首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Osborne DL  Payne SC  Russ RD  Tobin B 《Life sciences》2000,66(24):2405-2417
Type 1 diabetes mellitus is characterized by hyperglycemia, insulinopenia, and secondary neural, renal and vascular complications. Clinical manifestations in the gastrointestinal tract range from initial mild complications to more severe complications as the disease progresses, but as of yet, are poorly understood. The current study has two main foci 1) to monitor the alterations in gastrointestinal DNA, RNA and protein content induced by streptozotocin diabetes and 2) to use these parameters to monitor the efficacy of intensive insulin treatment versus pancreatic islet transplantation in the amelioration of the diabetes induced alterations. Female Wistar Furth rats were rendered diabetic by streptozotocin injection and measured for alterations in gastrointestinal DNA, RNA and protein content. Similarly, animals which had streptozotocin-induced diabetes were also treated by intensive insulin therapy or pancreatic islet transplant and monitored for alterations in gastrointestinal DNA, RNA and protein content. In general, diabetes induced increases in stomach, duodenal, jejunal and colonic macromolecular content. With few exceptions, treatment with either intensive insulin or pancreatic islet transplantation returned each variable measured back to control levels. In every case, pancreatic islet transplantation was comparable to intensive insulin therapy. In the short term the treatments are comparable, but long term analyses are needed to determine if the treatments offer any difference in their ability to prevent the long term complications related to diabetes mellitus.  相似文献   

2.
Diabetes mellitus affects millions of people in the United States and worldwide. It has become clear over the past decade that the chronic complications of diabetes result from lack of proper blood glucose concentration regulation, and particularly the toxic effects of chronic hyperglycemia on organs and tissues. Pancreas transplants can cure insulin-dependent diabetes mellitus (IDDM). Furthermore, recent advances in pancreatic islet isolation and immunosuppressive regimens have resulted in dramatic improvements in the survival and function of islet allografts. Therefore, islet replacement strategies are becoming increasingly attractive options for patients at risk for severe diabetic complications. A major limitation of these approaches is the small number of organs available for transplantation or islet isolation. Thus, an important next step in developing curative treatments for type I diabetes will be the generation of a replenishable source of glucose-responsive, insulin-secreting cells that can be used for beta cell replacement. This review focuses on approaches to developing robust and widely applicable beta-cell replacement strategies with an emphasis on manipulating beta-cell growth and differentiation by genetic engineering.  相似文献   

3.
Diabetes mellitus is one of the most common metabolic diseases worldwide and its prevalence is rapidly increasing. Due to its chronic nature (diabetes mellitus can be treated but as yet not cured) and its serious complications, it is one of the most expensive diseases with regard to total health care costs per patient. The elevated blood glucose levels in diabetes mellitus are caused by a defect in production and/or secretion of the polypeptide hormone insulin, which normally promotes glucose-uptake in cells. Insulin is produced by the pancreatic 'beta-cells' in the 'islets of Langerhans', which lie distributed within the exocrine pancreatic tissue. In type 2 diabetes mellitus, the initial defect in the pathogenesis of the disease in most of the patients is believed to be 'insulin resistance'. Hyperglycemia (clinically overt diabetes mellitus) will not develop as long as the body is able to produce enough insulin to compensate for the reduced insulin action. When this compensation fails ('beta-cell failure') blood glucose levels will become too high. In this review, we discuss one of the mechanisms that have been implicated in the development of beta-cell failure, i.e. amyloid formation in the pancreatic islets. This islet amyloid is a characteristic histopathological feature of type 2 diabetes mellitus and both in vitro and in vivo studies have revealed that its formation causes death of islet beta-cells. Being a common pathogenic factor in an otherwise heterogeneous disease, islet amyloidosis is an attractive novel target for therapeutic intervention in type 2 diabetes mellitus.  相似文献   

4.
Type 1 diabetes mellitus is an autoimmune disease against pancreatic β cells. The autoimmune response begins months or years before the clinical presentation. At the time of hyperglycemic symptoms a small amount of β cell mass still remains. The main therapeutic option to type 1 diabetes mellitus is daily insulin injections which is shown to promote tighter glucose control and to reduce much of diabetic chronic complications. Subgroup analysis of the Diabetes Control and Complication Trial (DCCT) showed another important aspect related to long term complications of diabetes, ie, patients with initially larger residual β cell mass suffered less microvascular complications and less hypoglycemic events than those patients with small amounts of β cells at diagnosis. In face of this, β cell preservation has become another important target in the management of type 1 diabetes and its related complications. In this review, we summarize various immunomodulatory regimens ever used in humans, including stem cell-based strategies, aiming at blocking autoimmunity against pancreatic β cells and at promoting β cell preservation and/or possible β cell regeneration in recent-onset type 1 diabetes.  相似文献   

5.
Diagnosis of type 2 diabetes mellitus encompasses multiple pathophysiological and clinical situations. Type 2 diabetes mellitus is characterized by a long and changing natural history. Personal circumstances and preferences also condition the actual effectiveness and safety of drugs used. In recent decades, modern drugs have markedly expanded and improved therapeutic options. However, their effectiveness remains limited in clinical practice. The main objective of decreasing macrovascular complications is not fully proven. Adverse events, especially hypoglycemia and weight gain, are still frequent and decrease treatment adherence. The constant loss of endogenous islet cell reserve is the main determinant of the need for intensified therapies. Current treatments have failed to improve long-term beta cell mass/function. It is desirable to move forward to obtain new drugs that offer solutions sustainable in the long term. These drugs should be able to fit the individual circumstances and preferences of patients with diabetes mellitus.  相似文献   

6.
Serum samples of patients suffering from diabetes mellitus were tested for complement-fixing and non complement-fixing islet cell antibodies, antinuclear antibodies and circulating immune complexes. There was no correlation between circulating immune complexes or antinuclear antibodies and secondary diabetic complications. A close relationship was found between the ICA titer and complement fixation of ICA. The incidence of ICA at the onset of the disease was higher in the patients under the age of 10 (85%) and decreased with increasing age up to 45% in patients with onset above age 20. In five patients being positive and four patients being negative for ICA at onset of disease, changes and fluctuations in antibody titers were observed over 38 months. Since manifestation of diabetes mellitus is believed to be an endpoint of a long lasting autoimmune process, our observations indicate that the autoimmune phenomena are merely indicators of ongoing autoimmune reactions not necessarily reflecting the state of autoaggression or islet cell destruction.  相似文献   

7.
Current therapies for type 1 diabetes, including fastidious blood glucose monitoring and multiple daily insulin injections, are not sufficient to prevent complications of the disease. Though pancreas and possibly islet transplantation can prevent the progression of complications, the scarcity of donor organs limits widespread application of these approaches. Understanding the mechanisms of beta-cell mass expansion as well as the means to exploit these pathways has enabled researchers to develop new strategies to expand and maintain islet cell mass. Potential new therapeutic avenues include ex vivo islet expansion and improved viability of islets prior to implantation, as well as the endogenous expansion of beta-cell mass within the diabetic patient. Islet neogenesis, through stem cell activation and/or transdifferentiation of mature fully differentiated cells, has been proposed as a means of beta-cell mass expansion. Finally, any successful new therapy for type 1 diabetes via beta-cell mass expansion will require prevention of beta-cell death and maintenance of long-term endocrine function.  相似文献   

8.
Islet neogenesis: a potential therapeutic tool in type 1 diabetes   总被引:2,自引:0,他引:2  
Current therapies for type 1 diabetes, including fastidious blood glucose monitoring and multiple daily insulin injections, are not sufficient to prevent complications of the disease. Though pancreas and possibly islet transplantation can prevent the progression of complications, the scarcity of donor organs limits widespread application of these approaches. Understanding the mechanisms of beta-cell mass expansion as well as the means to exploit these pathways has enabled researchers to develop new strategies to expand and maintain islet cell mass. Potential new therapeutic avenues include ex vivo islet expansion and improved viability of islets prior to implantation, as well as the endogenous expansion of beta-cell mass within the diabetic patient. Islet neogenesis, through stem cell activation and/or transdifferentiation of mature fully differentiated cells, has been proposed as a means of beta-cell mass expansion. Finally, any successful new therapy for type 1 diabetes via beta-cell mass expansion will require prevention of beta-cell death and maintenance of long-term endocrine function.  相似文献   

9.
The evidence base in support of HbA1c as a diagnostic test for diabetes mellitus is focused on predicting a clinical outcome, considered to be the pinnacle of the Stockholm Hierarchy applied to reference intervals and clinical decision limits. In the case of diabetes, the major outcome of interest is the long term microvascular complications for which a large body of data has been accumulated, leading to the endorsement of HbA1c for diagnosis in many countries worldwide, with some variations in cut-offs and testing strategies.  相似文献   

10.
The inheritance of non-insulin-dependent (type II) diabetes was studied by a continuous infusion of glucose test in all available first degree relatives of 48 diabetic probands of various ages and with differing severity of disease. In an initial study of 38 type II diabetic subjects and their first degree relatives six islet cell antibody negative patients with early onset disease (aged 25-40 at diagnosis) were found to have a particularly high familial prevalence of diabetes or glucose intolerance. Nine of 10 parents available for study either had type II diabetes or were glucose intolerant. A high prevalence of diabetes or glucose intolerance was also found in their siblings (11/16;69%). In a second study of the families of a further 10 young diabetic probands (presenting age 25-40) whose islet cell antibody state was unknown a similar high prevalence of diabetes or glucose intolerance was found among parents of the five islet cell antibody negative probands (8/9; 89%) but not among parents of the five islet cell antibody positive probands (3/8;38%). Islet cell antibody negative diabetics with early onset type II disease may have inherited a diabetogenic gene or genes from both parents. They commonly need insulin to maintain adequate glycaemic control and may develop severe diabetic complications. Early onset type II diabetes may represent a syndrome in which characteristic pedigrees, clinical severity, and absence of islet autoimmunity make it distinct from either type I diabetes, maturity onset diabetes of the young, or late onset type II diabetes.  相似文献   

11.
硫氧还蛋白相互作用蛋白(thioredoxin-interacting protein,TXNIP)又称维生素D3上调蛋白1,因其能够与硫氧还蛋白(thioredoxin,Trx)结合并抑制其活性和表达而得名。本文概述了TXNIP的发现与结构,及其自身通过发挥调节糖脂代谢的作用进而影响糖尿病前期的发生发展。并在此基础上总结了TXNIP参与糖尿病发生发展的2条主要途径:TXNIP通过拮抗Trx的抗凋亡作用来激发细胞凋亡信号导致胰岛细胞凋亡;TXNIP过表达促使胰岛细胞磷酸化,进而使抑癌相关蛋白质表达增加,最终引起胰岛细胞衰老。进一步重点阐述了TXNIP在糖尿病心肌病、糖尿病肾病、糖尿病性视网膜病等糖尿病并发症中的作用:TXNIP能通过各种间接途径干预信号通路,进一步参与氧化应激、细胞凋亡、激活炎症、细胞自噬及糖脂代谢等生理生化过程。TXNIP具有极其重要的生物学功能,深入了解TXNIP在糖尿病及其并发症中的影响机制,对糖尿病及其并发症的治疗具有重要意义。最后对TXNIP的研究进行了展望,未来可进一步着手研究TXNIP基因是如何与其他基因或危险因素协同作用,进而共同参与糖尿病及其并发症的发生发展,且TXNIP单个基因甲基化尚不能全面揭示糖尿病及其并发症发生的分子机制,这些后续的深入研究,将为在糖尿病及其并发症的诊断与治疗中作为靶标分子的应用奠定基础。  相似文献   

12.
周淑艳  张毅  齐晖  李富荣 《生命科学》2012,(10):1207-1210
糖尿病是一种由胰岛素分泌缺陷和(或)胰岛素作用缺陷引起的高血糖症性代谢疾病。自Edmonton临床试验取得成功后,胰岛移植成为一种新型治愈糖尿病的方法。但胰岛β细胞在体外分离过程中极易发生凋亡或死亡,且长期的体外培养或冷冻储存也容易令其胰岛素分泌功能逐渐丧失。因此,有效维持或改善β细胞的成活率及功能对胰岛移植的成功至关重要。对胰岛β细胞的体外保护方法进行阐述,并对其研究前景进行展望。  相似文献   

13.
The lifestyle changes characteristic to the second half of the 20 century, have evoked diabetes epidemic which drastically impairs the quality of life and is the underling cause of many demises, the most of which are related to the long term complications of the disease. Clinical investigations have established that gluco- and lipotoxicity are responsible for the progression and complications of diabetes and underscored the role of postprandial hypoglycemia in the pathogenesis of the disease. In recent years the clinical investigations were exploring the possibility of stopping the progression of 'prediabetic' state to overt diabetes, which is reveled as the late stage of a metabolic disorder which begins many years earlier and has deleterious effects on health. Biochemical investigations have revealed a large number of mechanisms responsible for the toxicity of high glucose and lipid concentrations, and pointed to mitochondria as the meeting place of pathogenic metabolic pathways.  相似文献   

14.
There are diverse strategies for gene therapy of diabetes mellitus. Prevention of beta-cell autoimmunity is a specific gene therapy for prevention of type 1 (insulin-dependent) diabetes in a preclinical stage, whereas improvement in insulin sensitivity of peripheral tissues is a specific gene therapy for type 2 (non-insulin-dependent) diabetes. Suppression of beta-cell apoptosis, recovery from insulin deficiency, and relief of diabetic complications are common therapeutic approaches to both types of diabetes. Several approaches to insulin replacement by gene therapy are currently employed: 1) stimulation of beta-cell growth, 2) induction of beta-cell differentiation and regeneration, 3) genetic engineering of non-beta cells to produce insulin, and 4) transplantation of engineered islets or beta cells. In type 1 diabetes, the therapeutic effect of beta-cell proliferation and regeneration is limited as long as the autoimmune destruction of beta cells continues. Therefore, the utilization of engineered non-beta cells free from autoimmunity and islet transplantation with immunological barriers are considered potential therapies for type 1 diabetes. Proliferation of the patients' own beta cells and differentiation of the patients' own non-beta cells to beta cells are desirable strategies for gene therapy of type 2 diabetes because immunological problems can be circumvented. At present, however, these strategies are technically difficult, and transplantation of engineered beta cells or islets with immunological barriers is also a potential gene therapy for type 2 diabetes.  相似文献   

15.
郑丽  徐涛 《生命科学》2012,(7):606-610
糖尿病是一种以失控的高血糖为主要表现,多种并发症为主要损害的一种代谢性疾病,已严重影响人们的健康生活。从胰岛素靶器官的响应性、胰岛功能、胃肠分泌因子的调节和基因水平等方面对糖尿病的研究进展进行综述。  相似文献   

16.
Intracellular production of nitric oxide (NO) is thought to mediate the pancreatic B-cell-directed cytotoxicity of cytokines in insulin-dependent diabetes mellitus, and recent evidence has indicated that this may involve induction of apoptosis. A primary effect of NO is to activate soluble guanylyl cyclase leading to increased cGMP levels and this effect has been demonstrated in pancreatic B-cells, although no intracellular function has been defined for islet cGMP. Here we demonstrate that the NO donor, GSNO, induces apoptosis in the pancreatic B-cell line HIT-T15 in a dose- and time-dependent manner. This response was significantly attenuated by micromolar concentrations of a specific inhibitor of soluble guanylyl cyclase, ODQ, and both 8-bromo cGMP (100 μM) and dibutyryl cGMP (300 μM) were able to fully relieve this inhibition. In addition, incubation of HIT-T15 cells with each cGMP analogue directly promoted cell death in the absence of ODQ. KT5823, a potent and highly selective inhibitor of cGMP-dependent protein kinase (PKG), abolished the induction of cell death in HIT cells in response to either GSNO or cGMP analogues. This effect was dose-dependent over the concentration range of 10–250 nM. Overall, these data provide evidence that the activation of apoptosis in HIT-T15 cells by NO donors is secondary to a rise in cGMP and suggest that the pathway controlling cell death involves activation of PKG.  相似文献   

17.
Islet transplantation holds renewed promise as a cure for type I diabetes mellitus. Results of recent clinical trials have shown remarkable success, and have reignited universal optimism for this procedure. In spite of this success, the need for life-long immunosuppression of the recipient still limits islet transplantation to patients with poorly controlled diabetes or to those requiring kidney transplantation. It is obvious that the achievement of immunological tolerance would broaden the indication for islet transplantation to a much larger cohort of patients with type I diabetes mellitus, most likely preventing long-term complications and contributing to a much improved quality of life. Increased understanding of the basic mechanisms of tolerance induction has resulted in the implementation of numerous experimental approaches to achieve long-term survival of islet grafts in the absence of chronic immunosuppression. In this brief review we will attempt to summarize the current status of research and knowledge.  相似文献   

18.
Meng F  Abedini A  Song B  Raleigh DP 《Biochemistry》2007,46(43):12091-12099
Amyloid formation has been implicated in a wide range of human diseases including Alzheimer's disease, Parkinson's disease, and type 2 diabetes. In type 2 diabetes, islet amyloid polypeptide (IAPP, also known as amylin) forms cytotoxic amyloid deposits in the pancreas, and these are believed to contribute to the pathology of the disease. The mechanism of islet amyloid formation is not understood; however, recent proposals have invoked a role for incompletely processed proIAPP. In this model, incompletely processed proIAPP containing the N-terminal pro region is excreted and binds to heparan sulfate proteoglycans (HSPGs) of the basement membrane thereby establishing a high local concentration which can act as a seed for amyloid formation. Here we report biophysical proof-of-principle experiments designed to test the viability of this model. The model predicts that interactions with HSPGs should accelerate amyloid formation by the proIAPP processing intermediate, and this is indeed what is observed. Interaction with heparan sulfate leads to the rapid formation of an intermediate state with partial helical content which then converts, on a slower time scale, to amyloid fibrils. TEM shows that fibrils formed by the proIAPP processing intermediate in the presence and in the absence of heparan sulfate have the classic features of amyloid. Fibrils formed by the proIAPP processing intermediate are competent to seed amyloid formation by mature IAPP. The seeding experiments support a second major premise of the model, namely, that fibrils formed by the processing intermediate are capable of seeding amyloid formation by the mature peptide.  相似文献   

19.
An estimated 300,000 to 500,000 cases of type 1 diabetes exist today in the United States. Despite strict monitoring and attempts at control, people with type 1 diabetes still face the prospect of diminished health and earlier death than the general population. Islet transplantation offers an alternative to insulin usage and a potential treatment for type 1 diabetes mellitus. There are more than 30 islet transplant centers in the world focusing their efforts on the challenges and methods of this procedure. As the field of islet transplantation matures and the number of islet transplants performed increases, detailed analyses on factors that predict patient and graft survival are needed. This increased amount of data will allow for a better understanding of the safety and efficacy of islet transplantation. In response to the need for more complete information in the field, the National Institute of Diabetes and Digestive and Kidney Diseases is sponsoring the North American Collaborative Islet Transplant Registry (CITR). The mission of CITR is to expedite progress and promote safety in islet/β-cell transplantation through the collection, analysis, and communication of comprehensive and current data on all islet/β-cell transplants performed in North America. Compiling and analyzing data from all transplant centers in North America will accelerate the identification of both critical risk factors and key determinants of success, and thereby guide transplant centers in developing and refining islet/β-cell transplant protocols, leading to an advancement in the field of islet transplantation. Participation in CITR is voluntary, and more than 22 transplant centers have been invited to join. Seven centers are actively participating in CITR, with an additional 11 centers in the process of joining. Both an executive committee and a scientific advisory committee guide CITR. All islet transplants performed in North America since January 1, 1996, are captured by the CITR database. Through an electronic, Internet-based data capture system, quality control procedures, and minimization of duplicate efforts at the transplant center, the most relevant and succinct information are entered. From these data a comprehensive report will be published annually. In addition, special analyses will be performed and published periodically.  相似文献   

20.
Cell manufacturing for clinical applications is a unique form of biologics manufacturing that relies on maintenance of stringent work practices designed to ensure product consistency and prevent contamination by microorganisms or by another patient's cells. More extensive, prolonged laboratory processes involve greater risk of complications and possibly adverse events for the recipient, and so the need for control is correspondingly greater. To minimize the associate risks of cell manufacturing adhering to international quality standards is critical. Current good tissue practice (cGTP) and current good manufacturing practice (cGMP) are examples of general standards that draw a baseline for cell manufacturing facilities. In recent years, stem cell researches have found great public interest in Iran and different cell therapy projects have been started in country. In this review we described the role of our tissue banking experiences in establishing a new cGMP cell manufacturing facility. The authors concluded that, tissue banks and tissue banking experts can broaden their roles from preparing tissue grafts to manufacturing cell and tissue engineered products for translational researches and phase I clinical trials. Also they can collaborate with cell processing laboratories to develop SOPs, implement quality management system, and design cGMP facilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号