首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantifying binding specificity and drug resistance of protein kinase inhibitors is of fundamental importance and remains highly challenging due to complex interplay of structural and thermodynamic factors. In this work, molecular simulations and computational alanine scanning are combined with the network-based approaches to characterize molecular determinants underlying binding specificities of the ABL kinase inhibitors. The proposed theoretical framework unveiled a relationship between ligand binding and inhibitor-mediated changes in the residue interaction networks. By using topological parameters, we have described the organization of the residue interaction networks and networks of coevolving residues in the ABL kinase structures. This analysis has shown that functionally critical regulatory residues can simultaneously embody strong coevolutionary signal and high network centrality with a propensity to be energetic hot spots for drug binding. We have found that selective (Nilotinib) and promiscuous (Bosutinib, Dasatinib) kinase inhibitors can use their energetic hot spots to differentially modulate stability of the residue interaction networks, thus inhibiting or promoting conformational equilibrium between inactive and active states. According to our results, Nilotinib binding may induce a significant network-bridging effect and enhance centrality of the hot spot residues that stabilize structural environment favored by the specific kinase form. In contrast, Bosutinib and Dasatinib can incur modest changes in the residue interaction network in which ligand binding is primarily coupled only with the identity of the gate-keeper residue. These factors may promote structural adaptability of the active kinase states in binding with these promiscuous inhibitors. Our results have related ligand-induced changes in the residue interaction networks with drug resistance effects, showing that network robustness may be compromised by targeted mutations of key mediating residues. This study has outlined mechanisms by which inhibitor binding could modulate resilience and efficiency of allosteric interactions in the kinase structures, while preserving structural topology required for catalytic activity and regulation.  相似文献   

2.
3.
Retroviruses HTLV‐1 and HIV‐1 are the primary causative agents of fatal adult T‐cell leukemia and acquired immune deficiency syndrome (AIDS) disease. Both retroviruses are similar in characteristics mechanism, and it encodes for protease that mainly involved in the viral replication process. On the basis of the therapeutic success of HIV‐1 PR inhibitors, the protease of HTLV‐1 is mainly considered as a potential target for chemotherapy. At the same time, structural similarities in both enzymes that originate HIV PR inhibitors can also be an HTLV‐1 PR inhibitor. But the expectations failed because of rejection of HIV PR inhibitors from the HTLV‐1 PR binding pocket. In this present study, the reason for the HIV PR inhibitor rejection from the HTLV‐1 binding site was identified through sequence analysis and molecular dynamics simulation method. Functional analysis of M37A mutation in HTLV PR clearly shows that the MET37 specificity and screening of potential inhibitors targeting MET37 is performed by using approved 90% similar HIV PR inhibitor compounds. From this approach, we report few compounds with a tendency to accept/donate electron specifically to an important site residue MET37 in HTLV‐1 PR binding pocket. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
An acquired T798M gatekeeper mutation in human epidermal growth factor receptor 2 (HER2) kinase can cause drug resistance to anti‐HER2 chemotherapy drugs in lung cancer. Previously, the reversible pan‐kinase inhibitor staurosporine has been found to selectively inhibit the HER2 T798M mutant over wild‐type kinase, suggesting that the staurosporine scaffold is potentially to develop mutant‐selective inhibitors. Here, we systematically evaluated the chemical space of staurosporine scaffold‐based compounds in response to HER2 T798M mutation at structural, energetic and molecular levels by using an integrated analysis strategy. With this strategy, we were able to identify several novel wild‐type sparing inhibitors with high or moderate selectivity, which are comparable to or even better than that of the parent compound staurosporine. Molecular modeling and structural analysis revealed that noncovalent contacts can form between the side chain of mutated residue Met798 and selective inhibitor ligands, which may improve the favorable interaction energy between the kinase and inhibitor and reduce the unfavorable desolvation penalty upon the kinase–inhibitor binding.  相似文献   

5.
Hepatitis C virus (HCV) infection is a serious threat to global health. NS3 serine protease is one of the most advanced HCV drug targets. However, the high mutation rate makes many protease inhibitors ineffective and allows viral replication to continue. To investigate the structural basis of the molecular mechanism of HCV resistance to inhibitors, molecular dynamics and molecular mechanics Poisson–Boltzmann/surface area calculations were carried out on HCV NS3 serine protease–BI201335 complexes. The drug resistance to BI201335 is explained by the fact that seven single mutations weaken the biological activity by lessening the sum of electrostatic interactions in the gas phase and polar solvation. The computational results demonstrate that the mutations affect the BI201335 binding through direct and indirect mechanisms. Seven single mutations lead to significant changes in the conformation, such as the shifts of the side chain of His57 and Lys136 and the movement of the P2 group of BI201335 towards the solvent. Furthermore, the contributions of Lys136 significantly decrease, which is the most major binding attraction. The shifts of the side chain of His57 induce the lack of hydrogen bond between His57 with Asp81 expert for D168G mutation. Detailing the molecular mechanisms of BI201335 drug resistance provides some helpful insights into the nature of mutational effect and aid the rational design of potent inhibitors combating HCV.  相似文献   

6.
HIV-1 protease recognizes and cleaves more than 12 different substrates leading to viral maturation. While these substrates share no conserved motif, they are specifically selected for and cleaved by protease during viral life cycle. Drug resistant mutations evolve within the protease that compromise inhibitor binding but allow the continued recognition of all these substrates. While the substrate envelope defines a general shape for substrate recognition, successfully predicting the determinants of substrate binding specificity would provide additional insights into the mechanism of altered molecular recognition in resistant proteases. We designed a variant of HIV protease with altered specificity using positive computational design methods and validated the design using X-ray crystallography and enzyme biochemistry. The engineered variant, Pr3 (A28S/D30F/G48R), was designed to preferentially bind to one out of three of HIV protease's natural substrates; RT-RH over p2-NC and CA-p2. In kinetic assays, RT-RH binding specificity for Pr3 increased threefold compared to the wild-type (WT), which was further confirmed by isothermal titration calorimetry. Crystal structures of WT protease and the designed variant in complex with RT-RH, CA-p2, and p2-NC were determined. Structural analysis of the designed complexes revealed that one of the engineered substitutions (G48R) potentially stabilized heterogeneous flap conformations, thereby facilitating alternate modes of substrate binding. Our results demonstrate that while substrate specificity could be engineered in HIV protease, the structural pliability of protease restricted the propagation of interactions as predicted. These results offer new insights into the plasticity and structural determinants of substrate binding specificity of the HIV-1 protease.  相似文献   

7.
Secreted aspartic proteases (Saps) are extracellular proteolytic enzymes that enhance the virulence of Candida pathogens. These enzymes therefore represent possible targets for therapeutic drug design. Saps are inhibited by nanomolar concentrations of the classical inhibitor of aspartic proteases pepstatin A and also by the inhibitors of the HIV protease, but with the K(i) of micromolar values or higher. To contribute to the discussion regarding whether HIV protease inhibitors can act against opportunistic mycoses by the inhibition of Saps, we determined the structure of Sapp1p from Candida parapsilosis in complex with ritonavir (RTV), a clinically used inhibitor of the HIV protease. The crystal structure refined at resolution 2.4 ? proved binding of RTV into the active site of Sapp1p and provided the structural information necessary to evaluate the stability and specificity of the protein-inhibitor interaction.  相似文献   

8.
A ten microsecond molecular dynamics simulation of a kallikrein-related peptidase 7 peptide complex revealed an unexpected change in binding mode. After more than two microseconds unrestrained sampling we observe a spontaneous transition of the binding pose including a 180° rotation around the P1 residue. Subsequently, the substrate peptide occupies the prime side region rather than the cognate non-prime side in a stable conformation. We characterize the unexpected binding mode in terms of contacts, solvent-accessible surface area, molecular interactions and energetic properties. We compare the new pose to inhibitor-bound structures of kallikreins with occupied prime side and find that a similar orientation is adopted. Finally, we apply in silico mutagenesis based on the alternative peptide binding position to explore the prime side specificity of kallikrein-related peptidase 7 and compare it to available experimental data. Our study provides the first microsecond time scale simulation data on a kallikrein protease and shows previously unexplored prime side interactions. Therefore, we expect our study to advance the rational design of inhibitors targeting kallikrein-related peptidase 7, an emerging drug target involved in several skin diseases as well as cancer.  相似文献   

9.
MOTIVATION: Evolutionary and structural conservation patterns shared by more than 500 of identified protein kinases have led to complex sequence-structure relationships of cross-reactivity for kinase inhibitors. Understanding the molecular basis of binding specificity for protein kinases family, which is the central problem in discovery of cancer therapeutics, remains challenging as the inhibitor selectivity is not readily interpreted from chemical proteomics studies, neither it is easily discernable directly from sequence or structure information. We present an integrated view of sequence-structure-binding relationships in the tyrosine kinome space in which evolutionary analysis of the kinases binding sites is combined with computational proteomics profiling of the inhibitor-protein interactions. This approach provides a functional classification of the binding specificity mechanisms for cancer agents targeting protein tyrosine kinases. RESULTS: The proposed functional classification of the kinase binding specificities explores mechanisms in which structural plasticity of the tyrosine kinases and sequence variation of the binding-site residues are linked with conformational preferences of the inhibitors in achieving effective drug binding. The molecular basis of binding specificity for tyrosine kinases may be largely driven by conformational adaptability of the inhibitors to an ensemble of structurally different conformational states of the enzyme, rather than being determined by their phylogenetic proximity in the kinome space or differences in the interactions with the variable binding-site residues. This approach provides a fruitful functional linkage between structural bioinformatics analysis and disease by unraveling the molecular basis of kinase selectivity for the prominent kinase drugs (Imatinib, Dasatinib and Erlotinib) which is consistent with structural and proteomics experiments.  相似文献   

10.
Verkhivker GM 《Biopolymers》2007,85(4):333-348
The molecular basis of the tyrosine kinases binding specificity and drug resistance against cancer drugs Imatinib and Dasatinib is elucidated using Monte Carlo simulations of the inhibitor-receptor binding with the ensembles of protein kinase crystal structures. In silico proteomics analysis unravels mechanisms by which structural plasticity of the tyrosine kinases is linked with the conformational preferences of Imatinib and Dasatinib in achieving effective drug binding with a distinct spectrum of the tyrosine kinome. The differences in the inhibitor sensitivities to the ABL kinase mutants are rationalized based on variations in the binding free energy profiles with the conformational states of the ABL kinase. While Imatinib binding is highly sensitive to the activation state of the enzyme, the computed binding profile of Dasatinib is remarkably tolerant to the conformational state of ABL. A comparative analysis of the inhibitor binding profiles with the clinically important ABL kinase mutants has revealed an excellent agreement with the biochemical and proteomics data. We have found that conformational adaptability of the kinase inhibitors to structurally different conformational states of the tyrosine kinases may have pharmacological relevance in acquiring a specific array of potent activities and regulating a scope of the inhibitor resistance mutations. This study outlines a useful approach for understanding and predicting the molecular basis of the inhibitor sensitivity against potential kinase targets and drug resistance.  相似文献   

11.
12.
Secreted aspartic proteases (Saps) are extracellular proteolytic enzymes that enhance the virulence of Candida pathogens. These enzymes therefore represent possible targets for therapeutic drug design. Saps are inhibited by nanomolar concentrations of the classical inhibitor of aspartic proteases pepstatin A and also by the inhibitors of the HIV protease, but with the Ki of micromolar values or higher. To contribute to the discussion regarding whether HIV protease inhibitors can act against opportunistic mycoses by the inhibition of Saps, we determined the structure of Sapp1p from Candida parapsilosis in complex with ritonavir (RTV), a clinically used inhibitor of the HIV protease. The crystal structure refined at resolution 2.4 Å proved binding of RTV into the active site of Sapp1p and provided the structural information necessary to evaluate the stability and specificity of the protein-inhibitor interaction.  相似文献   

13.
Revealing the processes of ligand–protein associations deepens our understanding of molecular recognition and binding kinetics. Hydrogen bonds (H‐bonds) play a crucial role in optimizing ligand–protein interactions and ligand specificity. In addition to the formation of stable H‐bonds in the final bound state, the formation of transient H‐bonds during binding processes contributes binding kinetics that define a ligand as a fast or slow binder, which also affects drug action. However, the effect of forming the transient H‐bonds on the kinetic properties is little understood. Guided by results from coarse‐grained Brownian dynamics simulations, we used classical molecular dynamics simulations in an implicit solvent model and accelerated molecular dynamics simulations in explicit waters to show that the position and distribution of the H‐bond donor or acceptor of a drug result in switching intermolecular and intramolecular H‐bond pairs during ligand recognition processes. We studied two major types of HIV‐1 protease ligands: a fast binder, xk263, and a slow binder, ritonavir. The slow association rate in ritonavir can be attributed to increased flexibility of ritonavir, which yields multistep transitions and stepwise entering patterns and the formation and breaking of complex H‐bond pairs during the binding process. This model suggests the importance of conversions of spatiotemporal H‐bonds during the association of ligands and proteins, which helps in designing inhibitors with preferred binding kinetics. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Resistance to human immunodeficiency virus type 1 protease (HIV PR) inhibitors results primarily from the selection of multiple mutations in the protease region. Because many of these mutations are selected for the ability to decrease inhibitor binding in the active site, they also affect substrate binding and potentially substrate specificity. This work investigates the substrate specificity of a panel of clinically derived protease inhibitor-resistant HIV PR variants. To compare protease specificity, we have used positional-scanning, synthetic combinatorial peptide libraries as well as a select number of individual substrates. The subsite preferences of wild-type HIV PR determined by using the substrate libraries are consistent with prior reports, validating the use of these libraries to compare specificity among a panel of HIV PR variants. Five out of seven protease variants demonstrated subtle differences in specificity that may have significant impacts on their abilities to function in viral maturation. Of these, four variants demonstrated up to fourfold changes in the preference for valine relative to alanine at position P2 when tested on individual peptide substrates. This change correlated with a common mutation in the viral NC/p1 cleavage site. These mutations may represent a mechanism by which severely compromised, drug-resistant viral strains can increase fitness levels. Understanding the altered substrate specificity of drug-resistant HIV PR should be valuable in the design of future generations of protease inhibitors as well as in elucidating the molecular basis of regulation of proteolysis in HIV.  相似文献   

15.
Due to the important role that aspartic proteases play in many patho-physiological processes, they have intensively been targeted by modern drug development. However, up to now, only for two family members, renin and HIV protease, approved drugs are available. Inhibitor development, mostly guided by mimicking the natural peptide substrates, resulted in very potent inhibitors for several targets, but the pharmacokinetic properties of these compounds were often not optimal. Herein we report a novel approach for lead structure discovery of non-peptidic aspartic protease inhibitors using easily accessible achiral linear oligoamines as starting point. An initial library comprising 11 inhibitors was developed and screened against six selected aspartic proteases. Several hits could be identified, among them selective as well as rather promiscuous inhibitors. The design concept was confirmed by determination of the crystal structure of two derivatives in complex with the HIV-1 protease, and represents a promising basis for the further inhibitor development.  相似文献   

16.
Protein families involved in chromatin‐templated events are emerging as novel target classes in oncology and other disease areas. The ability to discover selective inhibitors against chromatin factors depends on the presence of structural features that are unique to the targeted sites. To evaluate challenges and opportunities toward the development of selective inhibitors, we calculated all pair wise structural distances between 575 structures from the protein databank representing 163 unique binding pockets found in protein domains that write, read or erase post‐translational modifications on histones, DNA, and RNA. We find that the structural similarity of binding sites does not always follow the sequence similarity of protein domains. Our analysis reveals increased risks of activity across target‐class for compounds competing with the cofactor of protein arginine methyltransferases, lysine acetyltransferases, and sirtuins, while exploiting the conformational plasticity of a protein target is a path toward selective inhibition. The structural diversity landscape of the epigenetics pocketome can be explored via an open‐access graphic user interface at thesgc.org/epigenetics_pocketome . Proteins 2015; 83:1316–1326. © 2015 Wiley Periodicals, Inc.  相似文献   

17.
18.
High-temperature requirement A (HtrA) and its homologs contain a serine protease domain followed by one or two PDZ domains. Bacterial HtrA proteins and the mitochondrial protein HtrA2/Omi maintain cell function by acting as both molecular chaperones and proteases to manage misfolded proteins. The biological roles of the mammalian family members HtrA1 and HtrA3 are less clear. We report a detailed structural and functional analysis of the PDZ domains of human HtrA1 and HtrA3 using peptide libraries and affinity assays to define specificity, structural studies to view the molecular details of ligand recognition, and alanine scanning mutagenesis to investigate the energetic contributions of individual residues to ligand binding. In common with HtrA2/Omi, we show that the PDZ domains of HtrA1 and HtrA3 recognize hydrophobic polypeptides, and while C-terminal sequences are preferred, internal sequences are also recognized. However, the details of the interactions differ, as different domains rely on interactions with different residues within the ligand to achieve high affinity binding. The results suggest that mammalian HtrA PDZ domains interact with a broad range of hydrophobic binding partners. This promiscuous specificity resembles that of bacterial HtrA family members and suggests a similar function for recognizing misfolded polypeptides with exposed hydrophobic sequences. Our results support a common activation mechanism for the HtrA family, whereby hydrophobic peptides bind to the PDZ domain and induce conformational changes that activate the protease. Such a mechanism is well suited to proteases evolved for the recognition and degradation of misfolded proteins.  相似文献   

19.
How HIV protease inhibitors promote atherosclerotic lesion formation   总被引:1,自引:0,他引:1  
PURPOSE OF REVIEW: One of the aims of this review is to summarize recent clinical approaches used to determine the role of HIV protease inhibitors in the development of cardiovascular disease. Another aim is to discuss possible molecular mechanisms whereby HIV protease inhibitors may promote atherogenesis. RECENT FINDINGS: Several clinical studies have recently used ultrasonography to demonstrate increased intimal medial thickness and alterations in the structural characteristics of epi-aortic lesions in patients receiving HIV protease inhibitors. Molecular studies have indicated that several mechanisms are likely involved in mediating the effects of protease inhibitors. Possible mechanisms include inhibition of the proteasome, increased CD36 expression in macrophage, inhibition of lipoprotein lipase-mediated lipolysis, decreased adiponectin levels, and dysregulation of the NF-kappaB pathway. SUMMARY: The currently available data strongly suggest that HIV protease inhibitors negatively impact the cardiovascular system. As is often the case with complex diseases like atherosclerosis it appears that HIV protease inhibitors affect the cardiovascular system through several distinct mechanisms by affecting various components of the arterial wall directly or indirectly by influencing lipoprotein and glucose metabolism of the body.  相似文献   

20.
Abstract

HIV protease inhibitors (PIs) approved by the FDA (US Food and Drug Administration) are a major class of antiretroviral. HIV-2 protease (PR2) is naturally resistant to most of them as PIs were designed for HIV-1 protease (PR1). In this study, we explored the impact of amino-acid substitutions between PR1 and PR2 on the structure of protease (PR) by comparing the structural variability of 13 regions using 24 PR1 and PR2 structures complexed with diverse ligands. Our analyses confirmed structural rigidity of the catalytic region and highlighted the important role of three regions in the conservation of the catalytic region conformation. Surprisingly, we showed that the flap region, corresponding to a flexible region, exhibits similar conformations in PR1 and PR2. Furthermore, we identified regions exhibiting different conformations in PR1 and PR2, which could be explained by the intrinsic flexibility of these regions, by crystal packing, or by PR1 and PR2 substitutions. Some substitutions induce structural changes in the R2 and R4 regions that could have an impact on the properties of PI-binding site and could thus modify PI binding mode. Substitutions involved in structural changes in the elbow region could alter the flexibility of the PR2 flap regions relative to PR1, and thus play a role in the transition from the semi-open form to the closed form, and have an impact on ligand binding. These results improve the understanding of the impact of sequence variations between PR1 and PR2 on the natural resistance of HIV-2 to commercially available PIs.

Communicated by Ramaswamy H. Sarma  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号