首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Root-colonization ability of Streptomyces griseoviridis was tested on turnip rape (Brassica rapa subsp. oleifera) and carrot (Daucus carota) by the plate test and the sand-tube method. In the plate test, colonized root length of total root length was highly significantly greater for turnip rape roots (72%) from those for carrot roots (1%). In the sand-tube method, root-colonization ability was examined in nonsterile soil, and no water was added after sowing. Seeds were treated with spores of S. griseoviridis or the biofungicide Mycostop. Roots were cut into 2-cm segments, and the root segments and the rhizosphere soil were studied separately. Root-colonization frequencies and population densities of the microbe in the rhizosphere soil indicated that S. griseoviridis successfully colonized turnip rape but weakly colonized carrot. Root-colonization of turnip rape is accounted for as proliferation of S. griseoviridis in the rhizosphere of turnip rape seedlings and is not due to the movement of microbe through the rhizosphere by water infiltration.  相似文献   

2.
White lupin (Lupinus albus L. cv. Amiga) reacts to phosphate deficiency by producing cluster roots which exude large amounts of organic acids. The detailed knowledge of the excretion physiology of the different root parts makes it a good model plant to study plant-bacteria interaction. Since the effect of the organic acid exudation by cluster roots on the rhizosphere microflora is still poorly understood, we investigated the abundance, diversity and functions of bacteria associated with the cluster roots of white lupin, with special emphasis on the influence of root proximity (comparing root, rhizosphere soil and bulk soil fractions) and cluster root growth stages, which are characterized by different excretion activities. Plants were grown for five weeks in microcosms, in the presence of low phosphate concentrations, on acidic sand inoculated with a soil suspension from a lupin field. Plate counts showed that bacterial abundance decreased at the stage where the cluster root excretes high amounts of citrate and protons. In vitro tests on isolates showed that the frequencies of auxin producers were highest in juvenile and mature cluster roots and significantly decreased in senescent cluster roots. However, no significant difference in the frequency of auxin producers was found between cluster and non cluster roots. The diversity and structure of bacterial communities were investigated by DGGE of 16S rDNA and 16S rRNA. The diversity and community structure were mostly influenced by root proximity and, to a lesser extent, by cluster root stage. The richness of bacterial communities decreased with root proximity, whereas the proportion of active populations increased. The high citrate and proton excretion occurring at the mature stage of cluster roots had a strong impact on the structure and richness of the bacterial communities, both in the root and in the rhizosphere soil.  相似文献   

3.
SeveralStreptomycesstrains are capable of suppressing potato scab caused byStreptomyces scabies.Although these strains have been successful in the biocontrol of potato scab in the field, little is known about how populations of pathogenicStreptomycesin the potato rhizosphere are influenced by inoculation of the suppressive strains. The effects of inoculum densities of pathogenic and suppressiveStreptomycesstrains on their respective populations on roots and in rhizosphere soil were examined during the growing season. The relationships between inoculum density or rhizosphere population densities and disease severity were also investigated. Populations of suppressiveStreptomycesstrain 93 increased significantly on roots with increasing inoculum dose. At its highest inoculum dose, the suppressive strain reached a population density greater than 106CFU/g root 14 weeks after planting. The ability of the suppressive strain to increase its populations with increasing inoculum density was hindered at high inoculum doses of the pathogen, suggesting that density-dependent competitive interactions may be occurring between the two antagonists. Strain 93 was most effective at preventing scab early in the growing season (8 weeks after planting), when tubers were most susceptible to the scab disease. Population densities of the suppressive strain in soil were more highly negatively correlated with scab severity than were populations on roots, suggesting that rhizosphere soil rather than potato roots may be the primary source of inoculum of the suppressive strain for tubers.  相似文献   

4.
The effects of liming and inoculation with the arbuscular mycorrhizal fungus, Glomus intraradices Schenck and Smith on the uptake of phosphate (P) by maize (Zea mays L.) and soybean (Glycine max [L.] Merr.) and on depletion of inorganic phosphate fractions in rhizosphere soil (Al-P, Fe-P, and Ca-P) were studied in flat plastic containers using two acid soils, an Oxisol and an Ultisol, from Indonesia. The bulk soil pH was adjusted in both soils to 4.7, 5.6, and 6.4 by liming with different amounts of CaCO3.In both soils, liming increased shoot dry weight, total root length, and mycorrhizal colonization of roots in the two plant species. Mycorrhizal inoculation significantly increased root dry weight in some cases, but much more markedly increased shoot dry weight and P concentration in shoot and roots, and also the calculated P uptake per unit root length. In the rhizosphere soil of mycorrhizal and non-mycorrhizal plants, the depletion of Al-P, Fe-P, and Ca-P depended in some cases on the soil pH. At all pH levels, the extent of P depletion in the rhizosphere soil was greater in mycorrhizal than in non-mycorrhizal plants. Despite these quantitative differences in exploitation of soil P, mycorrhizal roots used the same inorganic P sources as non-mycorrhizal roots. These results do not suggest that mycorrhizal roots have specific properties for P solubilization. Rather, the efficient P uptake from soil solution by the roots determines the effectiveness of the use of the different soil P sources. The results indicate also that both liming and mycorrhizal colonization are important for enhancing P uptake and plant growth in tropical acid soils.  相似文献   

5.
A method is described for sampling rhizosphere soil under newly establishedPicea sitchensis andAcer pseudoplatanus. The technique involves taking soil samples to a depth of 150 mm at 100 mm intervals along transects, each 45° from its neighbour, radiating from the base of the stem. Invertase activities were measured in the soil samples and compared to their activities in fallow and rhizosphere soils. When the field soil was dry, the tree root systems were carefully excavated to retain as many fine roots as possible. The distribution of the soil invertase was matched to the spatial distribution of the roots showing the precise position of the rhizosphere relative to the initial blind soil sampling. Statistics were applied to derive equations for calculating the percentage enzyme activity relative to that found in rhizosphere soil at various locations radiating from the base of the stem. This information was subsequently applied to soil sampled under trees of the same age as those excavated to give a non-destructive method for sampling rhizosphere soil routinely from under a large number of trees.  相似文献   

6.
弋良朋  王祖伟 《生态学报》2017,37(20):6855-6862
根际是控制植物养分动态的重要因素,养分动态也影响着根际土壤环境。当土壤被污水污泥改良后,根际土壤中的养分和重金属性质也会发生变化。目前很少有人研究施用污泥的土壤中植物根系对根际重金属有效性和分布的影响。采用根垫—冰冻薄层切片法对施用污泥后土壤中油菜根际的养分和重金属分布情况进行研究,以期探明污泥改良土壤中根际重金属的活化特征。当土壤施用污泥后,根际土壤中DTPA提取态Zn,Cd,Ni,Mn,有效磷,有效钾和铵态氮被显著消耗,而根际土壤中DTPA提取态Cu没有明显的消耗或积累。当土壤中施用大量污泥时,根际土壤的pH值随着离根表面距离的增加而增加。无论土壤是否用污泥处理,油菜根际土壤中可交换态Cu都显著减少。当土壤被50%污泥改良时,在距离根表面0—2 mm处的油菜根际土壤中碳酸盐结合态,铁锰氧化物结合态,有机物结合态,残渣态的Cu和Zn都被消耗较多。污泥的施用对油菜的生长有促进作用。随着污泥施用量的增加,油菜地上部分Cu和Zn的含量没有显著变化。施用污泥量小于25%的土壤中,污泥没有增加重金属的可利用性和移动性。除了Cu,油菜根际土壤中DTPA提取态Zn,Cd,Ni的减少表明施用污泥的土壤中重金属的活化是非常有限的。  相似文献   

7.
The influence of rhizosphere microorganisms and vesicular-arbuscular (VA) mycorrhiza on manganese (Mn) uptake in maize (Zea mays L. cv. Tau) plants was studied in pot experiments under controlled environmental conditions. The plants were grown for 7 weeks in sterilized calcareous soil in pots having separate compartments for growth of roots and of VA mycorrhizal fungal hyphae. The soil was left either uninoculated (control) or prior to planting was inoculated with rhizosphere microorganisms only (MO-VA) or with rhizosphere microorganisms together with a VA mycorrhizal fungus [Glomus mosseae (Nicol and Gerd.) Gerdemann and Trappe] (MO+VA). Mycorrhiza treatment did not affect shoot dry weight, but root dry weight was slightly inhibited in the MO+VA and MO-VA treatments compared with the uninoculated control. Concentrations of Mn in shoots decreased in the order MO-VA > MO+VA > control. In the rhizosphere soil, the total microbial population was higher in mycorrhizal (MO+VA) than nonmycorrhizal (MO-VA) treatments, but the proportion of Mn-reducing microbial populations was fivefold higher in the nonmycorrhizal treatment, suggesting substantial qualitative changes in rhizosphere microbial populations upon root infection with the mycorrhizal fungi. The most important microbial group taking part in the reduction of Mn was fluorescent Pseudomonas. Mycorrhizal treatment decreased not only the number of Mn reducers but also the release of Mn-solubilizing root exudates, which were collected by percolation from maize plants cultivated in plastic tubes filled with gravel quartz sand. Compared with mycorrhizal plants, the root exudates of nonmycorrhizal plants had two fold higher capacity for reduction of Mn. Therefore, changes in both rhizosphere microbial population and root exudation are probably responsible for the lower acquisition of Mn in mycorrhizal plants.  相似文献   

8.
Bacterial isolates were collected from the geocarposphere, rhizosphere, and root-free soil of field grown peanut (Arachis hypogaea L.) at three sample dates, and the isolates were identified by analysis of fatty acid methyl-esters to determine if qualitative differences exist among the bacterial microflora of these zones. Five bacterial genera were associated with isolates from soil, while pod and root isolates constituted 16 and 13 genera, respectively, indicating that bacterial diversity was higher in the rhizosphere and geocarposphere than in soil. The dominant (most frequently identified) genus across all three samples dates was Flavobacterium, for pods, Pseudomonas for roots, and Bacillus, for root-free soil. Sixteen bacterial taxa were only isolated from the geocarposphere, 7 only from the rhizosphere, and 5 only from soil. These results show that specific bacterial taxa are preferentially adapted to colonization of the geocarposphere and suggest that the soil, rhizosphere, and geocarposphere constitute three distinct ecological niches. Bacteria which colonize the geocarposphere should be examined as potential biological control agents for pod-invading fungi such as the toxigenic strains of Aspergillus flavus and A. parasiticus.  相似文献   

9.
Effects of soil management on soil characteristics were investigated on the rhizosphere (RPP) and the nonrhizosphere (NRPP) soil of a re-grass vertisol underDigitaria decumbens and in the soil under continuous cultivation (CC). A low energy technique allowed to separate eight size and density fractions, including macro- and micro-aggregates while preserving soil bacteria. Organic C and N, microbial biomass C and the number of total bacteria (AODC) and ofAzospirillum brasilense and their distribution were determined in soil fractions isolated from the CC, NRPP and RPP soils. Soil macroaggregates (>2000 m) were similarly predominant in the NRPP and RPP soils when the dispersible clay size fraction (<2 m) respresented more than 25% of the CC soil mass. The main increase of C content in RPP originated from the macroaggregates (> 2000 m) and from the root fraction, not from the finer separates. The proportion of organic C as microbial biomass C revealed the low turnover of microbial C in the PP situations, especially in the clay size fraction of the NRPP soil. A common shift of AODC toward the finer separates from planted soils (CC and RPP) revealed the influence of living plants on the distribution of soil bacteria. The relative abundance ofA. brasilense showed the presence of the active roots ofDigitaria in the macroaggregates and their contact with the dispersible clay size fraction of the rhizosphere soil.  相似文献   

10.
We investigated in situ the temporal patterns and spatial extent of organic acid anion exudation into the rhizosphere solution of Lupinus albus, and its relation with the nutrient anions phosphate, nitrate and sulfate by means of a rhizobox micro suction cup method under P sufficient conditions. We compared the soil solution in the rhizosphere of cluster roots with that in the vicinity of normal roots, nodules and bulk soil. Compared to the other rhizosphere and soil compartments, concentrations of organic acid anions were higher in the vicinity of cluster roots during the exudative burst (citrate, oxalate) and nodules (acetate, malate), while concentrations of inorganic nutrient anions were highest in the bulk soil. Both active cluster roots and nodules were most efficient in taking up nitrate and phosphate. The intensity of citrate exudation by cluster roots was highly variable. The overall temporal patterns during the lifetime of cluster roots were overlaid by a diurnal pattern, i.e. in most cases, the exudation burst consisted of one or more peaks occurring in the afternoon. Multiple exudation peaks occurred daily or were separated by 1 or 2 days. Although citrate concentrations decreased with distance from the cluster root apex, they were still significantly higher at a distance of 6 to 10 mm than in the bulk soil. Phosphate concentrations were extremely variable in the proximity of cluster roots. While our results indicate that under P sufficient conditions cluster roots take up phosphate during their entire life time, the influence of citrate exudation on phosphate mobilization from soil could not be assessed conclusively because of the complex interactions between P uptake, organic acid anion exudation and P mobilization. However, we observed indications of P mobilization concurrent with the highest measured citrate concentrations. In conclusion, this study provides semiquantitative in situ data on the reactivity of different root segments of L. albus L. in terms of root exudation and nutrient uptake under nutrient sufficient conditions, in particular on the temporal variability during the lifetime of cluster roots.  相似文献   

11.
Seedlings of two cultivars of wheat (Triticum aestivum L.) differing in tolerance to aluminium (Al) were grown using a split-root sand/soil culture technique. Each culture tube was divided horizontally into a surface (0–150 mm) compartment and a subsurface (150–250 mm) compartment separated by a root-permeable paraffin wax barrier. Thus phosphorus (P) supplied to surface roots could not percolate or diffuse into the soil in the subsurface compartment. The soil in the subsurface compartment was divided into ‘rhizosphere’ and ‘non-rhizosphere’ zones using a porous (5 μm) membrane. Root growth of both cultivars into the subsurface zone was enhanced by increased P supply to surface roots, but did not conform to known relationships between root growth and soil pH, extractable-Al, or pH, Al or P concentrations in soil solution. Concentrations of Al in soil solution in the rhizosphere were greater than those in solution in the bulk soil. Concentrations of Al reactive with pyrocatechol violet (30s-RRAI) in the rhizosphere soil solution were generally greater than those in non-rhizosphere soil. With the Al-sensitive cultivar, root dry weight and length increased as concentrations of RRAl in the rhizosphere soil solution increased. Increased concentrations of Al in rhizosphere soil solutions were not related to the presence of organic ligands in solution. The effect of P in promoting root penetration into the acidic subsurface stratum was not related to differential attainment of maturity by the plant shoots, but appeared to be related to the effect of P in enhancing the rate of root growth. Thus, suboptimal supply of P to the surface roots of a plant, even at levels sufficient to preclude development of nutritional (P) stress symptoms, may seriously reduce tolerance to Al, and hence diminish the ability of roots to penetrate into acidic subsoils.  相似文献   

12.
The antifungal-producing potential of actinomycete populations from the rhizosphere of low-altitude sagebrush, Artemisia tridentata, has been examined. In a continued investigation of new sources of antifungal-producing microorganisms, this study examined the antifungal-producing potential of actinomycetes from the rhizosphere of high-altitude A. tridentata. With high-altitude sagebrush, rhizosphere soil actinomycete numbers were one to four orders of magnitude higher than those found in nonrhizosphere bulk soils and different from those found with the low-altitude plants. A total of 122 actinomycete isolates was screened against nine fungal species and six bacterial species for the production of antimicrobial compounds. Four rhizosphere isolates, Streptomyces amakusaensis, S. coeruleorubidus, S. hawaiiensis and S. scabies, showed broad-spectrum antifungal activity against three or more fungal species in plate assays. In liquid antagonism assays, mycelium production by Aspergillus niger was reduced by up to 50% by two of the actinomycete isolates. These results demonstrate the potential of rhizosphere microbiology in the search for new antimicrobials.  相似文献   

13.
Bacterial growth in the rhizosphere and resulting changes in plant growth parameters were studied in small aseptic seedlings of birch (Betula pendula and B. pubescens) and grasses (Poa pratensis and Festuca rubra). The seedlings were inoculated with three Frankia strains (Ai1a and Ag5b isolated from native Alnus root nodules and Ai17 from a root nodule induced by soil originating from a Betula pendula stand), and three associative N2-fixing bacteria (Enterobacter agglomerans, Klebsiella pneumoniae and Pseudomonas sp., isolated from grass roots). Microscopic observations showed that all the Frankia strains were able to colonize and grow on the root surface of the plants tested without addition of an exogenous carbon source. No net growth of the associative N2-fixers was observed in the rhizosphere, although inoculum viable counts were maintained over the experimental period. Changes in both the biomass and morphology of plant seedlings in response to bacterial inoculation were recorded, which were more dependent on the plant species than on the bacterial strain.  相似文献   

14.
Root colonization studies, employing immunofluorescence and using locally isolated strains, showed thatEnterbacter sp. QH7 andEnterobacter agglomerans AX12 attached more readily to the roots of most plants compared withAzospirillum brasilense JM82. Heat treatment of either root or inoculum significantly decreased the adsorption of bacteria to the root surface. Kallar grass and rice root exudates sustained the growth ofA. brasilense JM82,Enterobacter sp. QH7 andE. agglomerans AX12 in Hoagland and Fahraeus medium. All the strains colonized kallar grass and rice roots in an axenic culture system. However, in studies involving mixed cultures,A. brasilense JM82 was inhibited byEnterobacter sp. QH7 in kallar grass rhizosphere and the simultaneous presence ofEnterobacter sp. QH7 andE. agglomerans AX12 suppressed the growth ofA. brasilense JM82 in rice rhizosphere. The bacterial colonization pattern changed from dispersed to aggregated within 3 days of inoculation. The colonization sites corresponded mainly to the areas where root mucigel was present. The area around the point of emergence of lateral roots usually showed maximum colonization.  相似文献   

15.
【目的】解析不同连作年限花魔芋软腐病株、健株根域的丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)群落多样性。【方法】使用AMF 18S SSU rRNA基因特异引物AMV4.5NF/AMDGR对正茬及连作2年和3年的软腐病株、健株魔芋根系和根际土壤DNA扩增建库,通过高通量测序和生物信息学分析探究魔芋软腐病与其根域AMF群落多样性的关系。【结果】魔芋根系具有明显的AMF菌丝、泡囊和丛枝等结构。在相同连作年限条件下,健株根系AMF总侵染率、侵染强度和孢子密度均显著高于病株(P<0.05);在不同连作年限条件下,病株根系AMF总侵染率和侵染强度随连作年限延长而降低。从所有样品中共鉴定到9属53种AMF,其中有49个已知种和4个新种。球囊霉属(Glomus)和类球囊霉属(Claroideoglomus)是AMF群落的优势属,其AMF种分别占总AMF种数的41.5%和26.4%;丰度最高的Paraglomus sp.VTX00308是所有样品的共有种。连作、软腐病及二者的交互作用显著影响根系AMF群落的Shannon指数和Simpson指数及根际土壤AMF的Chao1指数(P<0.05)。通过丰度差异分析发现6个在连作软腐病发生后丰度差异显著的AMF种(P<0.05);NMDS分析表明,不同连作年限的魔芋软腐病株与健株之间的根域AMF菌种组成、相对丰度和群落结构存在差异。相关性分析表明,软腐病发病率和病情指数与魔芋根系和根际土壤AMF的Shannon指数、根系AMF的Chao1和Simpson指数以及AMF总侵染率、侵染强度和孢子密度极显著负相关(P<0.01)。【结论】比对健株,连作魔芋软腐病株根际土壤AMF孢子密度以及根系AMF侵染率、种数和多样性均降低,其群落结构显著改变。  相似文献   

16.
Wang  Z. Y.  Kelly  J. M.  Kovar  J. L. 《Plant and Soil》2007,270(1-2):213-221
In situ sampling of rhizosphere solution chemistry is an important step in improving our understanding of soil solution nutrient dynamics. Improved understanding will enhance our ability to model nutrient dynamics and on a broader scale, to develop effective buffers to minimize nutrient movement to surface waters. However, only limited attention has been focused on the spatial heterogeneity and temporal dynamics of rhizosphere solution, and still less is known about how rhizosphere solution chemistry varies among plant species. Nutrients in rhizosphere soil solution and changes in root morphology of juvenile corn (Zea mays L. cv. Stine 2250), cottonwood (Populus deltoids L.), and switchgrass (Panicum virgatum L.) were monitored using mini-rhizotron technology. Plants were grown for 10 days in a fine-silty, mixed, superactive, mesic Cumulic Hapludoll (Kennebec series). Micro-samples (100–200 μL) of rhizosphere and bulk soil solution were collected at 24-h intervals at a tension of −100 kPa and analyzed for P, K, Ca, and Mg concentration using Capillary Electrophoresis techniques. Plants were harvested at the end of the 10-day period, and tissue digests analyzed for nutrient content by Inductively Coupled Plasma Spectroscopy. Corn plants produced roots that were 1.3 times longer than those of cottonwood, and 11.7 times longer than those of switchgrass. Similar trends were observed in number of root tips and root surface area. At the end of 10 days, rhizosphere solution P and K concentrations in the immediate vicinity of the roots (<1 mm) decreased by approximating 24 and 8% for corn, and 15 and 5% for cottonwood. A rhizosphere effect was not found for switchgrass. After correction for initial plant nutrient content, corn shoot P, K, and Mg were respectively 385, 132, and 163% higher than cottonwood and 66, 37, and 10% higher than switchgrass. Cottonwood shoot Ca concentration, however, was 68 to 133% higher than that of corn or switchgrass. There was no difference in root P concentration among the three species. Nutrient accumulation efficiency (μg nutrient mm−1 root length) of cottonwood was 26 to 242% higher for P, 25 to 325% higher for Ca, and 41 to 253% higher for Mg than those of corn and switchgrass. However, K accumulation efficiency of corn was four to five times higher than that of the cottonwood and switchgrass. Nutrient utilization efficiency (mg of dry weight produced per mg nutrient uptake) of P, K, and Mg was higher in cottonwood than in corn and switchgrass. These differences are element-specific and depend on root production and morphology as well as plant nutrient status. From a practical perspective, the results of this study indicate that potentially significant differences in rhizosphere solution chemistry can develop quickly. Results also indicate that cottonwood would be an effective species to slow the loss of nutrients in buffer settings. An erratum to this article can be found at  相似文献   

17.
【背景】三七根际微生物群落特征与其土传根腐病害密切相关,而针对自然林下根腐三七的相关研究鲜见报道。【目的】比较分析自然林下与田间根腐三七根际土壤微生物群落的组成特征,结合土壤理化性质与酶活性分析,为三七根腐病害防治与仿野生栽培提供科学依据。【方法】采集自然林下与田间根腐三七根际土壤,利用高通量测序技术,分析土壤细菌与真菌群落的物种组成与多样性,并测定土壤理化性质和酶活性。【结果】自然林下与田间根腐三七根际土壤中细菌和真菌群落组成具有明显差异,自然林下根腐三七根际土壤中担子菌门(Basidiomycota)、酸杆菌门(Acidobacteria)和疣微菌门(Verrucomicrobia)的相对丰度较高,而田间根腐三七根际土壤中子囊菌门(Ascomycota)、变形菌门(Proteobacteria)和绿弯菌门(Chloroflexi)的相对丰度较高。在属分类水平,镰刀菌属(Fusarium)是自然林下根腐三七根际土壤中的优势菌群,相对丰度为17.30%,而癣囊腔菌属(Plectosphaerella)是田间根腐三七根际土壤中的优势菌群,相对丰度为22.55%;Candidatus Ba...  相似文献   

18.
为揭示丝栗栲(Castanopsis fargesii)细根功能性状对环境变化的适应机制,对郭岩山500、700、900 m海拔处丝栗栲细根功能性状及其与土壤因子的关系进行研究。结果表明,丝栗栲细根生物量与细根根长密度、表面积密度、组织密度及体积密度呈正相关,细根根长密度、体积密度、表面积密度和比根长4个性状间均呈极显著正相关关系,且均与细根组织密度呈显著负相关。根际土含水量、C和N含量与细根比根长、根长密度、体积密度、表面积密度均存在显著正相关关系,而土壤容重与细根组织密度呈正相关。海拔700 m的细根生物量、根长密度、表面积密度及体积密度显著大于海拔500和900 m的。500和900 m海拔的根长密度、表面积密度与土壤深度呈负相关,而500 m海拔细根的组织密度与土壤深度呈正相关。因此,郭岩山丝栗栲通过改变细根功能性状来适应海拔和土壤的变化。  相似文献   

19.
Influences of soil P fertilization on temporal changes in ergosterol content and ornithine decarboxylase (E.C. 4.1.1.17, ODC) activity were monitored in rhizosphere soil, non-rhizosphere soil and Pinus contorta roots ectomycorrhizal with Hebeloma crustuliniforme grown in a loamy sand. With addition of mycorrhizal inoculum to loamy sand, ODC activity mg-1 root increased between 10% and 2 fold within 21 weeks of pianting. Inoculation also decreased root mass per seedling. Inoculation increased mycelia mass per root mass by up to 2 fold but no differences were observed for total seedling mass until 35 weeks. Intramatrical mycelia were detrimental to early plant growth, but inoculated seedlings had 1.7 times more root mass and 1.3 times more shoot mass at 35 weeks. Rhizosphere soil contained up to 5 times more mycelia and up to 6 times greater ODC activity than non-rhizosphere soil. Inoculation increased rhizophere metabolic activity and intramatrical mycelia mass. Their sensitivity to fungal inoculation, P fertilization and temporal trends may make the methods useful in studies of rhizosphere ecology and root-microbe relationships.  相似文献   

20.
Biotic factors in the rhizosphere and their effect on the growth ofPlantago major L. ssp.pleiosperma Pilger (Great plantain) were studied. In a pot experiment the effect on shoot growth of the addition of 2.5% rhizosphere soil at four levels of phosphate was highly dependent on the availability of phosphate: a promoting effect at low phosphate levels was observed while a reducing effect occurred at higher phosphate levels. As the roots were infected with vesicular-arbuscular mycorrhizal (VAM) fungi in the treatment with rhizosphere soil, two other experiments were set up to separate effects of the indigenous VAM fungi from effects of the total rhizosphere population. The uptake of phosphate and shoot growth was not decreased at higher phosphate availability when VAM inoculum was added alone or in combination with rhizosphere soil. The growth reducing effect of the rhizosphere soil could therefore not be ascribed only to mycorrhizal infection. The results suggest that biotic factors in the rhizosphere soil affect the phosphate uptake ofPlantago major ssp.pleiosperma. This may, under conditions of phosphate limitation, lead to an increase of phosphate stress and, subsequently, a growth reduction. Futhermore, it is concluded that VAM fungi, as part of the rhizosphere population, may compensate this phosphate stress by enhancing the phosphate uptake.Grassland Species Research Group Publication No. 148.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号