首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 551 毫秒
1.
Predicted protein residue–residue contacts can be used to build three‐dimensional models and consequently to predict protein folds from scratch. A considerable amount of effort is currently being spent to improve contact prediction accuracy, whereas few methods are available to construct protein tertiary structures from predicted contacts. Here, we present an ab initio protein folding method to build three‐dimensional models using predicted contacts and secondary structures. Our method first translates contacts and secondary structures into distance, dihedral angle, and hydrogen bond restraints according to a set of new conversion rules, and then provides these restraints as input for a distance geometry algorithm to build tertiary structure models. The initially reconstructed models are used to regenerate a set of physically realistic contact restraints and detect secondary structure patterns, which are then used to reconstruct final structural models. This unique two‐stage modeling approach of integrating contacts and secondary structures improves the quality and accuracy of structural models and in particular generates better β‐sheets than other algorithms. We validate our method on two standard benchmark datasets using true contacts and secondary structures. Our method improves TM‐score of reconstructed protein models by 45% and 42% over the existing method on the two datasets, respectively. On the dataset for benchmarking reconstructions methods with predicted contacts and secondary structures, the average TM‐score of best models reconstructed by our method is 0.59, 5.5% higher than the existing method. The CONFOLD web server is available at http://protein.rnet.missouri.edu/confold/ . Proteins 2015; 83:1436–1449. © 2015 Wiley Periodicals, Inc.  相似文献   

2.
Steudle A  Pleiss J 《Biophysical journal》2011,100(12):3016-3024
Different approaches were made to predict the adsorbed orientation based on rigid, flexible, or a mixture of both models. To determine the role of flexibility during adsorption, the orientation of lysozyme adsorbed to a negatively charged ligand surface was predicted by a rigid and a flexible model based on two differing protein structures at atomic resolution. For the rigid model, the protein structures were placed at different distances from the ligand surface and the electrostatic interaction energy was calculated for all possible orientations. The results were compared to a flexible model where the binding to the ligand surface was modeled by multiple molecular dynamics simulations starting with 14 initial orientations. Different aspects of the adsorption process were not covered by the rigid model and only detectable by the flexible model. Whereas the results of the rigid model depended sensitively on the protein-surface distance and the protein structure, the preferred orientation obtained by the flexible model was closer to a previous experimental determined orientation, robust toward the initial orientation and independent of the initial protein structure. Additionally, it was possible to obtain insights into the preferred binding process of lysozyme on a negatively charged surface by the flexible model.  相似文献   

3.
Proteins are highly flexible molecules. Prediction of molecular flexibility aids in the comprehension and prediction of protein function and in providing details of functional mechanisms. The ability to predict the locations, directions, and extent of molecular movements can assist in fitting atomic resolution structures to low-resolution EM density maps and in predicting the complex structures of interacting molecules (docking). There are several types of molecular movements. In this work, we focus on the prediction of hinge movements. Given a single protein structure, the method automatically divides it into the rigid parts and the hinge regions connecting them. The method employs the Elastic Network Model, which is very efficient and was validated against a large data set of proteins. The output can be used in applications such as flexible protein-protein and protein-ligand docking, flexible docking of protein structures into cryo-EM maps, and refinement of low-resolution EM structures. The web server of HingeProt provides convenient visualization of the results and is available with two mirror sites at http://www.prc.boun.edu.tr/appserv/prc/HingeProt3 and http://bioinfo3d.cs.tau.ac.il/HingeProt/.  相似文献   

4.
Protein‐protein interactions are abundant in the cell but to date structural data for a large number of complexes is lacking. Computational docking methods can complement experiments by providing structural models of complexes based on structures of the individual partners. A major caveat for docking success is accounting for protein flexibility. Especially, interface residues undergo significant conformational changes upon binding. This limits the performance of docking methods that keep partner structures rigid or allow limited flexibility. A new docking refinement approach, iATTRACT, has been developed which combines simultaneous full interface flexibility and rigid body optimizations during docking energy minimization. It employs an atomistic molecular mechanics force field for intermolecular interface interactions and a structure‐based force field for intramolecular contributions. The approach was systematically evaluated on a large protein‐protein docking benchmark, starting from an enriched decoy set of rigidly docked protein–protein complexes deviating by up to 15 Å from the native structure at the interface. Large improvements in sampling and slight but significant improvements in scoring/discrimination of near native docking solutions were observed. Complexes with initial deviations at the interface of up to 5.5 Å were refined to significantly better agreement with the native structure. Improvements in the fraction of native contacts were especially favorable, yielding increases of up to 70%. Proteins 2015; 83:248–258. © 2014 Wiley Periodicals, Inc.  相似文献   

5.
Eunsung Park  Julian Lee 《Proteins》2015,83(6):1054-1067
Many proteins undergo large‐scale motions where relatively rigid domains move against each other. The identification of rigid domains, as well as the hinge residues important for their relative movements, is important for various applications including flexible docking simulations. In this work, we develop a method for protein rigid domain identification based on an exhaustive enumeration of maximal rigid domains, the rigid domains not fully contained within other domains. The computation is performed by mapping the problem to that of finding maximal cliques in a graph. A minimal set of rigid domains are then selected, which cover most of the protein with minimal overlap. In contrast to the results of existing methods that partition a protein into non‐overlapping domains using approximate algorithms, the rigid domains obtained from exact enumeration naturally contain overlapping regions, which correspond to the hinges of the inter‐domain bending motion. The performance of the algorithm is demonstrated on several proteins. Proteins 2015; 83:1054–1067. © 2015 Wiley Periodicals, Inc.  相似文献   

6.
Bio3D is a family of R packages for the analysis of biomolecular sequence, structure, and dynamics. Major functionality includes biomolecular database searching and retrieval, sequence and structure conservation analysis, ensemble normal mode analysis, protein structure and correlation network analysis, principal component, and related multivariate analysis methods. Here, we review recent package developments, including a new underlying segregation into separate packages for distinct analysis, and introduce a new method for structure analysis named ensemble difference distance matrix analysis (eDDM). The eDDM approach calculates and compares atomic distance matrices across large sets of homologous atomic structures to help identify the residue wise determinants underlying specific functional processes. An eDDM workflow is detailed along with an example application to a large protein family. As a new member of the Bio3D family, the Bio3D‐eddm package supports both experimental and theoretical simulation‐generated structures, is integrated with other methods for dissecting sequence‐structure–function relationships, and can be used in a highly automated and reproducible manner. Bio3D is distributed as an integrated set of platform independent open source R packages available from: http://thegrantlab.org/bio3d/ .  相似文献   

7.
We present RIBFIND, a method for detecting flexibility in protein structures via the clustering of secondary structural elements (SSEs) into rigid bodies. To test the usefulness of the method in refining atomic structures within cryoEM density we incorporated it into our flexible fitting protocol (Flex-EM). Our benchmark includes 13 pairs of protein structures in two conformations each, one of which is represented by a corresponding cryoEM map. Refining the structures in simulated and experimental maps at the 5–15 Å resolution range using rigid bodies identified by RIBFIND shows a significant improvement over using individual SSEs as rigid bodies. For the 15 Å resolution simulated maps, using RIBFIND-based rigid bodies improves the initial fits by 40.64% on average, as compared to 26.52% when using individual SSEs. Furthermore, for some test cases we show that at the sub-nanometer resolution range the fits can be further improved by applying a two-stage refinement protocol (using RIBFIND-based refinement followed by an SSE-based refinement). The method is stand-alone and could serve as a general interactive tool for guiding flexible fitting into EM maps.  相似文献   

8.
Protein molecules require both flexibility and rigidity for functioning. The fast and accurate prediction of protein rigidity/flexibility is one of the important problems in protein science. We have determined flexible regions for four homologous pairs from thermophilic and mesophilic organisms by two methods: the fast FoldUnfold which uses amino acid sequence and the time consuming MDFirst which uses three-dimensional structures. We demonstrate that both methods allow determining flexible regions in protein structure. For three of the four thermophile–mesophile pairs of proteins, FoldUnfold predicts practically the same flexible regions which have been found by the MD/First method. As expected, molecular dynamics simulations show that thermophilic proteins are more rigid in comparison to their mesophilic homologues. Analysis of rigid clusters and their decomposition provides new insights into protein stability. It has been found that the local networks of salt bridges and hydrogen bonds in thermophiles render their structure more stable with respect to fluctuations of individual contacts. Such network includes salt bridge triads Agr-Glu-Lys and Arg-Glu-Arg, or salt bridges (such as Arg-Glu) connected with hydrogen bonds. This ionic network connects alpha helices and rigidifies the structure. Mesophiles can be characterized by stand alone salt bridges and hydrogen bonds or small ionic clusters. Such difference in the network of salt bridges results in different flexibility of homologous proteins. Combining both approaches allows characterizing structural features in atomic detail that determine the rigidity/flexibility of a protein structure. This article is a part of a Special Issue entitled: The emerging dynamic view of proteins: Protein plasticity in allostery, evolution and self-assembly.  相似文献   

9.
Sarco(endo)plasmic reticulum Ca2+‐ATPase transports two Ca2+ per ATP‐hydrolyzed across biological membranes against a large concentration gradient by undergoing large conformational changes. Structural studies with X‐ray crystallography revealed functional roles of coupled motions between the cytoplasmic domains and the transmembrane helices in individual reaction steps. Here, we employed “Motion Tree (MT),” a tree diagram that describes a conformational change between two structures, and applied it to representative Ca2+‐ATPase structures. MT provides information of coupled rigid‐body motions of the ATPase in individual reaction steps. Fourteen rigid structural units, “common rigid domains (CRDs)” are identified from seven MTs throughout the whole enzymatic reaction cycle. CRDs likely act as not only the structural units, but also the functional units. Some of the functional importance has been newly revealed by the analysis. Stability of each CRD is examined on the morphing trajectories that cover seven conformational transitions. We confirmed that the large conformational changes are realized by the motions only in the flexible regions that connect CRDs. The Ca2+‐ATPase efficiently utilizes its intrinsic flexibility and rigidity to response different switches like ligand binding/dissociation or ATP hydrolysis. The analysis detects functional motions without extensive biological knowledge of experts, suggesting its general applicability to domain movements in other membrane proteins to deepen the understanding of protein structure and function. Proteins 2015; 83:746–756. © 2015 Wiley Periodicals, Inc.  相似文献   

10.
Proteins and nucleic acids are key components in many processes in living cells, and interactions between proteins and nucleic acids are often crucial pathway components. In many cases, large flexibility of proteins as they interact with nucleic acids is key to their function. To understand the mechanisms of these processes, it is necessary to consider the 3D atomic structures of such protein–nucleic acid complexes. When such structures are not yet experimentally determined, protein docking can be used to computationally generate useful structure models. However, such docking has long had the limitation that the consideration of flexibility is usually limited to small movements or to small structures. We previously developed a method of flexible protein docking which could model ordered proteins which undergo large-scale conformational changes, which we also showed was compatible with nucleic acids. Here, we elaborate on the ability of that pipeline, Flex-LZerD, to model specifically interactions between proteins and nucleic acids, and demonstrate that Flex-LZerD can model more interactions and types of conformational change than previously shown.  相似文献   

11.
The conformational properties of unbound multi‐Cys2His2 (mC2H2) zinc finger proteins, in which zinc finger domains are connected by flexible linkers, are studied by a multiscale approach. Three methods on different length scales are utilized. First, atomic detail molecular dynamics simulations of one zinc finger and its adjacent flexible linker confirmed that the zinc finger is more rigid than the flexible linker. Second, the end‐to‐end distance distributions of mC2H2 zinc finger proteins are computed using an efficient atomistic pivoting algorithm, which only takes excluded volume interactions into consideration. The end‐to‐end distance distribution gradually changes its profile, from left‐tailed to right‐tailed, as the number of zinc fingers increases. This is explained by using a worm‐like chain model. For proteins of a few zinc fingers, an effective bending constraint favors an extended conformation. Only for proteins containing more than nine zinc fingers, is a somewhat compacted conformation preferred. Third, a mesoscale model is modified to study both the local and the global conformational properties of multi‐C2H2 zinc finger proteins. Simulations of the CCCTC‐binding factor (CTCF), an important mC2H2 zinc finger protein for genome spatial organization, are presented. Proteins 2015; 83:1604–1615. © 2015 Wiley Periodicals, Inc.  相似文献   

12.
The flexibility of HIV protease (HIVp) plays a critical role in enabling enzymatic activity and is required for substrate access to the active site. While the importance of flexibility in the flaps that cover the active site is well known, flexibility in other parts of the enzyme is also critical for function. One key region is a loop containing Thr 80, which forms the walls of the active site. Although not situated within the active site, amino acid Thr80 is absolutely conserved. The mutation T80N preserves the structure of the enzyme but catalytic activity is completely lost. To investigate the potential influence of the T80N mutation on HIVp flexibility, wide‐angle X‐ray scattering (WAXS) data was measured for a series of HIVp variants. Starting with a calculated WAXS pattern from a rigid atomic model, the modulations in the intensity distribution caused by structural fluctuations in the protein were predicted by simple analytic methods and compared with the experimental data. An analysis of T80N WAXS data shows that this variant is significantly more rigid than the WT across all length scales. The effects of this single point mutation extend throughout the protein, to alter the mobility of amino acids in the enzymatic core. These results support the contentions that significant protein flexibility extends throughout HIVp and is critical to catalytic function. Proteins 2015; 83:1929–1939. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
Fulle S  Gohlke H 《Biophysical journal》2008,94(11):4202-4219
RNA requires conformational dynamics to undergo its diverse functional roles. Here, a new topological network representation of RNA structures is presented that allows analyzing RNA flexibility/rigidity based on constraint counting. The method extends the FIRST approach, which identifies flexible and rigid regions in atomic detail in a single, static, three-dimensional molecular framework. Initially, the network rigidity of a canonical A-form RNA is analyzed by counting on constraints of network elements of increasing size. These considerations demonstrate that it is the inclusion of hydrophobic contacts into the RNA topological network that is crucial for an accurate flexibility prediction. The counting also explains why a protein-based parameterization results in overly rigid RNA structures. The new network representation is then validated on a tRNAASP structure and all NMR-derived ensembles of RNA structures currently available in the Protein Data Bank (with chain length ≥40). The flexibility predictions demonstrate good agreement with experimental mobility data, and the results are superior compared to predictions based on two previously used network representations. Encouragingly, this holds for flexibility predictions as well as mobility predictions obtained by constrained geometric simulations on these networks. Potential applications of the approach to analyzing the flexibility of DNA and RNA/protein complexes are discussed.  相似文献   

14.
The DOcking decoy‐based Optimized Potential (DOOP) energy function for protein structure prediction is based on empirical distance‐dependent atom‐pair interactions. To optimize the atom‐pair interactions, native protein structures are decomposed into polypeptide chain segments that correspond to structural motives involving complete secondary structure elements. They constitute near native ligand–receptor systems (or just pairs). Thus, a total of 8609 ligand–receptor systems were prepared from 954 selected proteins. For each of these hypothetical ligand–receptor systems, 1000 evenly sampled docking decoys with 0–10 Å interface root‐mean‐square‐deviation (iRMSD) were generated with a method used before for protein–protein docking. A neural network‐based optimization method was applied to derive the optimized energy parameters using these decoys so that the energy function mimics the funnel‐like energy landscape for the interaction between these hypothetical ligand–receptor systems. Thus, our method hierarchically models the overall funnel‐like energy landscape of native protein structures. The resulting energy function was tested on several commonly used decoy sets for native protein structure recognition and compared with other statistical potentials. In combination with a torsion potential term which describes the local conformational preference, the atom‐pair‐based potential outperforms other reported statistical energy functions in correct ranking of native protein structures for a variety of decoy sets. This is especially the case for the most challenging ROSETTA decoy set, although it does not take into account side chain orientation‐dependence explicitly. The DOOP energy function for protein structure prediction, the underlying database of protein structures with hypothetical ligand–receptor systems and their decoys are freely available at http://agknapp.chemie.fu‐berlin.de/doop/ . Proteins 2015; 83:881–890. © 2015 Wiley Periodicals, Inc.  相似文献   

15.
Zhao S  Goodsell DS  Olson AJ 《Proteins》2001,43(3):271-279
We compiled and analyzed a data set of paired protein structures containing proteins for which multiple high-quality uncomplexed atomic structures were available in the Protein Data Bank. Side-chain flexibility was quantified, yielding a set of residue- and environment-specific confidence levels describing the range of motion around chi1 and chi2 angles. As expected, buried residues were inflexible, adopting similar conformations in different crystal structure analyses. Ile, Thr, Asn, Asp, and the large aromatics also showed limited flexibility when exposed on the protein surface, whereas exposed Ser, Lys, Arg, Met, Gln, and Glu residues were very flexible. This information is different from and complementary to the information available from rotamer surveys. The confidence levels are useful for assessing the significance of observed side-chain motion and estimating the extent of side-chain motion in protein structure prediction. We compare the performance of a simple 40 degrees threshold with these quantitative confidence levels in a critical evaluation of side-chain prediction with the program SCWRL.  相似文献   

16.
17.
Modeling mutations in protein structures   总被引:2,自引:0,他引:2  
We describe an automated method for the modeling of point mutations in protein structures. The protein is represented by all non-hydrogen atoms. The scoring function consists of several types of physical potential energy terms and homology-derived restraints. The optimization method implements a combination of conjugate gradient minimization and molecular dynamics with simulated annealing. The testing set consists of 717 pairs of known protein structures differing by a single mutation. Twelve variations of the scoring function were tested in three different environments of the mutated residue. The best-performing protocol optimizes all the atoms of the mutated residue, with respect to a scoring function that includes molecular mechanics energy terms for bond distances, angles, dihedral angles, peptide bond planarity, and non-bonded atomic contacts represented by Lennard-Jones potential, dihedral angle restraints derived from the aligned homologous structure, and a statistical potential for non-bonded atomic interactions extracted from a large set of known protein structures. The current method compares favorably with other tested approaches, especially when predicting long and flexible side-chains. In addition to the thoroughness of the conformational search, sampled degrees of freedom, and the scoring function type, the accuracy of the method was also evaluated as a function of the flexibility of the mutated side-chain, the relative volume change of the mutated residue, and its residue type. The results suggest that further improvement is likely to be achieved by concentrating on the improvement of the scoring function, in addition to or instead of increasing the variety of sampled conformations.  相似文献   

18.
In recent years in silico protein structure prediction reached a level where fully automated servers can generate large pools of near‐native structures. However, the identification and further refinement of the best structures from the pool of models remain problematic. To address these issues, we have developed (i) a target‐specific selective refinement (SR) protocol; and (ii) molecular dynamics (MD) simulation based ranking (SMDR) method. In SR the all‐atom refinement of structures is accomplished via the Rosetta Relax protocol, subject to specific constraints determined by the size and complexity of the target. The best‐refined models are selected with SMDR by testing their relative stability against gradual heating through all‐atom MD simulations. Through extensive testing we have found that Mufold‐MD, our fully automated protein structure prediction server updated with the SR and SMDR modules consistently outperformed its previous versions. Proteins 2015; 83:1823–1835. © 2015 Wiley Periodicals, Inc.  相似文献   

19.
《Proteins》2018,86(5):501-514
The structural variations of multidomain proteins with flexible parts mediate many biological processes, and a structure ensemble can be determined by selecting a weighted combination of representative structures from a simulated structure pool, producing the best fit to experimental constraints such as interatomic distance. In this study, a hybrid structure‐based and physics‐based atomistic force field with an efficient sampling strategy is adopted to simulate a model di‐domain protein against experimental paramagnetic relaxation enhancement (PRE) data that correspond to distance constraints. The molecular dynamics simulations produce a wide range of conformations depicted on a protein energy landscape. Subsequently, a conformational ensemble recovered with low‐energy structures and the minimum‐size restraint is identified in good agreement with experimental PRE rates, and the result is also supported by chemical shift perturbations and small‐angle X‐ray scattering data. It is illustrated that the regularizations of energy and ensemble‐size prevent an arbitrary interpretation of protein conformations. Moreover, energy is found to serve as a critical control to refine the structure pool and prevent data overfitting, because the absence of energy regularization exposes ensemble construction to the noise from high‐energy structures and causes a more ambiguous representation of protein conformations. Finally, we perform structure‐ensemble optimizations with a topology‐based structure pool, to enhance the understanding on the ensemble results from different sources of pool candidates.  相似文献   

20.
Flexibility and dynamics are important for protein function and a protein's ability to accommodate amino acid substitutions. However, when computational protein design algorithms search over protein structures, the allowed flexibility is often reduced to a relatively small set of discrete side‐chain and backbone conformations. While simplifications in scoring functions and protein flexibility are currently necessary to computationally search the vast protein sequence and conformational space, a rigid representation of a protein causes the search to become brittle and miss low‐energy structures. Continuous rotamers more closely represent the allowed movement of a side chain within its torsional well and have been successfully incorporated into the protein design framework to design biomedically relevant protein systems. The use of continuous rotamers in protein design enables algorithms to search a larger conformational space than previously possible, but adds additional complexity to the design search. To design large, complex systems with continuous rotamers, new algorithms are needed to increase the efficiency of the search. We present two methods, PartCR and HOT, that greatly increase the speed and efficiency of protein design with continuous rotamers. These methods specifically target the large errors in energetic terms that are used to bound pairwise energies during the design search. By tightening the energy bounds, additional pruning of the conformation space can be achieved, and the number of conformations that must be enumerated to find the global minimum energy conformation is greatly reduced. Proteins 2015; 83:1151–1164. © 2015 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号