the 200-kDa polypeptide which was obtained in the absence of membranes. Partial N-terminal amino acid sequence of a translation product labeled with [3H]Leu in the absence of membranes revealed that Leu was incorporated into identical positions as in the final (pro)-sucrase-isomaltase, thus indicating the lack of a transient signal peptide.  相似文献   

2.
The human asialoglycoprotein receptor is a 46-kDa membrane glycoprotein. It is initially synthesized as a 40-kDa precursor species possessing two N-linked high-mannose oligosaccharides which is subsequently converted to the 46-kDa mature product upon modification of its oligosaccharides of the complex form [Schwartz, A. L. & Rup, D. (1983) J. Biol. Chem. 258, 11 249-11 255]. To investigate further the biosynthesis of the human asialoglycoprotein receptor, we have utilized a cell-free wheat germ translation system supplemented with dog pancreatic microsomal membranes and programmed with HepG2 and human liver RNA. The primary translation product of the human receptor is a single 34-kDa species and this species is expressed throughout human fetal and adult development. The primary translation product possesses no cleavable signal peptide and is cotranslationally glycosylated to form the 40-kDa precursor species. In addition, the human asialoglycoprotein receptor is co-translationally inserted into microsomal membranes such that a 4-kDa cytoplasmic tail is susceptible to trypsin digestion.  相似文献   

3.
Dopamine beta-hydroxylase (DBH, EC 1.14.17.1) is present in both membrane-bound and soluble forms in neurosecretory vesicles. This study was designed to investigate the differences between membrane-bound and soluble DBH and how they may arise from translation of a single mRNA. Antisera to a peptide corresponding to the carboxyl terminus of rat DBH was found to specifically immunoprecipitate the 77- and 73-kDa subunits of newly synthesized DBH in rat brain. Thus, both soluble and membrane-bound forms contain the same carboxyl terminus. To investigate differences at the amino terminus, full-length rat DBH mRNA, translated in a cell-free system, produced a 66-kDa peptide. An additional higher molecular mass product was synthesized upon co-translational addition of microsomal membranes. This product was glycosylated since it bound to concanavalin A-Sepharose and reverted to the 66-kDa polypeptide after treatment with endoglycosidase H. This glycosylated product was resistant to protease digestion and fractionated with microsomal membranes on sucrose gradients, indicating that it is incorporated into the microsomal membranes. Amino-terminal sequencing of the glycosylated translation product indicated that the amino-terminal "signal" sequence was not cleaved. The results indicate that in the cell-free system newly synthesized DBH undergoes glycosylation and incorporation into microsomal membranes without cleavage of the NH2-terminal signal sequence.  相似文献   

4.
Structure of a precursor to human pancreatic polypeptide   总被引:3,自引:0,他引:3  
We have isolated mRNA from a human pancreatic islet cell tumor and have identified among the cell-free translation products a precursor of pancreatic polypeptide with an approximate Mr = 11,000. Recombinant DNA molecules encoding this precursor were selected from a cDNA library prepared from the islet tumor mRNA. From the nucleotide sequences of cDNAs encoding the precursor, we have deduced the complete amino acid sequence of pre-propancreatic polypeptide. These sequences encode a protein consisting of 95 amino acid residues with a Mr = 10,432. The sequence of human pancreatic polypeptide occurs in the middle of the precursor and is flanked at its carboxyl terminus by a 27-amino acid sequence which is similar to a peptide previously isolated from canine pancreatic islets. At the amino terminus of the precursor is a probable leader sequence which is rich in hydrophobic residues. A smaller pancreatic polypeptide-related protein was generated in cell-free translations of mRNA supplemented with microsomal membranes. Sequential Edman degradations of this smaller peptide indicate that the sequence of pancreatic polypeptide is located at the amino terminus of the prohormone.  相似文献   

5.
The primary translation product of mRNA encoding atrial natriuretic peptide (ANP) receptor has been shown to have an Mr of 58,000. Poly(A)+ RNA was isolated from the bovine kidney and lung and translated in a rabbit reticulocyte lysate system containing [35S]methionine. Immunoprecipitation of the labeled translation products, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography, identified a 58-kDa protein as the primary translation product which is the unglycosylated precursor to be processed to the glycosylated mature 70-kDa form found in the plasma membranes. The result lends strong support to our previous proposal that mature ANP receptor is composed of two disulfide-linked 70-kDa subunits, eliminating the possibility that the two 70-kDa subunits arise from a larger 140-kDa precursor by proteolytic cleavage.  相似文献   

6.
Poly(A)+ RNA was purified from cystozoites of Sarcocystis gigantea and Sarcocystis tenella and used to in vitro translate polypeptides in a wheat germ and a rabbit reticulocyte translation system. The in vitro translated polypeptides were compared by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The S. tenella mRNA translated at least two polypeptides (mol. wt about 80,000 and 21,500) in both translation systems that were not translated by the S. gigantea mRNA. To study co-translational and initial post-translational processing in Sarcocystis, the poly(A)+ RNA preparations were in vitro translated in the rabbit reticulocyte translation system in the presence or absence of canine microsomal membranes. Based on electrophoresis, there appeared to be modification of at least some Sarcocystis polypeptides in the mol. wt range 17,000-30,000. In addition, the translation products were immunoprecipitated with a homologous and a heterologous antiserum. The immunoprecipitated polypeptides were compared by electrophoresis and the S. tenella translation products contained at least one unique antigenic polypeptide with a mol. wt of about 34,700 that was not processed by the microsomal membranes. These results suggest that there is at least one polypeptide that is a candidate for use as an antigen for the differentiation of S. gigantea and S. tenella infections in sheep.  相似文献   

7.
Zhao J  Weaver LM  Herrmann KM 《Planta》2002,216(1):180-186
A cDNA encoding 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase (EC 4.1.2.15) from potato (Solanum tuberosum L.) presumably specifies a chloroplast transit sequence near its 5'-end. In order to show the function of this transit sequence, we constructed a plasmid that contains the entire coding region of the cDNA downstream from a T7 promoter. Using this plasmid as template, DAHP synthase mRNA was synthesized in vitro with T7 RNA polymerase. The resulting mRNA served as template for the in vitro synthesis of a 59-kDa polypeptide. This translation product was identified as the DAHP synthase precursor by immunoprecipitation with a monospecific polyclonal antibody raised against pure tuber DAHP synthase and by radiosequencing of the [(3)H]leucine-labeled translation product. Incubation of the 59-kDa polypeptide with isolated spinach (Spinacia oleracea L.) chloroplasts resulted in a 53-kDa polypeptide that was resistant to protease treatment. Fractionation of chloroplasts, reisolated after import, showed the mature DAHP synthase in the stroma fraction. Incubation of the 59-kDa polypeptide with a chloroplast precursor-processing enzyme cleaved the precursor between Ser49 and Ala50, generating a mature DAHP synthase of 489 residues. The uptake of the DAHP synthase precursor into isolated chloroplasts was inhibited by anti-DAHP synthase, and the precursor was not processed cotranslationally by canine microsomal membranes. We conclude that the transit sequence is able to direct DAHP synthase into chloroplasts.  相似文献   

8.
Yokota E  Ohmori T  Muto S  Shimmen T 《Planta》2004,218(6):1008-1018
Calcium ions play a key role in the elongation and orientation of pollen tubes. We found that significant amounts of 21-kDa polypeptide were specifically released into the extracellular medium when pollen grains of lily, Lilium longiflorum Thunb., were incubated in the presence of EGTA or at low concentrations of Ca2+. This phenomenon was also dependent on pH and on the concentrations of MgCl2 in the medium; the release of 21-kDa polypeptide from pollen was suppressed by increasing the MgCl2 concentration and by lowering pH. Germination of pollen grains was inhibited in the medium into which the 21-kDa polypeptide had been released. This inhibition was irreversible; germination did not occur on transfer of the pollen grains into basal culture medium. Immuno-electron microscopy using an antibody against 21-kDa polypeptide showed that this polypeptide was present in the cytoplasm, vegetative nucleus and generative cell. When the pollen was treated with a medium containing EGTA, the density of 21-kDa polypeptide in the cytoplasm significantly decreased, but its density in vegetative nuclei and the generative cell did not, suggesting that only cytoplasmic 21-kDa polypeptide was released into the extracellular medium. The 21-kDa polypeptide was also present in the pollen of other higher-plant species, such as Tradescantia virginiana L., Nicotiana tabacum L. (angiosperms), and Cryptomeria japonica D. Don. (gymnosperm), and was also released into the medium in the presence of EGTA. In the case of C. japonica, however, it was released from pollen at alkaline pH above 8.5. The expression of 21-kDa polypeptide was not pollen-specific, because 21-kDa components immunoreactive with the anti-21-kDa polypeptide serum also existed in vegetative organs and cells of lily or tobacco. However, the 21-kDa polypeptide was not released into the extracellular medium from cultured tobacco BY-2 cells, even in the presence of EGTA. Amino acid sequences of two peptide fragments derived from 21-kDa polypeptide matched well those of low-molecular-weight cyclophilin (CyP). The antiserum against 21-kDa polypeptide recognized the CyP A from calf thymus and that in A431 carcinoma cells. The 21-kDa polypeptide fraction purified from lily pollen possessed peptidyl-prolyl cis-trans isomerase activity, which was suppressed by cyclosporin A (CsA), an inhibitor of enzyme activities of CyPs. From these results, we concluded that the 21-kDa polypeptide is a low-molecular-weight CyP. The present study showed that CyP in the pollen of higher plants is released into the extracellular matrix under unfavorable conditions.Abbreviations CaM Calmodulin - CBB Coomassie-brilliant-blue - CsA Cyclosporin A - CyP Cyclophilin  相似文献   

9.
10.
The major human pulmonary surfactant-associated protein of 35,000 daltons (Da) (SAP-35), consists of a group of related proteins of 27,000-36,000 Da, with isoelectric points ranging from pH 4.6 to 5.2. SAP-35 precursors were identified by immunoprecipitation of protein products of in vitro translation of normal adult human poly(A)+ mRNA with human SAP-35 antiserum. The translation products nearly comigrated with the most basic components of alveolar SAP-35 (mol mass = 24,500-27,000 Da). Processing of the primary translation products by canine pancreatic microsomal membranes increased their apparent molecular weight to 29,000-30,000-Da forms, which were sensitive to endoglycosidase F, suggesting the addition of asparagine-linked oligosaccharides to the molecules. A smaller protein of 24,500 Da was generated during treatment with canine microsomal membranes likely representing cleavage of a signal peptide. SAP-35 was not detected in explants of [35S]methionine-labeled fetal lung (20-24 wk gestation) after 1 day of culture or immunoprecipitates of in vitro translated poly(A)+ mRNA isolated from fetal human lung. However, after 3-5 days of organ culture, synthesis of SAP-35 was readily detected by immunoprecipitation of [35S] methionine-labeled tissue. Fully sialylated (neuraminidase-sensitive forms) comigrated with fully glycosylated SAP-35 isolated from human surfactant. High mannose (endoglycosidase H-sensitive precursors) were also synthesized by the organ cultures and were distinct from the secreted form in surfactant. Synthesis of surfactant-associated SAP-35 and its precursors was induced in association with morphological maturation of the type II epithelial cell during organ culture of human fetal lung.  相似文献   

11.
《Gene》1996,168(2):189-193
In the bovine herpesvirus-1 (BHV-1) genome, a gene equivalent to the glycoprotein K (gK)-encoding gene of other herpesviruses was identified and sequenced. The primary translation product is predicted to comprise 338 amino acids (aa) and to exhibit a molecular mass of 37.5 kDa. It possesses characteristics typical for membrane glycoproteins including a potential cleavable signal sequence, three transmembrane domains and two potential N-linked glycosylation sites. Comparison to the gK proteins of other herpesviruses revealed aa sequence homologies of 46, 44, 53, 43 and 46% with the gK counterparts of herpes simplex viruses-1 and 2 (HSV-1 and 2), equine herpesvirus-1 (EHV-1), Marek's disease virus (MDV) and varicella zoster virus (VZV), respectively. A 30-kDa primary translation product was identified following in vitro translation of in vitro transcribed mRNA. When canine microsomal membranes were added to the translation reaction, a 38-kDa glycosylated protein was detected. Treatment with endoglycosidase For H (endo For H) removed the glycosyl groups and reduced the apparent molecular mass of the 38-kDa glycoprotein.  相似文献   

12.
Carbonic anhydrase (CA) of Chlamydomonas reinhardtii is a glycoprotein of 35 kDa which is localized outside the plasma membrane. The activity of CA was increased when the CO2 concentration during photoautotrophic growth was decreased to air level. After decreasing the CO2 concentration from 4% to 0.04%, several polypeptides including CA were induced continuously or transiently. To investigate the biosynthesis and intracellular processing of CA, the cells of wall-less mutant CW-15, which secretes CA into the culture medium, were pulse-labeled with radioactive arginine, chased, and radioactive proteins were immunoprecipitated with anti-CA serum. A 42-kDa polypeptide with isoelectric point (pI) of 7.1-7.3 was first synthesized. Within 5 min the molecular mass of this polypeptide was decreased to 35 kDa and it was then secreted into the culture medium within 30 min. This indicates that the former is the precursor form and the latter the mature form of CA. The primary translation product from poly(A)-rich RNA in a cell-free reticulocyte lysate system from a rabbit was a 38-kDa polypeptide. This was cotranslationally converted into the 42-kDa precursor in vitro in the presence of dog pancreatic microsomal membranes. As the 42-kDa precursor had a high affinity to concanavalin A, it was assumed to have a high-mannose-type oligosaccharide. The mature enzyme had a pI of 6.1-6.2 and was composed of more than two isoforms, which had a complex-type oligosaccharide with low affinity to concanavalin A. Chemical deglycosylation of the mature enzyme by trifluoromethanesulfonic acid indicated that the molecular mass of the polypeptide moiety was 32 kDa and the difference between this and the primary translation product suggests that cleavage of the polypeptide occurs during its biosynthesis.  相似文献   

13.
Surfactant-associated glycoproteins A were identified by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of crude surfactant from canine alveolar lavage: an unglycosylated form (protein A1), 27,000-28,000 daltons; glycoprotein A2, 32,000-34,000 daltons; and glycoprotein A3, 37,000-38,000 daltons; pH at isoelectric point (pI) 4.5-5.0. Glycoproteins A2 and A3 were electroeluted and used to prepare a monospecific antiserum that identified proteins A1, A2, and A3 in immunoblots of crude surfactant obtained from dog lung lavage. This antiserum precipitated several proteins from in vitro translated canine lung poly(A)+ mRNA; proteins of 27,000 daltons, pI 5.0, and 28,000 daltons, pI 4.8-5.0, which precisely comigrated with proteins A1 from canine surfactant. Cotranslational processing of the primary translation products by canine pancreatic microsomal membranes resulted in larger proteins of 31,000-34,000 daltons, pI 4.8-5.0. Treatment of these processed forms of glycoprotein A with endoglycosidase F, to remove N-linked carbohydrate, resulted in proteins of 27,000-28,000 daltons which precisely comigrated with surfactant protein A1. These observations demonstrate that the polypeptide precursors to the glycoproteins A complex are extensively modified by addition of asparagine N-linked complex carbohydrate and are subsequently secreted as glycoproteins A2 and A3.  相似文献   

14.
J E Rothman  F N Katz  H F Lodish 《Cell》1978,15(4):1447-1454
The membrane glycoprotein of vesicular stomatitis virus (VSV), synthesized in vitro in the presence of pancreatic microsomes, is glycosylated in two distinct steps while its polypeptide chain is nascent (Rothman and Lodish, 1977). We show here that unglycosylated glycoprotein, which accumulates in vivo following treatment of cells with tunicamycin and in vitro as a result of translation in the presence of detergent-treated microsomal membranes, is inserted normally as a transmembrane protein. This means that glycosylation, while normally occurring concurrently with insertion, is not required for insertion. Our experiments also show that the two steps in glycosylation correspond to the sequential transfer of preformed “core” oligosaccharides of typical structure to two Asn residues in the growing chain. The accumulation of unglycosylated glycoprotein in vitro is due to the fact that the completed transmembrane polypeptide cannot be glycosylated. The detergent treatment of microsomes impairs their rate of glycosylation so that chains are frequently completed before they can be glycosylated. This provides a simple explanation for certain types of heterogeneity often found in glycoproteins. We believe that the detergent treatment procedure results in the solubilization of the microsomal membrane followed by reconstitution. This is a prerequisite for the eventual purification of the membrane proteins and lipids involved in insertion and glycosylation of this model membrane protein.  相似文献   

15.
A particulate translation system isolated from the yeast Saccharomyces cerevisiae was shown to translate faithfully in-vitro-transcribed mRNA coding for a mating hormone precursor (prepro-alpha-factor mRNA) and to N-glycosylate the primary translation product after its translocation into the lumen of the microsomal vesicles. Glycosylation of its three potential sugar attachment sites was found to be competitively inhibited by acceptor peptides containing the consensus sequence Asn-Xaa-Thr, supporting the view that the glycan chains are N-glycosidically attached to the prepro-alpha-factor polypeptide. The accumulation in the presence of acceptor peptides of a membrane-specific, unglycosylated translation product (pp-alpha-F0) differing in molecular mass from a cytosolically located, protease-K-sensitive alpha-factor polypeptide (pp-alpha-Fcyt) by about 1.3 kDa, suggests that, in contrast to previous reports, a signal sequence is cleaved from the mating hormone precursor on/after translocation. This conclusion is supported by the observation that the multiply glycosylated alpha-factor precursor is cleaved by endoglucosaminidase H to a product with a molecular mass smaller than the primary translation product pp-alpha-Fcyt but larger than the membrane-specific pp-alpha-F0. Translation and glycosylation experiments carried out in the presence of various glycosidase inhibitors (e.g. 1-deoxynojirimycin, N-methyl-1-deoxynojirimyin and 1-deoxymannojirimycin) indicate that the N-linked oligosaccharide chains of the glycosylated prepro-alpha-factor species are extensively processed under the in vitro conditions of translation. From the specificity of the glycosidase inhibitors applied and the differences in the molecular mass of the glycosylated translation products generated in their presence, we conclude that the glycosylation-competent microsomes contain trimming enzymes, most likely glucosidase I, glucosidase II and a trimming mannosidase, which process the prepro-alpha-factor glycans down to the (Man)8(GlcNAc)2 stage. Furthermore, several arguments strongly suggest that these three enzymes, which apparently represent the full array of trimming activities in yeast, are exclusively located in the lumen of microsomal vesicles derived from endoplasmic reticulum membranes.  相似文献   

16.
Early events in the biosynthesis of alpha-glucosidase (EC 3.2.1.20) were studied in a wheat-germ cell-free translation system, using control and mutant RNA. In vitro, the primary translation product of the alpha-glucosidase mRNA is a 100 kDa protein. When canine microsomal membranes are added to the translation system, the nascent alpha-glucosidase precursor is cotranslationally transported across the microsomal membranes, yielding a 110 kDa glycosylated form. This protein has the same electrophoretic characteristics as the alpha-glucosidase precursor observed after in vivo labeling of control fibroblasts. Inhibition of glycosylation in vivo by tunicamycin or deglycosylation of the in vivo synthesized alpha-glucosidase precursor by glycopeptidase F reveals a core protein similar in molecular mass to the primary translation product. Total RNA from a patient with the adult form of glycogenosis type II is not able to direct the synthesis of normal amounts of alpha-glucosidase in vitro. Northern blot analysis of the RNA, using cloned alpha-glucosidase cDNA sequences as a probe, demonstrates that in this patient the amount of the 3.4 kb alpha-glucosidase mRNA is highly reduced. The results indicate that the synthesis or stability of the mRNA is affected.  相似文献   

17.
Pistils ofNicotiana alata (Link et Otto) contain an abundant, style-specific glycoprotein (120 kDa) that is rich in hydroxyproline and has both extensin-like and arabinogalactan-protein-like carbohydrate substituents. An antibody specific for the protein backbone of the glycoprotein was used to localise the glycoprotein in both unpollinated and pollinated pistils. The glycoprotein is evenly distributed in the extracellular matrix of the style transmitting tract of unpollinated pistils and, despite the presence of extensin-like carbohydrate substituents, is not associated with the walls of the transmitting tract cells. In pollinated pistils the 120-kDa glycoprotein is concentrated in the extracellular matrix adjacent to pollen tubes, and is also present in the cytoplasm and the cell walls of pollen tubes. Pollen tubes grown in vitro do not contain the 120-kDa glycoprotein unless it is added to the growth medium, suggesting that the 120kDa glycoprotein located in pistil-grown pollen tubes is derived from the extracellular matrix of the transmitting tract.  相似文献   

18.
Mosquito vitellogenin subunits originate from a common precursor   总被引:1,自引:0,他引:1  
Using a cell-free translation system, we demonstrated that the two subunits of mosquito vitellogenin (VG), 200 kDa and 65 kDa, originate from a common precursor. The precursor polypeptide of 220 kDa is a translation product specific to mRNA from vitellogenic mosquitoes. In immunoprecipitation analysis, the 220-kDa polypeptide was recognized by monoclonal antibodies directed either to the large or the small VG subunit. Peptide mapping showed homology between the 220-kDa polypeptide and both subunits, thus providing further proof that the 220-kDa product of translation is the precursor for both VG subunits. In the presence of microsomal membranes, the molecular size of the VG precursor increased to 235 kDa suggesting this as a first step in co-translational modifications of VG.  相似文献   

19.
In vitro synthesis and processing of tomato fruit polygalacturonase   总被引:10,自引:5,他引:5       下载免费PDF全文
The in vitro processing of tomato fruit polygalacturonase (PG) (poly[1,4-α-d-galacturonide]glucanohydrolase, EC 3.2.1.15) was studied. Complete chemical deglycosylation of a mixture of mature, purified PG 2A and PG 2B isozymes (45 and 46 kilodaltons; respectively) with trifluoromethane sulfonic acid yielded a single polypeptide of 42 kilodaltons. Similarly, N-terminal amino acid sequencing of the PG 2A/2B isozyme mixture yielded a single 21 amino acid N-terminal sequence, suggesting that the two isozymes result from differential post-translational processing of a single polypeptide. Translation of PG mRNA in vitro results in the synthesis of a single polypeptide with an apparent molecular weight of 54 kilodaltons. Nucleotide sequence analysis of a full-length PG cDNA clone indicates that the large size difference between the PG in vitro translation product and the mature isozymes is due to the presence of a 71 amino acid (8.2 kilodaltons) domain at the N-terminus of in vitro translated PG, consisting of a hydrophobic signal sequence followed by a highly charged prosequence. To determine the precise cleavage site of the signal sequence, PG mRNA was translated in vitro in the presence of canine pancreas microsomal membranes. This resulted in the production of two glycosylated PG processing intermediates with apparent molecular weights of 58 and 61 kilodaltons. The PG processing intermediates were shown to be sequestered within the lumen of the microsomal membranes by protease protection and centrifugational analysis. Deglycosylation of the PG processing intermediates with endoglycosidase H yielded a single polypeptide with an apparent molecular weight of 54 kilodaltons. The production of two distinct, glycosylated processing intermediates from the single in vitro translated PG polypeptide suggests a mechanism by which the differential glycosylation observed for the mature PG 2A and PG 2B isozymes may occur. Edman degradation of 3H-labeled 58 and 61 kilodalton PG processing intermediates indicates that the site of signal sequence cleavage is after amino acid 24 (serine). These results suggest that the proteolytic processing of PG occurs in at least two steps, the first being the co-translational removal of the 24 amino acid signal sequence and the second being the presumed post-translational removal of the remaining highly charged 47 amino acid prosequence.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号