首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
Gene silencing in the budding yeast Saccharomyces cerevisiae requires the enzymatic activity of the Sir2 protein, a highly conserved NAD-dependent deacetylase. In order to study the activity of native Sir2, we purified and characterized two budding yeast Sir2 complexes: the Sir2/Sir4 complex, which mediates silencing at mating-type loci and at telomeres, and the RENT complex, which mediates silencing at the ribosomal DNA repeats. Analyses of the protein compositions of these complexes confirmed previously described interactions. We show that the assembly of Sir2 into native silencing complexes does not alter its selectivity for acetylated substrates, nor does it allow the deacetylation of nucleosomal histones. The inability of Sir2 complexes to deacetylate nucleosomes suggests that additional factors influence Sir2 activity in vivo. In contrast, Sir2 complexes show significant enhancement in their affinities for acetylated substrates and their sensitivities to the physiological inhibitor nicotinamide relative to recombinant Sir2. Reconstitution experiments showed that, for the Sir2/Sir4 complex, these differences stem from the physical interaction of Sir2 with Sir4. Finally, we provide evidence that the different nicotinamide sensitivities of Sir2/Sir4 and RENT in vitro could contribute to locus-specific differences in how Sir2 activity is regulated in vivo.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
Xu F  Zhang Q  Zhang K  Xie W  Grunstein M 《Molecular cell》2007,27(6):890-900
At telomeric heterochromatin in yeast, the Sir protein complex spreads from Rap1 sites to silence adjacent genes. This cascade is believed to occur when Sir2, an NAD(+)-dependent enzyme, deacetylates histone H3 and H4 N termini, in particular histone H4 K16, enabling more Sir protein binding. Lysine 56 of histone H3 is located at the entry-exit points of the DNA superhelix surrounding the nucleosome, where it may control DNA compaction. We have found that K56 substitutions disrupt silencing severely without decreasing Sir protein binding at the telomere. Our in vitro and in vivo data indicate that Sir2 deacetylates K56 directly in telomeric heterochromatin to compact chromatin and prevent access to RNA polymerase and ectopic bacterial dam methylase. Since the spread of Sir proteins is necessary but not sufficient for silencing, we propose that silencing occurs when Sir2 deacetylates H3 K56 to close the nucleosomal entry-exit gates, enabling compaction of heterochromatin.  相似文献   

10.
Sir protein spreading along chromosomes and silencing in Saccharomyces cerevisiae requires the NAD+-dependent histone deacetylase activity of Sir2p. We tested whether this requirement could be bypassed at the HM loci and telomeres in cells containing a stably expressed, but catalytically inactive mutant of Sir2p, sir2-345p, plus histone mutants that mimic the hypoacetylated state normally created by Sir2p. Sir protein spreading was rescued in sir2-345 mutants expressing histones in which key lysine residues in their N-termini had been mutated to arginine. Mating in these mutants was also partially restored upon overexpression of Sir3p. Together, these results indicate that histone hypoacetylation is sufficient for Sir protein spreading in the absence of production of 2'-O-acetyl-ADP ribose by sir2p and Sir2p's enzymatic function for silencing can be bypassed in a subset of cells in a given population. These results also provide genetic evidence for the existence of additional critical substrates of Sir2p for silencing in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号